Phosphorescent molecular metal complexes in heterojunction solar cells

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: WRIGHT, I.A., 2018. Phosphorescent molecular metal complexes in heterojunction solar cells. Polyhedron, 140, pp. 84-98.

Additional Information:

- This paper was accepted for publication in the journal Polyhedron and the definitive published version is available at https://doi.org/10.1016/j.poly.2017.11.050

Metadata Record: https://dspace.lboro.ac.uk/2134/28046

Version: Accepted for publication

Publisher: © Elsevier Ltd

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Phosphorescent Molecular Metal Complexes in Heterojunction Solar Cells

Iain A. Wright*

Department of Chemistry, Loughborough University, Epinal Way, LE11 3TU, United Kingdom

Corresponding author at: Department of Chemistry, Loughborough University, Epinal Way, LE11 3TU, United Kingdom.

E-mail address: i.a.wright@lboro.ac.uk

Keywords
organic solar cells, triplet sensitizer, phosphorescent metal complexes, energy transfer, bulk heterojunction

Abstract

Bulk heterojunction (BHJ) solar cells have been developed intensively over the last two decades due to the cheap, flexible devices which may be obtained although their efficiency is below that of other emerging solar cell technologies such as dye-sensitized and perovskite solar cells. Molecular organometallic phosphors are noted for their triplet harvesting ability which has produced highly efficient organic light-emitting devices however triplet harvesting presents an equally appealing route to improve the efficiency of BHJ devices. The results of studies using molecular phosphors as dopants in very small loadings can yield large increases in short circuit currents and power conversion efficiency and demonstrate that improvements in solar cell performance may be obtained by this approach.

1. Introduction

Bulk-heterojunction (BHJ) solar cells are an emerging technology for solar energy conversion alongside dye-sensitized solar cells (DSSCs) and perovskite solar cells. Polypyridyl complexes of heavy transition metals such as ruthenium[1–11] and, more recently, of cobalt,[12–22] copper,[23–32] zinc[33,34] and other earth-abundant 3d elements[35,36] are closely associated with DSSC technology while the best performing perovskite devices also rely upon heavy atoms such as tin and lead.[37–42] The development of materials suitable for BHJ devices has focused much more closely on purely organic systems.

BHJ devices utilize an electron donating material, typically an electronically delocalized oligomer[43–52] or conjugated polymer[48,50,53–61] blended with an electron accepting small molecule. While there are a large number of studied donor materials the electron acceptor is often a fullerene such as C_{60}, C_{70}, PC_{61}BM or PC_{71}BM (figure 1)[50,62,63] although in recent years studies using non-
fullerene acceptors such as perylene diimide derivatives or other organic molecules capable of forming stable anions have increased in profile.[64–66] The blended nature of the BHJ results in an interpenetrated network of the donor and acceptor species which provides a very large interfacial area between these components. As the charge transfer required for device operation occurs at these interfaces, the BHJ improves charge carrier generation and transport and overcomes the limitations imposed by earlier bilayer (BL) devices where the heterojunction consisted simply of stacked layers of donor and acceptor.[53,67–69] Some basic differences between these device architectures alongside that of a doped ternary BHJ device are shown in scheme 1.

Figure 1

Scheme 1

Here, the use of molecular metal complexes in BHJ and related BL devices will be presented in order to demonstrate the large extent to which the use of high triplet yield organometallics can improve organic solar cell (OSC) performance, particularly when used as dopants. The doped devices are an example of ternary BHJ devices whereby a third component helps to improve one or more device parameters. Ternary cells are among the most promising technologies under development and have led to BHJ efficiencies exceeding 10%. [70–73]

While detailed explanations of the operating principles of BHJ devices are available elsewhere,[74–78] a basic representation of these processes and associated energy levels are shown in scheme 2.

The donor undergoes photoexcitation prior to charge transfer to an acceptor molecule. This results in the formation of a transient polaron pair which consists of the electrostatically bound donor radical cation and acceptor radical anion. Dissociation of this polaron pair, in competition with geminate recombination back to the ground state, gives rise to free charge carriers which can migrate towards the electrodes and thus an electrical current is generated.

