Chronic defensiveness and neuroendocrine dysfunction reflect a novel cardiac troponin T cut point: The SABPA study.

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: MALAN, L. ...et al., 2017. Chronic defensiveness and neuroendocrine dysfunction reflect a novel cardiac troponin T cut point: The SABPA study. Psychoneuroendocrinology, 85, pp. 20-27.

Additional Information:

- This paper was published in the journal Psychoneuroendocrinology and the definitive published version is available at https://doi.org/10.1016/j.psyneuen.2017.07.492.

Metadata Record: https://dspace.lboro.ac.uk/2134/26209

Version: Accepted for publication

Publisher: © Elsevier

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Title: Chronic defensiveness and neuroendocrine dysfunction reflect a novel cardiac troponin T cut point: the SABPA study

Running head: defensiveness; depression; heart-rate-variability; catecholamine, cardiac

Troponin T

Leoné Malan,1 Mark Hamer,1,2 Roland von Känel,1,3, Gavin Lambert,4,5 Rhena Delport,6 Hendrik Stefanus Steyn,7 Nicolaas T Malan,1

1Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
2National Centre for Sport and Exercise Medicine, Loughborough University, Leicestershire, United Kingdom
3Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
4Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn
5Baker Heart & Diabetes Institute, Melbourne, Australia
6Department of Chemical Pathology, University of Pretoria, South Africa
7Statistical Consultation Services; North-West University; Potchefstroom; South Africa

Corresponding author: Prof Leoné Malan (RN, PhD)

Hypertension in Africa Research Team (HART), Faculty of Health Sciences, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
Tel +27 18 2992438; Fax +27 18 2991053; Email: Leone.Malan@nwu.ac.za
ABSTRACT

Background: Sympatho-adrenal responses are activated as an innate defense coping (DefS) mechanism during emotional stress. Whether these sympatho-adrenal responses drive cardiac troponin T (cTnT) increases are unknown. Therefore, associations between cTnT and sympatho-adrenal responses were assessed.

Methods: A prospective bi-ethnic cohort, excluding atrial fibrillation, myocardial infarction and stroke cases, was followed for 3 years (N=342; 45.6±9.0 years). We obtained serum high-sensitive cTnT and outcome measures [Coping-Strategy-Indicator, depression/Patient-Health-Questionnaire-9, 24h BP, 24h heart-rate-variability (HRV) and 24h urinary catecholamines].

Results: cTnT levels of the cohort remained similar over 3 years but recovery to cTnT-negative levels was higher in Blacks. Blacks showed moderate depression (45% vs. 16%) and 24h hypertension (67% vs. 42%) prevalence compared to Whites. A receiver-operating-characteristics cTnT cut-point 4.2 ng/L predicting hypertension in Blacks was used as binary exposure measure in relation to outcome measures [AUC 0.68 (95% CI 0.60-0.76); sensitivity/specificity 63/70%; P≤0.001]. In cross-sectional analyses, elevated cTnT was related to DefS [OR 1.08 (95% CI 0.99-1.16); P=0.06]; 24h BP [OR 1.03-1.04 (95% CI 1.01-1.08); P≤0.02] and depressed HRV [OR 2.19 (95% CI 1.09-4.41); P=0.03] in Blacks, but not in Whites. At 3 year follow-up, elevated cTnT was related to attenuated urine norepinephrine:creatinine ratio in Blacks [OR 1.46 (95% CI 1.01-2.10); P=0.04]. In Whites, a cut point of 5.6 ng/L cTnT predicting hypertension was not associated with outcome measures.

Conclusion: Central neural control systems exemplified a brain-heart stress pathway. Desensitization of sympatho-adrenal responses occurred with initial neural- (HRV) followed by neuroendocrine dysfunction (norepinephrine:creatinine) in relation to elevated cTnT.
Chronic defensiveness may thus drive the desensitization or physiological depression, reflecting ischemic heart disease risk at a 4.2 ng/L cTnT cut-point in Blacks.

Keywords: defense; depression; heart-rate-variability; catecholamine, cardiac-Troponin T
1. INTRODUCTION

Coping with everyday stressors (Amirkhan, 1990) may disturb sympatho-adrenal activity and cardiac rhythmicity as indicated by changes in catecholamine turnover (de Kock et al., 2012) as well as heart-rate variability (HRV) (Malan et al., 2013). Particularly, defensive coping (DefS) or the fight-flight response encompassing perception of control and active problem solving, has been suggested as a promoter of health (Amirkhan, 1990). In spite of this view, DefS outcomes have also been linked with pathology and emotional distress related alterations (de Kock et al., 2012; Malan et al., 2013), in that attenuated sympatho-adrenal responses to acute mental stress in a cross-sectional analysis were associated with wall remodeling and silent myocardial ischemia in a Black male cohort (Malan & Malan, 2017). Therefore, it seems plausible that chronic defensiveness, reflecting emotional distress, may drive direct relationships between sympatho-adrenal activation and markers of cardiac injury (Lazzarino et al., 2013) such as elevated cardiac troponin (cTnT) levels. A subunit of the troponin complex, namely cTnT is released in response to sympathetic activation or catecholamine overload and myocyte necrosis (Muthu et al., 2014). A decrease in the metabolic supply to the myocardial tissue results in ischemia and resultant cardiomyocyte necrosis of the myocardium (Muthu et al., 2014). If reduced metabolic supply is accompanied by catecholamine vascular responsiveness, myocardial ischemia and cTnT-related damage may further increase (Mazzeo et al., 2014; Muthu et al., 2014). Resultant changes in cardiac autonomic modulation and blood pressure may therefore occur to counteract myocardial ischemia, in order to improve perfusion. Accumulative effects of higher chronic metabolic demands may also be taxing if emotional distress is present (Malan et al., 2016) To maintain metabolic homeostasis, central neural control and downstream adrenergic-related signaling will be apparent with either sensitization/upregulation in acute or desensitization/downregulation in chronic situations.
Therefore, we aimed to assess sympatho-adrenal outcome measures, including 24h urinary catecholamines, 24h heart-rate-variability (HRV), blood pressure and levels of coping and depression in a bi-ethnic cohort from South Africa. Sympatho-adrenal responses resembling emotional distress might translate to cTnT activity at a certain cut point indicative of future ischemic heart disease risk. Thus, the main aim was to examine prospective associations between binary exposure cTnT and sympatho-adrenal outcome measures.
2. METHODS

