Experimental validation of shear-mediated contributions to multiple scattering in concentrated random dispersions of spherical particles

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This conference abstract was also presented at the 171st Meeting of the Acoustical Society of America, Salt Lake City, Utah, USA, 23rd-27th May 2016. Copyright (2016) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America. The following article appeared in The Journal of the Acoustical Society of America, 139 (4), pp. 2184-2184 and may be found at https://doi.org/10.1121/1.4950499.

Metadata Record: https://dspace.lboro.ac.uk/2134/27924

Version: Accepted for publication

Publisher: © Acoustical Society of America

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Please cite the published version.
Experimental validation of shear-mediated contributions to multiple scattering in concentrated random dispersions of spherical particles

Valerie J Pinfield, D Michael Forrester, J Huang
Chemical Engineering Department, Loughborough University, UK

Multiple scattering models for ultrasound propagation in dispersions of spherical particles have conventionally included only multiple scattering of the compressional wave mode. Recent developments to these models by Luppé, Conoir and Norris (J Acoust Soc Am, 2012 (131) 1113) have incorporated the effects of mode conversions into the multiple scattering model; these arise from shear and thermal wave modes produced by scattering at each particle. In our recent work, we have reported the identification of the dominant contributions to effective attenuation in such dispersed systems for either solid or liquid particles, and have reported both analytical and numerical solutions for them. Here we present the key results for shear-mediated multiple scattering effects which are dominant in concentrated systems of small solid particles (sub-micrometer) in the mega-Hertz frequency range. We show experimental validation of the model predictions for silica particles in the size range 100 nm-1 micrometer and 1-20 MHz using two different spectroscopy techniques, first, a pseudo-continuous wave spectrometer (the Malvern Ultrasizer), and secondly a pseudo-random binary sequence cross-correlation spectrometer (Digusonic DSX) suitable for in-line process monitoring.