Scheme 2

The primary indicators of cell performance which will be considered here are the short circuit current density (J_{sc}), open circuit voltage (V_{oc}), fill factor (FF) and quantum efficiency (η). The first three factors are related to η according to equation 1 where P_0 is the power of the incident light on the device, typically the AM1.5 solar spectrum at 100 mW cm$^{-2}$.

$$\eta = \frac{J_{sc}V_{oc}FF}{P_0}$$ (1)

A common postulation in the studies presented here is that by incorporating complexes of heavy transition metals the photogenerated triplet yield will increase due to the spin-orbit coupling associated with high atomic weight elements. Spin-orbit coupling converts singlet excitons to formally forbidden triplet excitons by intersystem crossing (ISC).[79] This approach may be
considered complementary to the use of phosphorescent complexes in organic light emitting devices.[80–82]

As triplet excitons in an organic material will typically have a much longer lifetime than singlet excitons, an increased exciton diffusion length \((L_D) \) accompanied with a decrease in recombination will occur in phosphor sensitized OSCs primarily resulting in a greatly improved \(J_{sc} \). Similar logic is employed in the development of singlet fission based organic solar cells where one singlet exciton shares energy with the singlet ground state to produce two triplet states of intermediate energy which then take part in generating the photocurrent. [78,83–85] However, singlet fission relies on the energy of the first excited triplet state to be approximately half that of the singlet exciton which is a challenging criteria to satisfy and results in lower energy excitons which can limit the attainable \(V_{oc} \). [78,86]

Although care must be taken to ensure that the frontier orbital energy levels of the dopant will not have a negative impact on photovoltaic performance, such as introducing energetically favourable deactivation pathways or otherwise limiting \(V_{oc} \), phosphorescent metal complexes can be implemented as dopants quite easily and alongside their ability to improve \(L_D \) and \(J_{sc} \), the metal-ligand charge transfer (MLCT) and related charge transfer processes characteristic of these complexes can also help to improve absorption of sunlight.

Scheme 3

Energy transfer processes taking place within the triplet sensitized heterojunction including short range Dexter electron transfer where an electron hops from one molecule to another and longer range Förster resonance energy transfer (FRET) where the energy released upon relaxation of a first molecule in an excited state transfers non-radiatively to generate an excited state in a second molecule.[78,85,87–89] Both of these processes are shown in scheme 3. FRET functions very well as a singlet transfer mechanism while Dexter transfer is far more efficient at transporting triplets.[90]

Increases in triplet yield and \(L_D \) have been definitively confirmed in phosphor doped organics[87,91,92] however precise mechanisms for the energy transfer processes taking place within a triplet sensitized BHJ are challenging to identify and it seems likely that both transfer mechanisms are able to contribute to the improved performance.

A focus on discrete molecular complexes will be maintained, readers specifically interested in the use of metal containing polymers are directed to relevant literature.[93–96] Studies of complexes of a range of metals will be presented and are organized according to their group in the periodic table.

As a further note, the reader is advised that device performance in all organic photovoltaic technologies improved rapidly over the last 15 years due to improved device fabrication as much as
to the synthesis of new materials, therefore a sense of perspective should be maintained when
evaluating early studies.[78,97,98]

2. Phosphors used in BHJs

2.1 Group 7

Rhenium

Figure 2

Rhenium(I) tricarbonyl \(\alpha\)-diimine complexes 1 (figure 2) with the general formula \(\text{fac-}[\text{Re}(X)(CO)_3(\alpha-\text{diimine})]\) (where \(X = \text{halide/pseudo-halide}\) have long-lived and ligand tunable excited states and
electrochemical properties allowing them to effectively harvest solar wavelengths and convert
absorbed light into useful energy.[99,100] As the structure of the \(\alpha\)-diimine ligand is known to have
a strong influence on the MLCT properties of these complexes this is a relatively straightforward
property to control. These complexes are easy to synthesize and provide some of the earliest
insights into the use of molecular metal complexes in OSCs.