2.1 Study design

The Sympathetic activity and Ambulatory Blood Pressure in Africans (SABPA) prospective study (Figure 1) was conducted in 2008/9 and 2011/12 and included 409 Black and White teachers (Malan et al., 2015). For the current sub-study, we only included teachers participating in both phases and additionally excluded individuals with atrial fibrillation (N=10), a history of myocardial infarction or stroke (N=3) and missing cTnT data at baseline (N=4). The final study sample comprised of 342 participants who were fully informed about the objectives and procedures prior to recruitment. All participants provided written, informed consent. The study conformed to the Helsinki Declaration (revised 2004) and was approved by the Ethics Review Board of the North-West University, Potchefstroom Campus, South Africa: Approval number 0003607S6.

The three-year follow up investigation was performed using a similar methodology to the baseline evaluation with clinical assessments done over a 36h period. During the working week, 24h ambulatory blood pressure, -ECG and 24h physical activity devices were fitted to the participants at their working place after which they resumed normal daily activities. After 15:00, participants were transported to the North-West University overnight facilities, where they were introduced to the experimental set-up. Afterwards they enjoyed a standardized dinner, and completed a battery of psychosocial questionnaires under supervision of registered clinical psychologists. The next morning, anthropometric (Supplementary Methods) and sphygmomanometer blood pressure measurements were obtained and registered nursing staff collected overnight fasting blood samples after 07:00.
2.2 Cardiovascular risk measures

2.2.1 Ambulatory BP and ECG monitoring (ABPM)

ABPM devices were attached to participants' non-dominant arm (Meditech CE120 CardioTens®; Meditech, Budapest, Hungary) by trained cardiovascular research personnel. The Cardiotens® was programmed to measure BP at 30-min intervals during the day (07:00–22:00) and every hour during night time (22:00–06:00). The successful 24h inflation rate was 79% (±12) at baseline and 88% (±9) at follow-up. The data were analyzed with the CardioVisions 1.19 Personal Edition software (Meditech, Budapest, Hungary). Any incidents including visual disturbances, headaches, nausea, fainting, palpitations, physical activity and stress were to be recorded on a 24-hour diary card. Hypertensive status was classified as 24h SBP ≥ 130 mm Hg and/or DBP ≥ 80 mm Hg (Piepoli et al., 2016).

2.2.2 Frequency and Time-domain heart-rate-variability (HRV) analyses

Ambulatory HRV analyses assessed spontaneous oscillations resulting from sinus node depolarization (Thayer et al., 2012) obtained from analyzable 24h ambulatory 2-lead ECG data. The software program automatically filtered out ventricular and supraventricular ectopic beats as well as artefacts in RR intervals, while HRV outliers were manually removed. HRV measures included the standard deviation of the normal-to-normal (NN) intervals between adjacent QRS complexes (SDNN) which reflected vagus nerve-mediated autonomic control of the heart. SDNN is the best overall prognostic tool to detect depressed HRV (<100ms) (Pizzi et al., 2008). HRV triangular index (HRVti) is an index of the pulse variability based on a triangular interpolation method in the given time interval. In-depth explanations on frequency and time-domain analyses are well-described on-line (Supplementary Methods).

Additionally, non-linear analyses plotted each RR interval of a sinus beat as a function of the previous one for a predetermined segment length (Poincaré or Lorenz return maps/plots).
Quantitative analyses of these plots have been associated with long-term 24h RR-interval variability (SD2) (Pizzi et al., 2008).

2.2.3 Clinic blood pressure

Participants were in a semi-recumbent position for 20-30 minutes prior to blood pressure measurements using the Riva-Rocci Korotkoff method by applying a suitable cuff on the non-dominant arm (Riester CE 0124® and 1.3M™ Littman® II S.E. Stethoscope 2205). Two duplicate measurements were taken, with a 3- to 5-minute resting period between each; the second of which was used for statistical analyses. Hypertensive status was classified as SBP ≥ 140 mm Hg and/or DBP ≥ 90 mm Hg (Piepoli et al., 2016).

