Microfluidic production of microspheres and microcapsules for photocatalytic water treatment and CO2 capture

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a conference abstract.

Metadata Record: https://dspace.lboro.ac.uk/2134/26593

Version: Accepted for publication

Publisher: Green and Sustainable Chemistry Conference

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Microfluidic production of microspheres and microcapsules for photocatalytic water treatment and CO$_2$ capture

1 Ruqaiya Al nuumani – Chemical Engineering, Loughborough University, Loughborough, UK
2 Goran Vladisavljevic - Chemical Engineering, Loughborough University, Loughborough, UK
2 Guido Bolognesi - Chemical Engineering, Loughborough University, Loughborough, UK
r.alnuumani@lboro.ac.uk

Microfluidics is a promising technique for the production of monodispersed droplets and particles with tuneable size and morphology. In this work, monodispersed polymeric particles were produced in a single step using glass capillary microfluidic devices and continuous on-the-fly photopolymerization (Figure 1). The fabricated particles include monodispersed microspheres consisting of acrylate polymer embedded with TiO$_2$ for photocatalytic water treatment and microcapsules with thin polymer shell and CO$_2$-selective liquid core for CO$_2$ capture. Micron-sized water-in-oil (W/O) and water-in-oil-in-water (W/O/W) emulsion droplets were used as templates for generation of microspheres and microcapsules, respectively. For the CO2 capture microcapsules, the inner fluid was 5 wt% K$_2$CO$_3$ solution with m-cresol purple, the middle fluid was a 3 wt% PGPR solution in a UV-curable liquid acrylate monomer and the outer fluid was an aqueous solution composed of 40 wt% glycerol and 4 wt% polyvinyl alcohol (PVA). For the water treatment microspheres, the dispersed fluid was a UV-curable acrylate monomer containing dispersed TiO$_2$ nanoparticles and the continuous fluid was an aqueous solution comprised of 40 wt% glycerol and 4 wt% PVA.

Fig 1. Schematic view of the experimental set-up for the production and monitoring of emulsion droplets generation. The inset figure shows monodisperse core-shell droplets and multi-core droplets with controlled number of monodispersed inner drops generated in microfluidic device.