Position-dependent random maps in one and higher dimensions

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Metadata Record: https://dspace.lboro.ac.uk/2134/26320

Version: Accepted for publication

Publisher: Polskiej Akademii Nauk, Instytut Matematyczny

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
POSITION DEPENDENT RANDOM MAPS IN ONE AND HIGHER DIMENSIONS

WAEL BAHSOUN AND PAWEŁ GÓRA

Abstract. A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. In this paper, we study random maps with position dependent probabilities on the interval and on a bounded domain of \(\mathbb{R}^n \). Sufficient conditions for the existence of an absolutely continuous invariant measure for random map with position dependent probabilities on the interval and on a bounded domain of \(\mathbb{R}^n \) are the main results of this note.

1. Introduction

Let \(\tau_1, \tau_2, ..., \tau_K \) be a collection of transformations from \(X \) to \(X \). Usually, the random map \(T \) is defined by choosing \(\tau_k \) with constant probability \(p_k, p_k > 0, \sum_{k=1}^{K} p_k = 1 \). The ergodic theory of such dynamical systems was studied in [9] and in [8] (See also [7]).

There is a rich literature on random maps with position dependent probabilities with \(\tau_1, \tau_2, ..., \tau_K \) being continuous contracting transformations (see [10]).

In this paper, we deal with piecewise monotone transformations \(\tau_1, \tau_2, ..., \tau_K \) and position dependent probabilities \(p_k(x), k = 1, ..., K, p_k(x) > 0, \sum_{k=1}^{K} p_k(x) = 1 \), i.e., the \(p_k \)'s are functions of position. We point out that studying such dynamical systems was first introduced in [4] where sufficient conditions for the existence of an absolutely continuous invariant measure were given. The conditions in [4] are applicable only when \(\tau_1, \tau_2, ..., \tau_K \) are \(C^2 \) expanding transformations (see [4] for details). In this paper, we prove the existence of an absolutely continuous invariant measure for a random map \(T \) on \([a, b] \) under milder conditions (see section 4, Conditions (A) and (B)). Moreover, we prove the existence of an absolutely continuous invariant measure for a random map \(T \) on \(S \), where \(S \) is a bounded domain of \(\mathbb{R}^n \) (see section 6, Condition (C)).

The paper is organized in the following way: In section 2, following the ideas of [4], we formulate the definition of a random map \(T \) with position dependent probabilities and introduce its Perron-Frobenius operator. In section 3, we prove properties of the Perron-Frobenius operator of \(T \). In section 4, we prove the existence of an absolutely continuous invariant measure for \(T \) on \([a, b] \). In section 5, we give an example of a random map \(T \) which does not satisfy the conditions of [4]; yet, it preserves an absolutely continuous invariant measure under conditions (A)

Date: January 21, 2009.

1991 Mathematics Subject Classification. Primary 37A05, 37E05.

Key words and phrases. Random map, absolutely continuous invariant measure, Frobenius-Perron operator.

The research of P.G. was supported by NSERC grant. W.B. is a recipient of PIMS postdoctoral fellowship.
and (B). In section 6, we prove the existence of an absolutely continuous invariant measure for T on a bounded domain of \mathbb{R}^n. In section 7, we give an example of a random map in \mathbb{R}^n that preserves an absolutely continuous invariant measure.

2. PRELIMINARIES

Let $(X, \mathcal{B}, \lambda)$ be a measure space, where λ is an underlying measure. Let $\tau_k : X \to X$, $k = 1, ..., K$ be piecewise one-to-one, non-singular transformations on a common partition \mathcal{P} of $X : \mathcal{P} = \{I_1, ..., I_q\}$ and $\tau_{ki} = \tau_k|_{I_i}, i = 1, ..., q$. $k = 1, ..., K$ (\mathcal{P} can be found by considering finer partitions). We define the transition function for the random map $T = \{\tau_1, ..., \tau_K; p_1(x), ..., p_K(x)\}$ as follows:

\[
\mathbb{P}(x, A) = \sum_{k=1}^{K} p_k(x) \chi_A(\tau_k(x)),
\]

where A is any measurable set and $\{p_k(x)\}_{k=1}^{K}$ is a set of position dependent measurable probabilities, i.e., $\sum_{k=1}^{K} p_k(x) = 1$, $p_k(x) \geq 0$, for any $x \in X$ and χ_A denotes the characteristic function of the set A. We define $T(x) = \tau_k(x)$ with probability $p_k(x)$ and $T^N(x) = \tau_{k_N} \circ \tau_{k_{N-1}} \circ ... \circ \tau_{k_1}(x)$ with probability $p_{k_N}(\tau_{k_{N-1}} \circ ... \circ \tau_{k_1}(x)) \cdot p_{k_{N-1}}(\tau_{k_{N-2}} \circ ... \circ \tau_{k_1}(x)) \cdots p_{k_1}(x)$. The transition function \mathbb{P} induces an operator \mathbb{P}_μ on measures on (X, \mathcal{B}) defined by

\[
\mathbb{P}_\mu(A) = \int \mathbb{P}(x, A) d\mu(x) = \sum_{k=1}^{K} \int p_k(x) \chi_A(\tau_k(x)) d\mu(x)
\]

\[
= \sum_{k=1}^{K} \int \tau_k^{-1}(A) p_k(x) d\mu(x) = \sum_{k=1}^{K} \sum_{i=1}^{q} \sum_{k=1}^{K} \int \tau_{k,i}^{-1}(A) p_k(x) d\mu(x)
\]