2.3 Coping Strategy Indicator (CSI)

The CSI is a 33-item self-report measure of coping responses with construct, convergent and discriminant validity (Amirkhan, 1990). Cronbach’s alpha (α) reliability coefficients were determined for the three subscales of 11 items each in the SABPA cohort and ranged between 0.61-0.87. DefS implies actively solving problems and in-control responses. Seeking social support supports DefS, with a focus on acquiring advice in stressful times and lastly, emotional avoidance or loss-of-control implies defeat, with psychophysiological withdrawal. When responding to the various questions of the three subscales, the participant had to keep a recent stressful event in mind. The responses were then rated on a three-point Likert scale: a lot (3), a little (2), or not at all (1). The events fell into four broad categories: achievement (work/school related problems); social stressors (interpersonal conflict); personal changes in psychophysiological or spiritual status; and fate events such as accidents and chance victimization (Amirkhan, 1990). Two research assistants sorted these events with an 88% agreement.
2.4 Depression

Depression symptoms scores were obtained via the PHQ-9 (Kroenke & Spitzer, 2002) which has been validated in various ethnic groups for use in primary health care settings (Monohan et al., 2009). Each item evaluated the presence of one of the nine Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV-R) criteria for major depression. The Cronbach’s alpha-reliability index for the total three-year PHQ-9 score in the current sub-study was 0.80, indicating good reliability. The recommended and established PHQ-9 cut-off point of ≥ 10 indicates the presence of moderately severe depression symptoms.

2.5 Biochemical measurements

2.5.1 Urinary Catecholamines

Urine collection was performed overnight, 8h sampling at baseline and 24h sampling at follow-up. The sampling periods of 8h and 24h compares favorably for detection of stress hormones in urine (Masi et al., 2004). At follow-up, participants began and ended sampling with an empty bladder on Day 1. Urine was collected for the next 24 hours in a three liter container, washed with 9 ml of 20% HCl (UriSet24, Sarstedt®, Nümbrecht, Germany). Samples were stored at -80°C until analysis within one year after collection, using the 3-Cat Urine ELISA Fast Track kit (LDN, Nordhorn, Germany). Intra- and inter-assay coefficients for epinephrine were 5.50% and 9.62% respectively and for norepinephrine, 2.70% and 8.59%. Urine creatinine was measured with the calorimetric method.

2.5.2 Blood analyses

A registered nurse obtained fasting blood samples from the ante-brachial vein branches with a sterile winged infusion set, and handled samples according to standardized procedures. Serum and whole blood EDTA samples were analyzed for lipids, high sensitivity C-reactive protein (CRP), cotinine (reflecting smoking status), gamma glutamyl transferase (γ-GT) (reflecting alcohol consumption) and glycated haemoglobin (HbA1c), using Unicel DXC 800,
Beckman and Coulter, USA; Modular ROCHE Automized, Switzerland and the Konelab™ Modular ROCHE Sequential Multiple Analyzer Computer, ThermoScientific, Vantaa, Finland respectively. Citrate fibrinogen was measured by the Viscosity-based clotting method and the Immuno-turbidimetric method (STA Compact, TAGO Diagnostic, Roche; France). The CRP:fibrinogen ratio was used as marker of fibrosis (Jansen van Vuren et al., 2016). Thyroid stimulating hormone (TSH) and high sensitive cTnT were determined with electrochemiluminescence immunoassay (ECLIA), Elecsys 2010, Roche, Basel, Switzerland. Eighty cTnT values (23.39%) were below detectable limit (<3 ng/L) and substituted with lower than detectable values using log-methods. The cTnT inter- and intra-batch variability was 15% and 5.6%.

2.6 Statistical analyses

Statistica version 13 and IBM SPSS version 23 statistical software packages were used. Power analyses were performed to obtain relevant effect sizes based on differences in ambulatory autonomic dysfunction and biological profiles. Results showed that a sample size of 50 will demonstrate biological differences with a statistical power of 0.8, and significance level of 0.05. Variables with skewed distributions were log-transformed. Covariates were chosen a priori (Piepoli et al., 2016) including: age, waist circumference, physical activity, γ-GT, cotinine, hypertension medication as well as TSH for HRV analyses. Considering retinal perfusion deficits and the high hypertension prevalence in Blacks (Malan et al., 2016b) optimal cTnT cut points associated with clinic and ambulatory 24h hypertension were computed from the maximum of the Youden index (J) (sensitivity + specificity − 1) using non-parametric receiver operating characteristic (ROC) curves. General linear modelling was used to test a priori hypotheses (Ethnicity x Gender x cTnT) using the derived cTnT cut point as binary exposure measure for outcome risk markers, independent of a priori covariates and baseline values of the respective risk factors. Sympatho-adrenal outcome measures included
24h urinary catecholamines, 24h heart-rate-variability (HRV), blood pressure and levels of coping and depression. Independent *t*-tests and Chi-square (χ²) tests compared sympatho-adrenal differences and proportions at baseline respectively. ANCOVA analyses compared sympato-adrenal values at baseline and follow-up; as well as at follow-up in relation to elevated ROC cTnT cut point, controlling for *a priori* covariates and baseline value of the respective risk factors. Positive cTnT cases were determined at cut points 3ng/L and 4.2ng/L levels; Chi-square (χ²) tests were used to examine changes in cTnT caseness between baseline and follow up (i.e., negative results at baseline becoming cTnT-positive at follow-up; and cTnT-positive people at baseline recovering to cTnT-negative at follow-up). McNemar’s case-control tests were used to demonstrate changes in high DefS and stressful coping events over 3 years. Non-linear HRV analyses, using Poincaré and Lorenz plots, were recorded in a Black male having chronic depressed SDNN (<100ms), DefS (≥31), 24h hypertension and raised cTnT.