In 2001, the group of Chan produced a series of \(\text{fac-}[\text{Re}(\text{Cl})(\text{CO})_3(\text{DAB})]\) \((\text{DAB} = 1,4\text{-diazabutadiene})\)
photosensitizers 2a-e (fig. 2) which displayed very low photoconductivity \((\sigma = 10^{-14} \ \Omega^{-1} \ \text{cm}^{-1})\) when
blended into a poly(carbonate) host attributed to poor charge carrier mobility.[101] However, when
added as a dopant to a blend of the hole transporting material (HTM) triphenylamine in
poly(carbonate) the photoconductivity increased by up to five orders of magnitude \((2d, \sigma = 1.3 \times 10^9
\ \Omega^{-1} \ \text{cm}^{-1})\). Complex 2d was incorporated into a BL solar cell with \(\text{C}_{60}\) as the acceptor producing a
maximum open circuit voltage \(V_{oc} = 0.38 \ \text{V}, \ \text{FF} = 0.18\) and an efficiency of 2% under illumination at
460 nm and 1.9 mW cm\(^{-2}\).[101,102]

Subsequent investigations utilized \(\text{fac-}[\text{Re}(\text{Cl})(\text{CO})_3(\text{DIAN})]\) \((\text{DIAN} = \text{bis(phenylimino)acenaphthene})\)
complexes 3a-h (fig. 2) in vacuum deposited BL and BHJ devices using \(\text{C}_{60}\) as acceptor alongside
copper phthalocyanine (CuPc) and \(\text{C}_{60}\) as hole and electron transport layers respectively. [103–105]
Studies of 3a demonstrated that it is ambipolar with good electron and hole mobilities of \(\mu = 2.5 \times
10^{-3} \ \text{and} \ 2.3 \times 10^{-3} \ \text{cm}^2 \ \text{V}^{-1} \ \text{s}^{-1}\) respectively, which should enhance charge transport behavior. A BL
device using 3a demonstrated a \(V_{oc} = 0.58 \ \text{V}, \ J_{sc} = 0.18 \ \text{mA cm}^{-2}\), and \(\text{FF} = 0.28\) giving only \(\eta = 0.03\%\).

However by manufacturing the device as a BHJ through co-sublimation of 3a and \(\text{C}_{60}\) in a 1:1 ratio
the performance improved drastically with \(V_{oc} = 0.45 \ \text{V}, \ J_{sc} = 1.9 \ \text{mA cm}^{-2}\), \(\text{FF} = 0.56\) and \(\eta = 0.48\%\).[103] Ultimately, by optimizing device construction through control of heterojunction
thickness, ratio of 3a to \(\text{C}_{60}\) and choice of HTM, devices were obtained with a \(V_{oc} = 0.51 \ \text{V}, \ J_{sc} = 5.07
\ \text{mA cm}^{-2}, \ \text{FF} = 0.51\) and \(\eta = 1.29\%\), an almost threefold improvement.[104,105]
In 2008 Ma et al. reported the oligo(phenylenevinylene) cruciform 4 centered around a [Re(Cl)(CO)₃(bpy)] (bpy = 2,2’-bipyridine) moiety (fig. 2).[106] The authors postulate that the oligomer arms and rhenium α-dimine core could function as donor and acceptor respectively, so a single layer device of the complex was produced alongside a BHJ device with PC₆₅BM as the acceptor. The single layer devices performed poorly despite having a high $V_{oc} = 0.72$ V due to a low $J_{sc} = 0.082$ mA cm⁻² and FF = 0.21 giving $\eta = 0.012\%$. The BHJ devices were more functional, displaying $V_{oc} = 0.75$ V, $J_{sc} = 3.8$ mA cm⁻² and FF = 0.28 giving $\eta = 0.8\%$. The presence of the Re atom in 4 did show improved performance compared to the uncoordinated ligand.

