Anaerobic digestion of brewery waste

This item was submitted to Loughborough University's Institutional Repository by the author.

Metadata Record: https://dspace.lboro.ac.uk/2134/26740

Version: Published

Publisher: Anaerobic Digestion and Bioresources Association (© the authors)

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Anaerobic Digestion of Brewery Waste

Tanja Radu (T. Radu@lboro.ac.uk), Richard Blanchard, Andrew Wheatley

Loughborough University
• Marmite Unilever-introduction/site history
• Vital statistics
• Waste water treatment plant (WWTP)
• Biogas production
• Benefits of WWTP for Unilever
• Issues with stability
• Conclusions
Site aerial view before and after

- Started planning July 2005
- Started building August 2007
- Finished building January 2008
- Contains
 - anaerobic stage
 - aerobic stage
 - reverse osmosis (RO) plant
Brewery waste

- The treatment of brewery wastewater is the most common application of high rate anaerobic digestion of wastewaters.
- High biodegradability of effluent due to dissolved carbohydrates and alcohol.
- High SCOD/COD ratio.
- Traditional aerobic expensive due to power for aeration and high sludge yields.
Pre-treatment

- Buffer tank (400 m³ capacity, half full)
 - Mixes different strengths and compositions of effluent together
 - Averages out concentration and prevents shocks
 - Second buffering tank introduced

- Conditioning tank (circ. 200 m³/hr)
 - Modifies temperature (35°C) and pH (7.0) of effluent
Vital Statistics

- Throughput about 250 m³/day
- COD concentrations (mg/l)
 - This is about a 99.2% reduction

<table>
<thead>
<tr>
<th></th>
<th>COD in effluent</th>
<th>EGSB</th>
<th>To sewer (flume 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS in effluent</td>
<td>2400</td>
<td>1400</td>
<td>55</td>
</tr>
</tbody>
</table>

- Suspended solids concentrations (mg/l)

<table>
<thead>
<tr>
<th></th>
<th>COD in effluent</th>
<th>EGSB</th>
<th>To sewer (flume 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS in effluent</td>
<td>2400</td>
<td>1400</td>
<td>55</td>
</tr>
</tbody>
</table>
Further treatment

Aerobic part (Aquabio)
- Bioreactor (reduces suspended solids (+ COD))
- Centrifuge (removes biomass)
- UF (removes water)

Reverse Osmosis
- Very thin membranes under high pressure
- Produces super-pure water
- Suitable for washing and boiler water
- Not suitable for drinking or adding to product
Biogas quality

- Normally 60% methane, 40% CO₂
- But here is 70±9% methane
- Can be burned or flared in boilers (for hot water to be used on site)
- Very variable production rate, which makes its use more problematic
- Average 80 m³/hr
- Specific gas yield of 0.4 l CH₄/g COD_removed

- The boiler biogas is cooled (refrigerated heat exchanger) to remove water vapour and then wet scrubbed with sodium hydroxide in a counter current stripping tower to remove sulphides. The gas is then pressurised and fed into one of the existing boilers.

- Average SCOD was 84.5% ± 10.6%, which reduces the time for hydrolysis, a rate-limiting step. The SCOD removal efficiency was 95% in year 1 and, following the separator repairs, 98% in year 2.
Control of the WWTP- Monitoring Parameters

- Automatic controls (pH modification, temperature, high and low set points)
- Some manual intervention in special circumstances, e.g. high buffer tank volume, high Ripley’s ratio
- Tests every day – COD, suspended solids, Ripley’s ratio, VFA, biogas production
- Tests a few times a week – ammonia, phosphate
- Monthly tests – biomass content, biogas composition
Benefits

- Reduced utility costs
- Reduced smell
- Biogas
- Re-useable water
- Fertiliser production (centrifuge solids)

<table>
<thead>
<tr>
<th>COD (mg/l)</th>
<th>TSS (mg/l)</th>
<th>Charge per m³ (£)</th>
<th>Saving per yr @ 250m³/day (approx. £)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15000</td>
<td>2400</td>
<td>6.44</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>1400</td>
<td>1.52</td>
<td>450,000</td>
</tr>
<tr>
<td>120</td>
<td>55</td>
<td>0.48</td>
<td>545,000</td>
</tr>
</tbody>
</table>
Monitoring Parameters - instability

- Day ~275 an increase in VFAs noticed and slight increase in RR (note pH remains stable)
- Day 340 annual shutdown of the factory - inspection of the EGSB
- Days 400-450 further planned shutdown for repairs
- Issues with solids separator

Post-shutdown performance:
- Greater stability of the process
Solids Inventory

- The height of the sludge bed can be measured with sampling taps
- Level 3- top od the fluidized bed
- Solids build-up issues
- High solids at the bottom of the tank- solids removal will be needed
Conclusions

- Newly available method for the analysis of total volatile fatty acids (VFAs) was ideal as a rapid, onsite, operational indicator of reactor stability.
- Total VFAs were shown to provide an earlier warning of the separator problem than the other rapid routine methods of monitoring; COD removal, pH and gas yield were not as useful for monitoring because of their slow response.
- Initial TSS removal was 20%. Following the repairs, overall TSS removal efficiency was still low at ~30%- EGSB reactors would not be expected to retain fine solids because of vigorous mixing.
- The variability in feed COD meant that deterioration in COD conversion to gas was difficult to spot.
Conclusions- cont’d

- No evidence of granule losses as a result of the damage to the internal separator, but solids inventory measurements are needed in order to understand mass balances and interpret specific gas yields.

- The results confirm the need for effluent buffering, as the range of in-flow rate was 12–774m³/d, COD in the raw effluent ranged from 5500 to 41 400mg/l, and total SS values were between 260 and 4800mg/l.

- Anaerobic conversion of COD to gas was linked to its solubility, achieving a greater than 95% conversion at 20 kg COD/m³/d.

- Great financial benefit of WWTP on site- reduced sewerage cost

Publication:
This research is funded by the Engineering and Physical Sciences Research Council (EPSRC) under EP/J000361/1 Rural Hybrid Energy Enterprise Systems (RHEES) project.
The authors would like to extend their thanks to the staff of Unilever Marmite® AD Plant for their time and valuable advice.

Thank you!

Questions?