Logistic regression analyses calculated odds ratios (OR) and 95% confidence intervals (CI) to determine if sympathy-adrenal outcome measures will increase the risk of raised cTnT. These analyses were performed to examine cross-sectional and longitudinal associations. For the latter we used the formula: ∆ %: (follow-up – baseline)/baseline*100. Sympatho-adrenal outcome measures were added independently and in combination to multivariate models, considering baseline *a priori* covariates and TSH in HRV models. Sensitivity analyses were additionally computed to adjust for gender in HRV analyses and excluding HIV cases. The statistical significance level was set at *p* ≤ 0.05 (two-tailed).
3. RESULTS

3.1 Clinical characteristics

In Table 1, Blacks at baseline were younger, physically less active, consumed more alcohol (γ-GT), and had lower TSH and time-domain HRV values compared to Whites. More Blacks showed moderate depression (45.0% vs. 16.2%) and 24h hypertension (67% vs. 42%) prevalence compared to Whites. Blacks further used more ACE inhibitors, diuretics and calcium channel blockers (P≤0.05).

In Figure 2, a receiver-operating-characteristics (ROC) cTnT cut-point of 4.2 ng/L predicted both clinic [AUC 0.64 (95% CI 0.55-0.72); sensitivity/specificity 63/64%; P≤0.002] and ambulatory 24h hypertension [AUC 0.68 (95% CI 0.60-0.76); sensitivity/specificity 63/70%; P≤0.001] in Blacks. In Whites, the cTnT cut-point of 5.6 ng/L [AUC 0.67 (95% CI 0.58-0.75); sensitivity/specificity 53/78%; P≤0.001] predicted ambulatory 24h hypertension only. An interaction term (ethnicity x cTnT) was fitted for DefS [F (1,324), 6.40; P = 0.01] but not for the other coping strategies or depression. Ethnic differences were evident for cTnT, BP, time-domain HRV and the catecholamines (P≤0.001).

Unadjusted (Table A.1) comparisons showed that Blacks consistently sought more social support compared to Whites. Blacks further had depressed HRV (lower time-domain SDNN, increased SDNN risk (≤100ms), lower geometric (HRVti) HRV patterns), higher fibrosis, blood pressure and lower catecholamine levels compared to Whites. In adjusted comparisons, a similar trend was observed in Blacks in relation to elevated cTnT (Table 2, Whites=reference group). Except for SDNN and HRVti, none of the other frequency or time-domain HRV measures showed significant cross-sectional and longitudinal differences or associations with elevated cTnT considering confounders and will not be discussed further.
cTnT levels remained similar in the bi-ethnic cohort over 3 years. In Table A.2, the recovery
of cTnT-positive people at baseline to cTnT-negative at follow-up was more apparent at
cTnT cut point < 3 ng/L in Blacks (49.7% in Blacks vs. 32.4% in Whites; p≤ 0.001).

Coping with social stress or interpersonal conflict (Table A.3) showed increased changes
(3.46%) over time in relation to elevated cTnT in Blacks [OR 0.52 (95% CI: 0.26-1.05),
P=0.06].

A composite profile demonstrated a dispersed complex-like pattern with non-linear analysis,
i.e. 2-dimensional Poincaré plotting (Figure A.1) and 3-dimensional Lorenz mapping (Figure
A.2) in a Black male with high defensive coping (DefS score = 31); hypertension (24h BP =
143/91 mmHg); moderately depressed HRV (SDNN = 73ms); medium cardiovascular risk
(HRV triangular index = 9) and raised cTnT (mean 5.1ng/L).

3.2 Cross-sectional associations between sympatho-adrenal responses and elevated
cTnT

In Table 3, an increased risk for cardiac injury at baseline was evident in Blacks when
habitually using DefS (P=0.06), accompanied by moderately depressed time-domain HRV
responses (P=0.03) and increased 24h BP (SBP, DBP) (P≤ 0.02). Apart from fibrosis [OR
0.63 (95% CI: 0.41-0.97); P=0.04], elevated cTnT cut-point (5.6 ng/L) was not associated
with any sympatho-adrenal responses in Whites (Table A.4).

3.3 Follow-up associations between sympatho-adrenal responses and elevated cTnT

At follow-up (Table 3), cardiac injury risk was related to desensitized
norepinephrine:creatinine ratio [OR 1.46 (1.01-2.10); P=0.04] in Blacks.

Sensitivity analyses adjusting for gender in HRV analyses and excluding HIV cases did not
change the outcomes.
4. DISCUSSION

We assessed cross-sectional and longitudinal associations between cardiac injury (cTnT) and sympato-adrenal responses in a bi-ethnic cohort of South African teachers. Major central neural control systems exemplified a brain-heart-axis stress pathway. The pathway demonstrated desensitized sympato-adrenal responses in relation to elevated cTnT levels with initial neural- (HRV) followed by neuroendocrine dysfunction (norepinephrine:creatinine). Chronic defensiveness may drive this desensitization; reflecting a physiological depression and ischemic heart disease risk at a novel 4.2 ng/L cTnT cut-point in a Black South African cohort.