We say that measure μ is T-invariant iff $\mathbb{P}_\mu = \mu$, i.e.,

\[
\mu(A) = \sum_{k=1}^{K} \int \tau_k^{-1}(A) p_k(x) d\mu(x), \quad A \in \mathcal{B}.
\]

If μ has density f with respect to λ, the \mathbb{P}_μ has also a density which we denote by P_{Tf}. By change of variables, we obtain

\[
\int_A P_{Tf}(x) d\lambda(x) = \sum_{k=1}^{K} \sum_{i=1}^{q} \int \tau_k^{-1}(A) p_k(x) f(x) d\lambda(x)
\]

\[
= \sum_{k=1}^{K} \sum_{i=1}^{q} \int_A p_k(\tau_k^{-1}x) f(\tau_k^{-1}x) \frac{1}{J_{k,i}(\tau_k^{-1})} d\lambda(x)
\]

where $J_{k,i}$ is the Jacobian of $\tau_{k,i}$ with respect to λ. Since this holds for any measurable set A we obtain an a.e. equality:

\[
(P_{Tf})(x) = \sum_{k=1}^{K} \sum_{i=1}^{q} p_k(\tau_k^{-1}x) f(\tau_k^{-1}x) \frac{1}{J_{k,i}(\tau_k^{-1})} \chi_{\tau_k(I_i)}(x)
\]

or

\[
(P_{Tf})(x) = \sum_{k=1}^{K} P_{\tau_k} (p_k f)(x)
\]
where \(P_{\tau_k} \) is the Perron-Frobenius operator corresponding to the transformation \(\tau_k \) (see [1] for details). We call \(P_T \) the Perron-Frobenius of the random map \(T \). The main tool in this paper is the Perron-Frobenius of \(T \) which has very useful properties.

3. Properties of the Perron-Frobenius operator of \(T \)

The properties of \(P_T \) resemble the properties of the classical Perron-Frobenius operator of a single transformation.

Lemma 3.1. \(P_T \) satisfies the following properties:

(i) \(P_T \) is linear;

(ii) \(P_T \) is non-negative, i.e., \(f \geq 0 \) implies \(P_T f \geq 0 \);

(iii) \(P_T f = f \iff \mu = f \cdot \lambda \) is \(T \)-invariant;

(iv) \(\| P_T f \|_1 \leq \| f \|_1 \), where \(\| \cdot \|_1 \) denotes the \(L^1 \) norm;

(v) \(P_{T \circ R} = P_T \circ P_R \). In particular, \(P_T^N f = P_T^N f \).

Proof. The proofs of (i)-(iv) are analogous to that for single transformation. For the proof of (v), let \(T \) and \(R \) be two random maps corresponding to \(\{ \tau_1, \tau_2, \ldots, \tau_K; p_1, p_2, \ldots, p_K \} \) and \(\{ \zeta_1, \zeta_2, \ldots, \zeta_L; r_1, r_2, \ldots, r_L \} \) respectively. We define \(\{ \tau_k \}_{k=1}^K \) and \(\{ \zeta_l \}_{l=1}^L \) on a common partition \(\mathcal{P} \). We have

\[
P_T(P_T f) = P_T \left(\sum_{k=1}^K P_{\tau_k}(p_k f) \right) = \sum_{l=1}^L \sum_{k=1}^K \sum_{i=1}^q r_i \zeta^{-1}_k |P_{\tau_k}(p_k f)| \zeta^{-1}_k \frac{1}{J_{\zeta_n}(\zeta^{-1}_k)} \chi_{\zeta_n}(I_i)
\]

(3.1)

\[
= \sum_{k=1}^K \sum_{l=1}^L \sum_{j=1}^q \sum_{i=1}^q r_i \zeta^{-1}_k p_k(\tau^{-1}_{k,j} \circ \zeta^{-1}_k) f(\tau^{-1}_{k,j} \circ \zeta^{-1}_k) \chi_{\tau_l(I_j)}(\zeta^{-1}_k) \chi_{\zeta_n}(I_i)
\]

\[
= \sum_{i=1}^L \sum_{k=1}^K P_{\tau_k} (p_k \zeta^{-1}_l f) = P_{T \circ R} f.
\]

\[\Box \]

4. The existence of absolutely continuous invariant measure on \([a, b]\)

Let \((I, \mathcal{B}, \lambda)\) be a measurable space, where \(\lambda \) is normalized Lebesgue measure on \(I = [a, b] \). Let \(\tau_k : I \to I, k = 1, \ldots, K \) be piecewise one-to-one and differentiable, non-singular transformations on a partition \(\mathcal{P} \) of \(I : \mathcal{P} = \{ I_1, \ldots, I_q \} \) and \(\tau_{ki} = \tau_k |_{I_i}, i = 1, \ldots, q, k = 1, \ldots, K \). Denote by \(V(\cdot) \) the standard one dimensional variation of a function, and by \(BV(I) \) the space of functions of bounded variations on \(I \) equipped with the norm \(\| \cdot \|_{BV} = V(\cdot) + \| \cdot \|_1 \).

Let \(g_k(x) = \frac{p_k(x)}{|f_k|}, k = 1, \ldots, K \). We assume that

Condition (A): \(\sum_{k=1}^K g_k(x) < \alpha < 1, x \in I \), and

Condition (B): \(g_k \in BV(I), k = 1, \ldots, K \).