While a number of other Re(I) tricarbonyl complexes have since been prepared displaying properties such as triplet-triplet annihilation and have been identified as useful triplet photosensitizers, these molecules have not been further employed in OSC devices.[107,108]

2.2 Group 8

Ruthenium

Figure 3

In 2004, dimeric ruthenium phthalocyanine [RuPc]₂ was employed in a BL device with C₆₀ displaying $J_{sc} = 0.23$ mA cm⁻² and $V_{oc} = 0.17$ V although its EQE responses showed a marked sensitivity to air.[109]

In a collaborative study in 2009, dendritic oligothiophene functionalized RuPc derivatives 5-10 (figure 3) were prepared and utilized in solution processed BHJ devices.[110] These complexes displayed strong absorbance across the UV-vis region with the magnitude of absorptivity increasing with thiophene content. However, it was complexes 5 and 8 containing Py-3T which produced the best devices with higher J_{sc} values making up for losses in V_{oc} when compared to the larger analogues. These complexes blended well with PC₆₅BM resulting in smooth films as measured by atomic force microscopy (AFM). 5 and 8 displayed notably improved performance when the less symmetric fullerene PC₇₁BM was used in place of PC₆₅BM (table 1). Ultimately 8:PC₇₁BM produced the best OSCs overall with $V_{oc} = 0.56$ V, $J_{sc} = 8.3$ mA cm⁻², FF = 0.34 and $\eta = 1.6\%$. All of the complexes outperformed an oligothiophene free analogue (L=L’=pyridine). An interesting trend observed for these complexes is that the V_{oc} tends to increase with increasing thiophene content which is surprising considering that the HOMO levels for the complexes are identical therefore this must indicate some further influence of the oligothiophene chains.

Table 1

Researchers in Milan incorporated the diruthenium bis(acetylide) complex 11 (fig. 3) in BHJ devices with PC₆₅BM.[111] Photoexcited charge transfer between 11 and PC₆₅BM was established however
short circuit currents were low $J_{sc} = 0.66 \text{ mA cm}^{-2}$ and only $\eta = 0.08\%$ was obtained. The low J_{sc} values could be explained by the poor film quality of the blend. In 2017, a further series of ruthenium bis(acetylidyne) complexes were reported by Liu et al. and showed comparable performance in BHJ devices with PC$_{71}$BM.[112] The best performing device consisted of 12:PC$_{71}$BM in a ratio of 1:4 displaying $V_{oc} = 0.51 \text{ V}$, $J_{sc} = 4.24 \text{ mA cm}^{-2}$, FF = 0.31 and $\eta = 0.66\%$. The other members of the series had one or more triphenylamine groups bound to the terminal thiophene but did not perform well in OSCs.

Azadipyromethene complexes 13-15 (fig. 3) were reported by Bessette et al. and their properties discussed in the context of photosensitizers for OSCs but no actually device performance was reported.[113]

2.3 Group 9

Iridium Complexes as Dopants

The majority of studies of molecular Ir(III) complexes in OSCs primarily use them as dopants or interlayers for existing conjugated polymer donors and significant improvements in device properties can be observed when the complexes are employed in this way.

Figure 4

Yang et al. doped end-capped poly(fluorene) (PFO) with Ir(mppy)$_3$ 16 (figure 4) and identified a large increase in triplet exciton population.[114] They then made OSCs using blends of PFO and P3HT (fig. 4) with CdSe nanocrystals. Doping of these OSCs with 16 at a loading of 10 wt% caused a 200% increase in J_{sc} for PFO and 100% increase for P3HT indicating that the presence of the phosphorescent dopant yielded more, long-lived charge carriers. For PFO a 50% increase in V_{oc} was also observed.