4.1 Chronic defensiveness reflecting cardiac injury

Healthy coping strategies integrate central neural responses in order to cope with stress (Vaillant, 2011). Survival circuits and defense responses are activated when threatening conditions are detected in the amygdala and a general arousal state is generated in the paraventricular nuclei of the hypothalamus (Moscarello & LeDoux, 2013). This state is due to widespread fast acting neural-induced involuntary heart rate variations and the release of slower neuroendocrine aminergic neuromodulators (Moscarello & LeDoux, 2013; Thayer et al., 2012). Individual resiliency will thus depend on the capacity of the individual to recover from the stressor by means of healthy in-control coping strategies with a voluntary mobilizing of social support from friends or family (Amirkhan, 1990; Malan et al., 2017). Currently, the Black cohort sought more social support, which supports an in-control DefS response albeit increasing interpersonal conflict and social stress. Indeed, coping defensively with a social stressor showed a trend for elevated cTnT risk in the current Black cohort. Chronic DefS with social stress further showed susceptibility for physiological loss-of-control sympato-adrenal responses. Previous findings support this notion as an urban-dwelling environment and accompanying acculturation was deemed a psychosocial stressor.
In 1018 Blacks from the North-West Province of South Africa, DefS and seeking social support were associated with loss-of-control cardiometabolic responses (Hamer & Malan, 2010). Our data additionally showed that chronic DefS further may increase susceptibility for cardiac injury at a cTnT 4.2 ng/L cut-point for Blacks opposed to a suggested cut point of 6ng/L, or lower, for stress-induced cardiomyopathy (Ramaraj et al., 2009). Interestingly, in Whites, the higher 5.6 ng/L cTnT cut-point predicting ambulatory hypertension was not related to disturbed sympatho-adrenal responses, and rather exemplified behavioral in-control DefS responses. Recently F-flurodeoxyglucose PET/CTs showed increased amygdalar activity, which was associated with perceived stress and cardiovascular disease risk in 293 patients followed for 3.7 years (Tawakol et al., 2017). These findings are in line with our results in Blacks reflecting chronic defensiveness and cardiac injury over 3 years. Cardiac injury recovery was more apparent at cTnT levels below 3ng/L and support our findings that cTnT at ≥ 4.2ng/L impeded recovery as concomitant neuroendocrine dysregulation occurred at these levels. The protective role of estradiol against silent myocardial events (Malan NT et al., 2017) might explain underlying mechanisms to cardiac injury recovery.

4.2 Heart rate variation reflecting cardiac injury

Chronic defensiveness or more emotional distress further increases higher metabolic demand and may disrupt homeostasis with activation of central neural control systems (Patil et al., 2015). In the current study, we demonstrated initial neural control where depressed HRV responses in relation to elevated cTnT were accompanied by BP increases as homeostatic reflexes. Indeed, estimators of sympathetic hyperactivity (SDNN <100ms and HRVti) levels were increased in the Black cohort compared to Whites, further underscoring depressed HRV and risk for cardiac injury in Blacks.
The limbic system modulates cardiac activity in response to stressful events and during homeostatic reflexes (Manea et al., 2015). Sympathetic nervous system (SNS) hyperactivity may thus serve as a pathophysiological event affecting the reciprocal relationships between limbic responses, sympathovagal disturbances and raised cTnT. The possibility of neurocardiogenic injury emerges as a consequence of uncontrolled stress and subsequent catecholamine overload. Indeed, DefS induces SNS hyperactivity and supports the initial neural control (depressed HRV, BP increases or hypertensive status) profile at baseline, reflecting a hypervigilant system. The occurrence of myocardial ischemia and/or myocardial necrosis during chronic defensiveness may further facilitate a mechanical distortion of the afferent and efferent fibers of the autonomic nervous system. This may be due to changes in the geometry related to necrotic and non-contracting segments of the heart (Mazzeo et al., 2014). Changes will also affect local neural regulation and contribute to the resulting diminished HRV. However, contradictory findings were recently reported (Jandackova et al., 2016). In the UK Whitehall II population-based cohort study, cardiac autonomic modulations in 3414 men and women obtained over 10 years and at 3 different time points, were not associated with a higher prevalence of cardiometabolic symptoms but rather with normal ageing (Jandackova et al., 2016).

4.3 Neuroendocrine dysfunction reflecting cardiac injury

Pertaining to neuroendocrine risk, we could not find any bi-ethnic study reporting a longitudinal relationship between the catecholamines and cardiac injury. Our findings support the presence of a novel brain-heart stress pathway. Chronic sympatho-adrenal activation facilitated a later onset of neuroendocrine control with desensitization of norepinephrine:creatinine in relation to elevated cTnT in a Black cohort. Previously we have established that the trigger enzyme for synthesis of the catecholamines, tyrosine hydroxylase C-824T single nucleotide polymorphism, was not related to hypertension in this Black cohort.
Therefore, our findings rather support the role of environmental or social stress demands, which elicited sympatho-adrenal responses in relation to elevated cTnT in Blacks. The risk of an attenuated norepinephrine:creatinine ratio and elevated cTnT levels suggests that overwhelming sustained stress may interfere with behavioral in-control DefS. It may cause distress and hyperactivity of the sympatho-adrenal system, as the body attempts to cope with increasing demands. Two mechanisms may apply: norepinephrine levels may a) decrease due to exhaustion of the autonomic system (Guilliams & Edwards, 2010) where adrenal exhaustion or fatigue will set in, and b) the neuroendocrine system will become non-responsive with desensitization and/or down-regulation of adrenergic receptors, which has been associated with depression and neural fatigue (Tsigos & Croussos, 2002). The lack of association between chronic depressive symptoms and cardiac injury was therefore surprising. Our findings rather support dissociation of DefS responses where behavioral in-control responses masked physiological loss-of-control or desensitized responses (physiological depression). This may have a detrimental impact on cardiac health in the long-term and may increase susceptibility for ischemic heart disease.