Under the above conditions our goal is to prove:

\[V_I P_T^N f \leq AV_I f + B\| f \|_1 \]
for some $n \geq 1$, where $0 < A < 1$ and $B > 0$. The inequality (4.1) guarantees the existence of a T-invariant measure absolutely continuous with respect to Lebesgue measure and the quasi-compactness of operator P_T with all the consequences of this fact, see [1]. We will need a number of lemmas:

Lemma 4.1. Let $f \in BV(I)$. Suppose $\tau : I \to J$ is differentiable and $\tau'(x) \neq 0$, $x \in I$. Set $\phi = \tau^{-1}$ and let $g(x) = \frac{d\phi(x)}{d\tau'(x)} \in BV(I)$. Then

$$V_I(f(\phi)g(\phi)) \leq (V_I f + \sup_I f)(V_I g + \sup_I g).$$

Proof. First, note that we have dropped all the k, i indices to simplify the notation. Then, the proof follows in the same way as in Lemma 3 of [9]. \qed

Lemma 4.2. Let T satisfy conditions (A) and (B). Then for any $f \in BV(I)$,

$$V_TP_T f \leq AV_T f + B\|f\|_1,$$

where

$$A = 3\alpha + \max_{1 \leq i \leq q} \sum_{k=1}^K V_I g_k;$$

and

$$B = 2\beta \alpha + \beta \max_{1 \leq i \leq q} \sum_{k=1}^K V_I g_k,$$

where $\beta = \max_{1 \leq i \leq q} (\lambda(I_k))^{-1}$.

Proof. First, we will refine partition \mathcal{P} to satisfy additional condition. Let $\eta > 0$ be such that $\sum_{k=1}^K (g_k(x) + \epsilon_k) < \alpha$ whenever $|\epsilon_k| < \eta$, $k = 1, \ldots, K$. Since g_k, $k = 1, \ldots, K$ are of bounded variation we can find a finite partition K such that for any $k = 1, \ldots, K$,

$$|g_k(x) - g_k(y)| < \eta,$$

for x, y in the same element of K. Instead of the partition \mathcal{P} we consider a join $\mathcal{P} \cup K$. Without restricting generality of our considerations, we can assume that this is our original partition \mathcal{P}. Then, we have

$$\max_{1 \leq i \leq q} \sum_{k=1}^K \sup_{x \in I_k} g_k(x) < \alpha.$$

We have $V_I(P_T f) = V_I(\sum_{k=1}^K P_{\tau_k}(p_k f))$. We will estimate this variation. Let $\phi_{k,i} = \tau_{k,i}^{-1}$, $k = 1, \ldots, K$, $i = 1, \ldots, q$. We have

$$V_I \left(\sum_{k=1}^K P_{\tau_k}(p_k f) \right) = V_I \left(\sum_{k=1}^K \sum_{i=1}^q f(\phi_{k,i})g_k(\phi_{k,i})\lambda_{\tau_k(I_i)} \right)$$

$$\leq \sum_{k=1}^K \sum_{i=1}^q \|f(a_{i-1})\| g_k(a_{i-1}) + |f(a_i)| g_k(a_i)|$$

$$+ \sum_{k=1}^K \sum_{i=1}^q V_{\tau_k(I_i)}|f(\phi_{k,i})g_k(\phi_{k,i})|. $$

We have

$$\max_{1 \leq i \leq q} \sum_{k=1}^K \sup_{x \in I_k} g_k(x) < \alpha.$$
First, we estimate the first sum on the right hand side of (4.4):

\[\sum_{k=1}^{K} \sum_{i=1}^{q} \left[|f(a_{i-1})|g_k(a_{i-1})| + |f(a_i)|g_k(a_i) \right] \]

\[
= \sum_{i=1}^{q} \left[|f(a_{i-1})| \left(\sum_{k=1}^{K} |g_k(a_{i-1})| \right) + |f(a_i)| \left(\sum_{k=1}^{K} |g_k(a_i)| \right) \right] \\
\leq \alpha \left(\sum_{i=1}^{q} (|f(a_{i-1})| + |f(a_i)|) \right) \\
\leq \alpha \left(\sum_{i=1}^{q} \left(V_i f + (\lambda(I_i))^{-1} \int_{I_i} f d\lambda \right) \right) = \alpha (V_I f + \beta \| f \|_1). \tag{4.5} \]

We now estimate the second sum on the right hand side of (4.4). Using Lemma 4.1 we obtain:

\[\sum_{k=1}^{K} \sum_{i=1}^{q} V_{\tau_k(I_i)}[f(\phi_{k,i})g_k(\phi_{k,i})] \leq \sum_{k=1}^{K} \sum_{i=1}^{q} \left(V_i f + \sup_{I_i} \right) \left(V_i g_k + \sup_{I_i} g_k \right) \]

\[
\leq \sum_{i=1}^{q} \left(2 V_i f + \beta \int_{I_i} f d\lambda \right) \left(\max_{1 \leq i \leq q} \sum_{k=1}^{K} \left(V_i g_k + \sup_{I_i} g_k \right) \right) \\
\leq (2 \beta \| f \|_1) \left(\max_{1 \leq i \leq q} \sum_{k=1}^{K} V_i g_k + \alpha \right). \tag{4.6} \]

Thus, using (4.5) and (4.6), we obtain

\[V_I P_I f \leq \left(3 \alpha + \max_{1 \leq i \leq q} \sum_{k=1}^{K} V_i g_k \right) V_I f + \left(2 \beta \alpha + \beta \max_{1 \leq i \leq q} \sum_{k=1}^{K} V_i g_k \right) \| f \|_1. \tag{4.7} \]

\[\square \]

In the following two lemmas we show that constants \(\alpha \) and \(\max_{1 \leq i \leq q} \sum_{k=1}^{K} V_i g_k \) decrease when we consider higher iterations \(T^n \) instead of \(T \). The constant \(\beta \) obviously increases, but this is not important.

Lemma 4.3. Let \(T \) be a random map which satisfies condition (A). Then, for \(x \in I \),

\[\sum_{w \in \{1,2,\ldots,K\}^N} p_w(x) \frac{|T_w(x)|}{|T^N(x)|} < \alpha^N, \tag{4.8} \]

where \(T_w(x) = \tau_{k_N} \circ \tau_{k_{N-1}} \circ \cdots \circ \tau_{k_1}(x) \) and \(p_w(x) = p_{k_N}(\tau_{k_{N-1}} \circ \cdots \circ \tau_{k_1}(x)) \cdot p_{k_{N-1}}(\tau_{k_{N-2}} \circ \cdots \circ \tau_{k_1}(x)) \cdots p_{k_1}(x) \), define random map \(T^N \).

Proof. We have

\[T^N(x) = \tau_{k_N} \circ \tau_{k_{N-1}} \circ \cdots \circ \tau_{k_1}(x) \]

with probability

\[p_{k_N}(\tau_{k_{N-1}} \circ \cdots \circ \tau_{k_1}(x)) \cdot p_{k_{N-1}}(\tau_{k_{N-2}} \circ \cdots \circ \tau_{k_1}(x)) \cdots p_{k_1}(x). \]

The maps defining \(T^N \) may be indexed by \(w \in \{1,2,\ldots,K\}^N \). Set

\[T_w(x) = \tau_{k_N} \circ \tau_{k_{N-1}} \circ \cdots \circ \tau_{k_1}(x) \]

\[< \alpha^N. \]
where \(w = (k_1, \ldots, k_N) \), and

\[
p_w(x) = p_{k_N}(\tau_{k_N-1} \circ \cdots \circ \tau_1(x)) \cdot p_{k_{N-1}}(\tau_{k_{N-2}} \circ \cdots \circ \tau_1(x)) \cdots p_{k_1}(x).
\]

Then,

\[
T'_w(x) = \tau_{k_N}^f(\tau_{k_N-1} \circ \cdots \circ \tau_1(x))\tau_{k_{N-1}}^f(\tau_{k_{N-2}} \circ \cdots \circ \tau_1(x)) \cdots \tau_{k_1}^f(x).
\]

Suppose that \(T \) satisfies condition (A). We will prove (4.8) using induction on \(N \).

For \(N = 1 \), we have

\[
\sum_{w \in \{1, 2, \ldots, K\}} \frac{p_w(x)}{|T_w'(x)|} < \alpha
\]

by condition (A). Assume (4.8) is true for \(N - 1 \). Then,

\[
\sum_{w \in \{1, 2, \ldots, K\}^N} \frac{p_w(x)}{|T_w'(x)|} = \sum_{w \in \{1, 2, \ldots, K\}^{N-1}} \sum_{k=1}^K \frac{p_k(x)p_{w\setminus\{k\}}(\tau_k(x))}{|T_k'(x)| |T_{w\setminus\{k\}}(\tau_k(x))|}
\]

\[
\leq \left(\sum_{k=1}^K \frac{p_k(x)}{|T_k'(x)|} \right) \left(\sum_{w \in \{1, 2, \ldots, K\}^{N-1}} \frac{p_{w\setminus\{k\}}(\tau_k(x))}{|T_{w\setminus\{k\}}(\tau_k(x))|} \right) < \alpha \cdot \alpha^{N-1} = \alpha^N.
\]

\(\square \)

Lemma 4.4. Let \(g_w = \frac{p_{w\setminus\{k\}}}{|T_{w\setminus\{k\}}(\tau_k(x))|} \), where \(T_w \) and \(p_w \) are defined in Lemma 4.3, \(w \in \{1, \ldots, K\}^n \). Define

\[
W_1 \equiv \max_{1 \leq i \leq n} \sum_{k=1}^K V_{i}g_k,
\]

and

\[
W_n \equiv \max_{J \in P(n)} \sum_{w \in \{1, \ldots, K\}^n} V_Jg_w,
\]

where \(P(n) \) is the common monotonicity partition for all \(T_w \). Then, for all \(n \geq 1 \)

\[
W_n \leq n\alpha^{n-1}W_1,
\]

where \(\alpha \) is defined in condition (A).

Proof: We prove the lemma by induction on \(n \). For \(n = 1 \) the lemma is true by definition of \(W_n \). Assume that the lemma is true for \(n \), i.e.,

\[
W_n \leq n\alpha^{n-1}W_1.
\]
Let $J \in \mathcal{P}^{(n+1)}$ and $x_0 < x_1 < \ldots < x_l$ be a sequence of points in J. Then