4.4 Blood pressure as compensatory mechanism to counteract perfusion deficits and cardiac injury

Coping defensively with overwhelming social stress (Rosengren et al., 2004) may have induced BP increases in relation to elevated cTnT at baseline. Concurrently, the hypertension prevalence rate in the Whites was lower (42%) compared to the Blacks (67%) with no change in hypertension prevalence in the Black Africans at follow-up. Findings from the INTERHEART (Rosengren et al., 2004) and Jackson studies (Abdalla et al., 2016) in African-Americans demonstrated similar findings as social stress was related to myocardial ischemia and elevations in cTnT respectively. Interestingly, the ambulatory hypertension status of 59% African-Americans from the Jackson study (Abdalla et al., 2016) compares
reasonably well with the 67% of our cohort. We, therefore, argue that evidence of vascular resistance in Blacks (Malan et al., 2012) and African-Americans (Adefurin et al., 2013) might be driven by chronic defensiveness or a disturbed brain-heart stress response pathway. Indeed, vascular resistance increases cardiac preload in essential hypertensives (Adefurin et al., 2013) and impeded coronary perfusion in a Black cohort (Griffiths et al., 2017). Inevitable this may increase myocardial oxygen demand, which may result in proteolysis and release of cTnT and increases in blood pressure. Ultimately, loss-of-control DefS in the Blacks facilitated cardiac injury. Previously, the SABPA Whites showed acute emotional stress at follow-up (Malan et al., 2016), which aligns well with the current effective in-control DefS where elevated cTnT was not related to sympatho-adrenal responses. Our findings further suggest that targeting novel markers to explain hypertension prevalence in the African ethnicity should rather consider central neural control or brain-heart stress responses. When chronic conditions such as cardiac injury prevail, dynamic compensatory BP increases may trigger central control mechanisms to maintain homeostatic reflexes in organ systems.

The small sample size prohibited stratification into both ethnic and gender groups thereby limiting an improved understanding of cardiac injury pathology. Therefore expanding data to other cohorts may confirm findings of a 4.2 ng/l cTnT cut-point when chronic defensiveness is suspected. Early screening for raised cTnT has clinical practice implications as raised cTnT is shown to be related to neural distress, which may precede ischemic heart disease and future heart failure risk.

In conclusion, a novel brain-heart stress pathway exemplified desensitized sympatho-adrenal responses in relation to cardiac injury. Initial desensitized neural- followed by neuroendocrine dysfunction reflected a chronic physiological depression. Dissociation of behavioral control (DefS) albeit physiological loss-of-control responses were demonstrated in the Blacks. Chronic defensiveness may have contributed to loss-of-control neuroendocrine
responses, facilitating cardiac injury at a 4.2 ng/l cTnT cut-point. Screening for stress-related cardiac injury at cTnT levels of ≥ 4.2 and ECG ST-segment depression may allow detection of the early dynamics in ischemic heart disease development.
ACKNOWLEDGEMENTS

This study would not have been possible without all the participants who volunteered to be part of the SABPA study; and in-kind analyses of collaborators. Funding was obtained by the North-West University, Potchefstroom, South Africa; the National Research Foundation (NRF); the Department of Education, North-West Province, South Africa; ROCHE diagnostics; and the Metabolic Syndrome Institute, France.

FINANCIAL DISCLOSURES

No conflicts of interest are declared. Any opinion, findings and conclusions or recommendations expressed in this material are those of the authors; therefore, funders do not accept any liability with regard to this study.

The laboratory of GL currently, or recently, has received research funding from the National Health and Medical Research Council of Australia (NHMRC), Medtronic, Abbott Pharmaceuticals, Servier Australia and Allergan. GL has acted as a consultant for Medtronic and has received honoraria or travel support for presentations from Pfizer, Wyeth Pharmaceuticals, Servier and Medtronic.
5. REFERENCES

Malan NT, von Känel R, Kruger R et al., 2017. The protective role of estradiol against silent myocardial events and hypertensive risk in a Black male cohort: the SABPA Prospective study. Inter J Cardiol. S0167-5273(17)32152-6, DOI:10.1016/j.ijcard.2017.06.025.