\begin{equation}
\sum_{w} \sum_{j=0}^{l-1} |g_w(x_{j+1}) - g_w(x_j)| = \sum_{j=0}^{l-1} \sum_{w \in \{1, \ldots, K\}^{n+1}} |g_w(x_{j+1}) - g_w(x_j)| \\
\leq \sum_{j=0}^{l-1} \sum_{w \in \{1, \ldots, K\}^{n}} \sum_{k=1}^{K} |g_w(\tau_k(x_{j+1}))g_k(x_{j+1}) - g_w(\tau_k(x_j))g_k(x_j)| \\
\leq \sum_{j=0}^{l-1} \sum_{w \in \{1, \ldots, K\}^{n}} \sum_{k=1}^{K} |g_w(\tau_k(x_{j+1}))g_k(x_{j+1}) - g_w(\tau_k(x_j))g_k(x_j)| \\
+ \sum_{j=0}^{l-1} \sum_{w \in \{1, \ldots, K\}^{n}} \sum_{k=1}^{K} |g_w(\tau_k(x_{j+1}))g_k(x_j) - g_w(\tau_k(x_j))g_k(x_j)| \\
\leq \alpha^n \sum_{j=0}^{l-1} \sum_{k=1}^{K} |g_k(x_{j+1}) - g_k(x_j)| \\
+ \alpha \sum_{j=0}^{l-1} \sum_{w \in \{1, \ldots, K\}^{n}} |g_w(\tau_k(x_{j+1})) - g_w(\tau_k(x_j))| \\
\leq \alpha^n W_1 + \alpha^n W_n \leq \alpha^n W_1 + n\alpha^n W_1 = (n + 1)\alpha^n W_1.
\end{equation}

We used condition (A) and lemma 4.3. □

Theorem 4.5. Let T be a random map which satisfies conditions (A) and (B). Then T preserves a measure which is absolutely continuous with respect to Lebesgue measure. The operator P_T is quasi-compact on $BV(I)$, see [1].

Proof. Let N be such that $A_N = 3\alpha^N + W_N < 1$. Then, by Lemma 4.3,

\begin{equation}
\sum_{w \in \{1, \ldots, K\}^{N}} g_w(x) < \alpha^N, \quad x \in I.
\end{equation}

We refine the partition $\mathcal{P}^{(N)}$ like in the proof of Lemma 4.2, to have

\begin{equation}
\max_{J \in \mathcal{P}^{(N)}} \sum_{w \in \{1, \ldots, K\}^{N}} \sup_{J} g_w < \alpha^N.
\end{equation}

Then, by lemma 4.2, we get

\begin{equation}
\|P_T^N f\|_{BV} \leq A_N\|f\|_{BV} + B_N\|f\|_1,
\end{equation}

where $B_N = \beta_N(2\alpha^N + W_N)$, $\beta_N = \max_{J \in \mathcal{P}^{(N)}} (\lambda(J))^{-1}$. The theorem follows by the standard technique (see [1]). □

Remark 4.6. It is enough to assume that condition (A) is satisfied for some iterate T^m, $m \geq 1$.

Remark 4.7. The number of absolutely continuous invariant measures for random maps has been studied in [6]. The proof of [6], which uses graph theoretic methods, goes through analogously in our case; i.e., when T is a random map with position dependent probabilities.

5. Example

We present an example of a random map T which does not satisfy the conditions of [4]; yet, it preserves an absolutely continuous invariant measure under conditions (A) and (B).

Example 5.1. Let T be a random map which is given by \(\{\tau_1, \tau_2; p_1(x), p_2(x)\} \) where

\[
\tau_1(x) = \begin{cases}
2x & \text{for } 0 \leq x \leq \frac{1}{2}, \\
x & \text{for } \frac{1}{2} < x \leq 1
\end{cases}
\]

\[
\tau_2(x) = \begin{cases}
x + \frac{1}{2} & \text{for } 0 \leq x \leq \frac{1}{2}, \\
x - \frac{1}{2} & \text{for } \frac{1}{2} < x \leq 1
\end{cases}
\]

and

\[
p_1(x) = \begin{cases}
\frac{2}{3} & \text{for } 0 \leq x \leq \frac{1}{2}, \\
\frac{1}{3} & \text{for } \frac{1}{2} < x \leq 1
\end{cases}
\]

\[
p_2(x) = \begin{cases}
\frac{1}{3} & \text{for } 0 \leq x \leq \frac{1}{2}, \\
\frac{2}{3} & \text{for } \frac{1}{2} < x \leq 1
\end{cases}
\]

Then, $\sum_{k=1}^{2} g_k(x) = \frac{2}{3} < 1$. Therefore, T satisfies conditions (A) and (B). Consequently, by theorem 4.5, T preserves an invariant measure absolutely continuous with respect to Lebesgue measure. Notice that \(\tau_1, \tau_2 \) are piecewise linear Markov maps defined on the same Markov partition $\mathcal{P} : \{[0, \frac{1}{2}], [\frac{1}{2}, 1]\}$. For such maps the Perron-Frobenius operator reduces to a matrix (see [1]). The corresponding matrices are:

\[
P_{\tau_1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ 0 & 1 \end{pmatrix}, \quad P_{\tau_2} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}
\]

Their invariant densities are $f_{\tau_1} = [0, 2]$ and $f_{\tau_2} = [2, 0]$. The Perron-Frobenius operator of the random map T is given by:

\[
P_T = \begin{pmatrix} \frac{2}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}
\]

If the invariant density of T is $f = [f_1, f_2]$, normalized by $f_1 + f_2 = 2$ and satisfying equation $fP_T = f$, then $f_1 = \frac{2}{3}$ and $f_2 = \frac{1}{3}$.