Figure 1: Design of the bi-ethnic gender cohort of the Sympathetic Activity and Ambulatory Blood Pressure in Africans prospective study. Where: cTnT=cardiac troponin T at baseline.
Figure 2a: ROC curves depicting cardiac Troponin T cut points for clinic and 24h hypertension in Black Teachers. The area under the curve (AUC) (95% CI) for 24h hypertension was 0.68 (95% CI 0.60-0.76); sensitivity/specificity 63/70%; P≤0.001; and for clinic hypertension 0.64 (95% CI 0.55-0.72); sensitivity/specificity 63/64%; P≤0.002.
Figure 2b: ROC curves depicting cardiac Troponin T cut points for clinic and 24h hypertension in Whites. The area under the curve (AUC) (95% CI) for 24h hypertension was 0.67 (0.58-0.75); sensitivity/specificity 53/78% (P≤0.001); with an AUC for clinic hypertension of 0.65 (95% CI 0.56-0.74); sensitivity/specificity 52/74%; P≤0.01.
<table>
<thead>
<tr>
<th></th>
<th>Blacks (N=169)</th>
<th>Whites (N=173)</th>
<th>P-values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs</td>
<td>44.5 (39.0-51.0)</td>
<td>47.0 (41.0-54.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Women, n (%)</td>
<td>88 (52.1)</td>
<td>82 (47.4)</td>
<td>0.39</td>
</tr>
<tr>
<td>Urban living, years</td>
<td>31.8 (19.0-45.0)</td>
<td>20.5 (10.0-30.0)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Cotinine, ng/ml</td>
<td>0.01 (0.01-15.51)</td>
<td>0.01 (0.01-0.01)</td>
<td>0.33</td>
</tr>
<tr>
<td>cGGT, U/l</td>
<td>43.5 (28.4-74.4)</td>
<td>18.0 (12.0-28.0)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Physical activity, kcal/24h</td>
<td>2584.6 (2185.9-3118.1)</td>
<td>2968.0 (2370.0-3540.7)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>94.1 (83.6-103.1)</td>
<td>93.6 (80.8, 103.5)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Coping scores

- Defense coping: 29 (15.0-31.0) vs. 30 (27-32), P = 0.06
- Social support coping: 26 (23-30) vs. 18 (15-23), P < 0.001
- Avoidance coping: 21 (18-23) vs. 23 (21-28), P < 0.001

Moderately severe depression, n (%)

- 61 (36.09) vs. 22 (12.72), P < 0.001

Heart Rate Variability (HRV)

- SDANN, ms: 269.0 (234.0-300.5) vs. 263.1 (219.0-295.5), P < 0.001
- SDNN, ms: 112 (85-136) vs. 124 (102-156), P < 0.001
- rMSSD, ms: 29 (21-38) vs. 31 (22-41), P = 0.26
- HRV: Triangular index: 29 (22-36) vs. 36 (29-43), P < 0.001
- Thyroid stimulating hormone, µIU/ml: 1.8 (1.3-2.5) vs. 2.1 (1.4-2.9), P = 0.01
Potential cardiac and neuroendocrine risk markers

<table>
<thead>
<tr>
<th></th>
<th>Median (IQR)</th>
<th>Reference Range</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac Troponin T, ng/L</td>
<td>4.2 (3.1-5.5)</td>
<td>4.9 (3.2-6.9)</td>
<td>0.05</td>
</tr>
<tr>
<td>Cholesterol, mmol/l</td>
<td>4.5 (3.8-5.5)</td>
<td>5.5 (4.7-6.4)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>CRP:Fibrinogen, g/L:mg/L</td>
<td>1.4 (0.7-2.6)</td>
<td>0.5 (0.4-1.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>24h SBP, mm Hg</td>
<td>131 (122-143)</td>
<td>124 (116-130)</td>
<td><0.001</td>
</tr>
<tr>
<td>24h DBP, mm Hg</td>
<td>82 (77-90)</td>
<td>77 (71-82)</td>
<td><0.001</td>
</tr>
<tr>
<td>24h Heart rate, bpm</td>
<td>79 (73-86)</td>
<td>74 (68-81)</td>
<td><0.001</td>
</tr>
<tr>
<td>24h Hypertension, n (%)</td>
<td>113 (67)</td>
<td>73 (42)</td>
<td><0.001</td>
</tr>
<tr>
<td>24h urinary NE:Cr</td>
<td>18.8 (11.6-29.8)</td>
<td>24.8 (13.2-38.9)</td>
<td>0.07</td>
</tr>
<tr>
<td>24h urinary E:Cr</td>
<td>2.9 (1.6-2.9)</td>
<td>2.9 (1.6-4.7)</td>
<td>0.36</td>
</tr>
<tr>
<td>HIV, n (%)</td>
<td>15 (8.9)</td>
<td>0 (0)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Medications, n (%)

<table>
<thead>
<tr>
<th></th>
<th>Median (IQR)</th>
<th>Reference Range</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statins</td>
<td>2 (1.2)</td>
<td>6 (3.5)</td>
<td>0.16</td>
</tr>
<tr>
<td>Aspirin</td>
<td>4 (2.4)</td>
<td>9 (5.2)</td>
<td>0.17</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>19 (11.2)</td>
<td>3 (1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Angiotensin II blockers</td>
<td>1 (0.6)</td>
<td>1 (0.6)</td>
<td>0.99</td>
</tr>
<tr>
<td>Diuretics</td>
<td>23 (13.6)</td>
<td>8 (4.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>13 (7.7)</td>
<td>1 (0.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>5 (3.0)</td>
<td>1 (0.6)</td>
<td>0.09</td>
</tr>
<tr>
<td>Alpha blockers</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Values are median (± interquartile range/IQR) or frequencies (%). Where: cGGT=gamma glutamyl transferase; moderately depressed=PHQ-9=≥10; CRP=C-reactive protein; Hdl=high density lipoproteins; HIV=Human Immune-deficiency virus infected; SDANN=standard deviation of all the 5 minutes normal RR intervals (NN); SDNN=Standard deviation of RR interval; rMSSD=the square root of the mean of the sum of the squares of the differences between adjacent normal RR intervals;
1 root of the mean squared difference of successive NNs; NE:Cr=norepinephrine creatinine ratio;

2 E:Cr=epinephrine creatinine ratio.

3 Hypertensive status classified as 24h SBP ≥ 130 mm Hg and/or DBP ≥ 80 mm Hg.¹⁰
Table 2: Comparing sympatho-adrenal response mean changes in Blacks vs. Whites (reference group) in relation to cardiac troponin T (cTnT) cut points at 3 year follow-up.

<table>
<thead>
<tr>
<th></th>
<th>Blacks vs. Whites (reference group)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cTnT cut point: 4.2 ng/L</td>
</tr>
<tr>
<td></td>
<td>cTnT cut point: 5.6 ng/L</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
</tr>
<tr>
<td>Depressive symptoms</td>
<td>-0.11 (0.10)</td>
</tr>
<tr>
<td></td>
<td>-1.62 (0.09)</td>
</tr>
<tr>
<td>Coping scores</td>
<td></td>
</tr>
<tr>
<td>Defense coping</td>
<td>0.27 (0.06)</td>
</tr>
<tr>
<td></td>
<td>1.54 (0.17)</td>
</tr>
<tr>
<td>Heart rate variability (HRV)a</td>
<td></td>
</tr>
<tr>
<td>HRV:SDNN, ms</td>
<td>-23.58 (0.71)**</td>
</tr>
<tr>
<td></td>
<td>-22.58 (1.73)*</td>
</tr>
<tr>
<td>HRV:Triangular index</td>
<td>-4.35 (0.17)*</td>
</tr>
<tr>
<td></td>
<td>-4.97 (0.47)</td>
</tr>
<tr>
<td>Potential cardiac and neuroendocrine risk markers</td>
<td></td>
</tr>
<tr>
<td>cTnT, ng/L</td>
<td>1.76 (0.09)</td>
</tr>
<tr>
<td></td>
<td>1.15 (0.20)</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>-0.15 (0.04)</td>
</tr>
<tr>
<td></td>
<td>-0.87 (0.12)</td>
</tr>
<tr>
<td>24h SBP, mmHg</td>
<td>6 (0.19)**</td>
</tr>
<tr>
<td></td>
<td>7 (0.59)*</td>
</tr>
<tr>
<td>24h DBP, mmHg</td>
<td>3 (0.11)**</td>
</tr>
<tr>
<td></td>
<td>3 (0.33)</td>
</tr>
<tr>
<td>24h NE:Cr, nmol/l</td>
<td>-18.25 (0.56)**</td>
</tr>
<tr>
<td></td>
<td>-18.18 (0.99)**</td>
</tr>
<tr>
<td>24h E:Cr, nmol/l</td>
<td>-3.20 (0.09)**</td>
</tr>
<tr>
<td></td>
<td>-3.13 (0.14)**</td>
</tr>
</tbody>
</table>

Data presented as means ± SEM (standard error of means). Adjustments were made for \(a \) priori covariates (age, log waist circumference, log physical activity, log cotinine, log GGT and hypertension medication use) and baseline value of the respective risk marker. SDNN=Standard deviation of RR interval; NE:Cr=urinary norepinephrine creatinine ratio; E:Cr=urinary epinephrine creatinine ratio.

aAdditional adjustment for thyroid stimulating hormone. \(*P \leq 0.05; **P \leq 0.01. \)
Table 3: Sympatho-adrenal responses in relation to cardiac Troponin T (cTnT) cut-point (≥ 4.2 ng/L) in a Black cohort.

<table>
<thead>
<tr>
<th></th>
<th>Odds ratio</th>
<th>95% CI</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coping scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defense coping</td>
<td>1.08</td>
<td>0.99-1.16</td>
<td>0.06</td>
</tr>
<tr>
<td>24h Time-domain heart rate variability (HRV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDNN risk cut point (≤ 100ms)</td>
<td>2.19</td>
<td>1.09-4.41</td>
<td>0.03</td>
</tr>
<tr>
<td>Potential cardiac risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h SBP, mmHg</td>
<td>1.03</td>
<td>1.01-1.06</td>
<td>0.01</td>
</tr>
<tr>
<td>24h DBP, mmHg</td>
<td>1.04</td>
<td>1.01-1.08</td>
<td>0.02</td>
</tr>
<tr>
<td>Follow-up (∆ %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential neuroendocrine risk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h urinary norepinephrine:creatinine ratio</td>
<td>1.46</td>
<td>1.01-2.10</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Adjustments were made for baseline *a priori* covariates (age, log waist circumference, log physical activity, log cotinine, log GGT and hypertension medication use) and thyroid stimulating hormone in HRV analyses. Where: SDNN=Standard deviation of RR interval; ∆ = change; NE:Cr=urinary norepinephrine:creatinine ratio.