6. The existence of absolutely continuous invariant measure in \mathbb{R}^n

Let S be a bounded region in \mathbb{R}^n and λ_n be Lebesgue measure on S. Let $\tau_k : S \to S$, $k = 1, \ldots, K$ be piecewise one-to-one and C^2, non-singular transformations on a partition \mathcal{P} of $S : \mathcal{P} = \{S_1, \ldots, S_q\}$ and $\tau_{k;i} = \tau_k |_{S_i}$, $i = 1, \ldots, q$, $k = 1, \ldots, K$. Let each S_i be a bounded closed domain having a piecewise C^2 boundary of finite $(n - 1)$-dimensional measure. We assume that the faces of ∂S_i meet at angles bounded uniformly away from 0. We will also assume that the probabilities $p_k(x)$
are piecewise C^1 functions on the partition \mathcal{P}. Let $D\tau_{k,i}^{-1}(x)$ be the derivative matrix of $\tau_{k,i}^{-1}$ at x. We assume:

Condition (C):

$$\max_{1 \leq k \leq q} \sum_{k=1}^{K} p_k(x) \left\| D\tau_{k,i}^{-1}(\tau_{k,i}(x)) \right\| < \sigma < 1.$$

Let $\sup_{x \in \partial \tau(S)} \left\| D\tau_{k,i}^{-1}(x) \right\| := \sigma_{k,i}$ and $\sup_{x \in \tau_i} p_k(x) := \pi_{k,i}$. Using smoothness of $D\tau_{k,i}^{-1}$'s and p_k's we can refine partition \mathcal{P} to satisfy

Condition (C'):

$$\sum_{k=1}^{K} \max_{1 \leq j \leq q} \sigma_{k,i} \pi_{k,j} < \sigma < 1.$$

Under this condition, our goal is to prove the existence of an a.c.i.m. for the random map $T = \{\tau_1, ..., \tau_K; p_1, ..., p_K\}$. The main tool of this section is the multidimensional notion of variation defined using derivatives in the distributional sense (see [3]):

$$V(f) = \int_{\mathbb{R}^n} \| Df \| = \sup \{ \int_{\mathbb{R}^n} f(\text{div}(g))d\lambda_n : g = (g_1, ..., g_n) \in C_0^1(\mathbb{R}^n, \mathbb{R}^n) \},$$

where $f \in L_1(\mathbb{R}^n)$ has bounded support, Df denotes the gradient of f in the distributional sense, and $C_0^1(\mathbb{R}^n, \mathbb{R}^n)$ is the space of continuously differentiable functions from \mathbb{R}^n into \mathbb{R}^n having a compact support. We will use the following property of variation which is derived from [3], Remark 2.14: If $f = 0$ outside a closed domain A whose boundary is Lipschitz continuous, $f|_A$ is continuous, $f|_{\text{int}(A)}$ is C^1, then

$$V(f) = \int_{\text{int}(A)} \| Df \| d\lambda_n + \int_{\partial A} |f| d\lambda_{n-1},$$

where λ_{n-1} is the $n-1$-dimensional measure on the boundary of A. In this section we shall consider the Banach space (see [3], Remark 1.12),

$$BV(S) = \{ f \in L_1(S) : V(f) < +\infty \},$$

with the norm $\|f\|_{BV} = V(f) + \|f\|_1$. We adapt the following two lemmas from [5]. The proofs of Lemma 6.1 and Lemma 6.2 are exactly the same as in [5].

Lemma 6.1. Consider $S_i \in \mathcal{P}$. Let x be a point in ∂S_i and $y = \tau_k(x)$ a point in $\partial(\tau_k(S_i))$. Let $J_{k,i}$ be the Jacobian of $\tau_{k,i}|S_i$ at x and $J_{k,i}^0$ be the Jacobian of $\tau_k|S_i$ at x. Then

$$\frac{J_{k,i}^0}{J_{k,i}} \leq \sigma_{k,i}.$$

\[\Box\]

Let us fix $1 \leq i \leq q$. Let Z denote the set of singular points of ∂S_i. Let us construct at any $x \in Z$ the largest cone having a vertex at x and which lies completely in S_i. Let $\theta(x)$ denote the angle subtended at the vertex of this cone. Then define

$$\beta(S_i) = \min_{x \in Z} \theta(x).$$

Since the faces of ∂S_i meet at angles bounded away from 0, $\beta(S_i) > 0$. Let $\alpha(S_i) = \pi/2 + \beta(S_i)$ and

$$\alpha(S_i) = | \cos(\alpha(S_i)) |.$$
Now we will construct a C^1 field of segments L_y, $y \in \partial S_i$, every L_y being a central ray of a regular cone contained in S_i, with angle subtended at the vertex y greater than or equal to $\beta(S_i)$.

We start at points $y \in Z$, where the minimal angle $\beta(S_i)$ is attained, defining L_y to be central rays of the largest regular cones contained in S_i. Then we extend this field of segments to C^1 field we want, making L_y short enough to avoid overlapping. Let $\delta(y)$ be the length of L_y, $y \in \partial S_i$. By the compactness of ∂S_i we have

$$\delta(S_i) = \inf_{y \in \partial S_i} \delta(y) > 0.$$

Now, we shorten L_y of our field, making them all of the length $\delta(S_i)$.

Lemma 6.2. For any S_i, $i = 1, \ldots, q$, if f is a C^1 function on S_i, then

$$\int_{\partial S_i} f(y)d\lambda_{n-1}(y) \leq \frac{1}{a(S_i)} \left(\frac{1}{\delta(S_i)} \int_{S_i} f d\lambda_n + V_{\text{Int}}(S_i)(f) \right).$$

\[\Box \]

Our main technical result is the following:

Theorem 6.3. If T is a random map which satisfies Condition (C), then

$$V(P_T f) \leq \sigma(1 + 1/a)V(f) + (M + \frac{\sigma}{a^\alpha})\|f\|_1,$$

where $a = \min\{a(S_i) : i = 1, \ldots, q\} > 0$, $\delta = \min\{\delta(S_i) : i = 1, \ldots, q\} > 0$, $M_{k,i} = \sup_{x \in S_i}(Dp_k(x) - D\tau_{k,i}^{-1}p_k(x))$ and $M = \sum_{k=1}^K \max_{1 \leq i \leq q} M_{k,i}$.

Proof. We have $V(P_T f) \leq \sum_{k=1}^K V(P_{T_k}(p_k f))$. We first estimate $V(P_{T_k}(p_k f))$. Let $F_{k,i} = \frac{f(\tau_{k,i}^{-1})p_k(\tau_{k,i}^{-1})}{J_{k,i}(\tau_{k,i})}$, and $R_{k,i} = \tau_{k,i}(S_i)$, $i = 1, \ldots, q$, $k = 1, \ldots, K$. Then,

\[(6.1)\]

$$\int_{\mathbb{R}^n} \|DP_{T_k}(p_k f)\|d\lambda_n \leq \sum_{i=1}^q \int_{\mathbb{R}^n} \|D(F_{k,i}\chi_{R_i})\|d\lambda_n$$

$$\leq \sum_{i=1}^q \left(\int_{\mathbb{R}^n} \|D(F_{k,i}\chi_{R_i})\|d\lambda_n + \int_{\mathbb{R}^n} \|F_{k,i}(D\chi_{R_i})\|d\lambda_n \right).$$

Now, for the first integral we have,

\[(6.2)\]

$$\int_{\mathbb{R}^n} \|D(F_{k,i}\chi_{R_i})\|d\lambda_n = \int_{R_i} \|D(F_{k,i}\partial p_k)\|d\lambda_n$$

$$\leq \int_{R_i} \|D(f(\tau_{k,i}^{-1}))\| \frac{p_k(\tau_{k,i})}{J_{k,i}(\tau_{k,i})} d\lambda_n + \int_{R_i} \|f(\tau_{k,i}^{-1})D \left(\frac{p_k(\tau_{k,i}^{-1})}{J_{k,i}(\tau_{k,i}^{-1})} \right) \|d\lambda_n$$

$$\leq \int_{R_i} \|D(f(\tau_{k,i}^{-1}))\| \|D\tau_{k,i}^{-1}\| \frac{1}{J_{k,i}(\tau_{k,i}^{-1})} \|p_k(\tau_{k,i}^{-1})\| d\lambda_n + \int_{R_i} \|f(\tau_{k,i}^{-1})\| \frac{M_k}{J_{k,i}(\tau_{k,i})} d\lambda_n$$

$$\leq \sigma_{k,i} \tau_{k,i} \int_{S_i} \|Df\|d\lambda_n + M_k \int_{S_i} \|f\|d\lambda_n.$$
For the second integral we have,
\[
\int_{\mathbb{R}} \|F_{k,i}(D\chi_{R_0})\|d\lambda_n = \int_{\partial R_0} |f(\tau_{-1}^{-1})| \frac{p_k(\tau_{-1}^{-1})}{J_{k,d}(\tau_{-1}^{-1})} d\lambda_{n-1} = \int_{\partial S_i} |f| \frac{P^0_{k,d}}{J_{k,d}} d\lambda_{n-1}.
\]

By Lemma 4.3, \(\frac{P^0_{k,i}}{J_{k,i}} \leq \sigma_{k,i} \). Using Lemma 4.2, we get:
\[
\int_{\mathbb{R}} \|F_{k,i}(D\chi_{R_0})\|d\lambda_n \leq \sigma_{k,i} \bar{\sigma}_{k,i} \int_{\partial S_i} |f|d\lambda_{n-1}
\leq \frac{\sigma_{k,i} \bar{\sigma}_{k,i}}{a} V_{S_i}(f) + \frac{\sigma_{k,i} \bar{\sigma}_{k,i}}{a\delta} \int_{S_i} |f|d\lambda_n.
\]

Using Condition (C′), summing first over \(i \), we obtain
\[
V(P_{\tau_k}(p_k f)) \leq \left(\max_{1 \leq i \leq g} \sigma_{k,i} \bar{\sigma}_{k,i} \right) (1+1/a) V(f) + \left(\max_{1 \leq i \leq g} \frac{\sigma_{k,i} \bar{\sigma}_{k,i}}{a\delta} \right) ||f||_1,
\]
and then, summing over \(k \) we obtain
\[
V(P_T f) \leq \sigma (1+1/a) V(f) + (M + \frac{\bar{\sigma}}{a\delta}) ||f||_1.
\]

\[\square\]

Theorem 6.4. Let \(T \) be a random map which satisfies condition (C). If \(\sigma (1+1/a) < 1 \), then \(T \) preserves a measure which is absolutely continuous with respect to Lebesgue measure. The operator \(P_T \) is quasi-compact on \(BV(S) \), see [1].

Proof. The proof of the theorem follows by the standard technique (see [1]). \[\square\]

7. Example in \(\mathbb{R}^2 \)

In this section, We present an example of a random map which satisfies condition (C) of Theorem 6.3 and thus it preserves an absolutely continuous invariant measure.

Example 7.1. Let \(T \) be a random map which is given by \(\{\tau_1, \tau_2; p_1(x), p_2(x)\} \) where \(\tau_1, \tau_2 : I^2 \to I^2 \) defined by:
\[
\tau_1(x_1, x_2) = \begin{cases}
(3x_1, 2x_2) & \text{for } (x_1, x_2) \in S_1 = \{0 \leq x_1, x_2 \leq \frac{1}{3}\} \\
(3x_1 - 1, 2x_2) & \text{for } (x_1, x_2) \in S_2 = \{ \frac{1}{3} < x_1 \leq \frac{2}{3}, 0 \leq x_2 \leq \frac{1}{3}\} \\
(3x_1 - 2, 2x_2) & \text{for } (x_1, x_2) \in S_3 = \{ \frac{2}{3} < x_1 \leq 1, 0 \leq x_2 \leq \frac{1}{3}\} \\
(3x_1, 3x_2 - 1) & \text{for } (x_1, x_2) \in S_4 = \{0 < x_1 \leq \frac{1}{3}, \frac{1}{3} < x_2 \leq \frac{2}{3}\} \\
(3x_1 - 1, 3x_2 - 1) & \text{for } (x_1, x_2) \in S_5 = \{ \frac{1}{3} < x_1 \leq \frac{2}{3}, \frac{1}{3} < x_2 \leq \frac{2}{3}\} \\
(3x_1 - 2, 3x_2 - 1) & \text{for } (x_1, x_2) \in S_6 = \{ \frac{2}{3} < x_1 \leq 1, \frac{1}{3} < x_2 \leq \frac{2}{3}\} \\
(3x_1, 3x_2 - 2) & \text{for } (x_1, x_2) \in S_7 = \{0 < x_1 \leq \frac{1}{3}, \frac{2}{3} < x_2 \leq 1\} \\
(3x_1 - 1, 3x_2 - 2) & \text{for } (x_1, x_2) \in S_8 = \{ \frac{1}{3} < x_1 \leq \frac{2}{3}, \frac{2}{3} < x_2 \leq 1\} \\
(3x_1 - 2, 3x_2 - 2) & \text{for } (x_1, x_2) \in S_9 = \{ \frac{2}{3} < x_1 \leq 1, \frac{2}{3} < x_2 \leq 1\}.
\end{cases}
\]
The derivative matrix of (τ_1, τ_2), and the derivative matrix of the Frobenius operator reduces to a matrix and the invariant density is constant on the invariant measure. Notice that τ_1, τ_2 are piecewise linear Markov maps defined on the same Markov partition $\mathcal{P} = \{S_1, S_2, \ldots, S_9\}$. For such maps the Perron-Frobenius operator reduces to a matrix and the invariant density is constant on the elements of the partition (see [1]). The Perron-Frobenius operator of the random map T is represented by the following matrix

$$
M = \Pi_1 M_1 + \Pi_2 M_2,
$$
where M_1, M_2 are the matrices of P_{T_1} and P_{T_2} respectively, and Π_1, Π_2 are the diagonal matrices of $p_1(x)$ and $p_2(x)$ respectively. Then, M is given by

\begin{equation}
M = p_1 \mathbf{Id}_9 \times \begin{pmatrix}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
+ p_2 \mathbf{Id}_9 \times \begin{pmatrix}
0.215 & 0.215 & 0.215 & 0.215 & 0.216 & 0.216 & 0.216 & 0.216 & 0.216 \\
0.785 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 \\
0.215 & 0.215 & 0.215 & 0.215 & 0.216 & 0.216 & 0.216 & 0.216 & 0.216 \\
0.785 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 \\
0.215 & 0.215 & 0.215 & 0.215 & 0.216 & 0.216 & 0.216 & 0.216 & 0.216 \\
0.785 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 \\
0.215 & 0.215 & 0.215 & 0.215 & 0.216 & 0.216 & 0.216 & 0.216 & 0.216 \\
0.785 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 \\
0.215 & 0.215 & 0.215 & 0.215 & 0.216 & 0.216 & 0.216 & 0.216 & 0.216 \\
0.785 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 & 0.784 \\
\end{pmatrix} \times \begin{pmatrix}
a & a & a & a & a & b & b & b \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
e & e & e & c & c & c & c & c \\
\end{pmatrix},
\end{equation}

where $p_1 = (0.215, 0.216, 0.216, 0.216, 0.216, 0.216, 0.216, 0.216, 0.215)$, $p_2 = (0.785, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.784, 0.785)$, \mathbf{Id}_9 is 9×9 identity matrix and

\begin{align*}
a &= 0.12306 \\
b &= 0.087222 \\
c &= 0.12311 \\
d &= 0.087111 \\
e &= 0.11111.
\end{align*}

The invariant density of T is

\begin{equation}
f = (f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9), \quad f_i = f_{i|S_i}, \quad i = 1, 2, \ldots, 9,
\end{equation}

normalized by

\begin{equation}
f_1 + f_2 + f_3 + f_4 + f_5 + f_6 + f_7 + f_8 + f_9 = 9,
\end{equation}

and satisfying equation $fM = f$. Then, $f_1 = f_2 = f_3 = f_4 = f_5 = f_6 = \frac{9}{629.38}$ and $f_7 = f_8 = f_9 = \frac{0.29739}{3} f_1$.

References

Department of Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC, Victoria, B.C., V8W 3P4, Canada

E-mail address: wab@math.uvic.ca

Department of Mathematics and Statistics, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada

E-mail address: pgoravaz2.concordia.ca