In a detailed study in 2008 the groups of Howe and Hu noted an 80% increase in η by doping 5 wt% Ir(ppy)$_3$ 17 (fig. 4) into an MEH-PPV/PC$_{61}$BM. The dopant improved the J_{sc} from 0.6 to 1.1 mA cm$^{-2}$ under illumination of 8 mW cm$^{-2}$ at 500 nm leading to the improved efficiency.[115] A similar J_{sc} response was observed at wavelengths from 370 to 700 nm. The V_{oc} and FF were essentially unaffected at 0.82 V and 0.29 respectively. By substituting 17 with aluminium tris(hydroxyquinoline) (Alq$_3$) which has comparable HOMO and LUMO levels, no such increase was observed. The presence of the Ir complex was shown to increase L_0 from 3.5 to 6.0 nm. The authors conclude that these changes are due to spin-orbit coupling populating the triplet manifold and minimizing recombination.
Devices utilizing the small molecule donor NPD (fig. 4) doped with 5 wt% 17 also demonstrated an 80% increase in \(\eta \) alongside an improved FF and a near doubling of the \(L_D \) in the donor layer from 6.5 nm to 11.8 nm, again attributed to an increased triplet population.[116]

In 2011, Winroth et al. optimized the loading of 17 into a BHJ of the archetypical donor and acceptor pairing P3HT and PC\(_{60}\)BM. [117] At 5 wt% 17 improved all device parameters including the \(V_{oc} \) from 0.26 to 0.41 V, the short circuit current from -4.64 to -14.4 \(\mu \)A, FF from 0.34 to 0.47 and \(\eta \) at 340 nm jumped from 0.825 to 9.48% however \(\eta \) dropped slightly from 1.14 to 0.92% when measured at 600 nm. This study identified that the dopant can perform a number of roles simultaneously including harvesting high energy photons and introducing extra heterojunctions for exciton dissociation. This work also identified that the deterioration of performance at higher dopant levels is due to morphological changes induced by the metal complex inhibiting the packing of P3HT chains therefore doping levels must be carefully controlled.

Figure 5

Yu et al. reported on the effect of inserting a layer of the complex bis(2-(4-tert-butylphenyl)benzothiazolato-\(\text{N}_2\text{C}^\text{3} \)) iridium (acetylacetonate) 18 (figure 5) between the donor and acceptor layers of a BL device of pentacene and C\(_{60}\).[118] This extra layer was labelled a multicharge separation (MCS) layer and increasing the thickness of this layer from 0 to 8 nm resulted in the \(V_{oc} \) increasing from 0.325 to 0.488 V alongside a decrease in \(J_{sc} \) from 10.72 to 5.88 mA cm\(^{-2}\). At an MCS film thickness of 1 nm the FF = 0.48 which ultimately provided the highest \(\eta \) = 1.85%. Similar dependencies were observed when the non-phosphorescent complex CuPc was employed as the MCS although in this case an optimized MCS film thickness of 4 nm yielded \(\eta \) = 1.98%. Yu performed a second study of devices consisting of CuPc as donor and C\(_{60}\) as acceptor with varying amounts of 18 doped into the CuPc layer.[119] The extent of doping was optimized to 25 wt% with larger concentrations of 18 leading to deteriorated charge transport. Overall device performance improved marginally from \(\eta \) = 1.23% in the non-doped device to \(\eta \) = 1.42% in the 18 doped device due primarily to an increase in \(J_{sc} \) from 6.48 to 8.23 mA cm\(^{-2}\) and the \(L_D \) from 10 to 17.4 nm, indicating improved triplet sensitization. When these studies are considered together it appears that the presence of the MCS layer seems merely to increase series resistance and recombination rates while diminishing any influence from the triplet sensitizer. Upon considering that charge transfer to form polaron pairs prior to charge separation occurs at the interface of donor and acceptor interface it is perhaps unsurprising that the MCS layer can be a hindrance therefore the strategy of distributing the complex as a dopant throughout the BHJ seems much more promising.

Wang and Zhang utilized iridium tris(2-(benzo[b]thiophen-2-yl)pyridine) 19 (fig. 5) to dope BHJ solar cells of P3HT:PC\(_{60}\)BM and primarily examined the sensitivity of device performance to annealing
They concluded that an optimum annealing temperature exists for each dopant concentration above which performance decreases attributed to aggregation of the metal complex dopants disrupting film morphology.

The groups of Kim, Kwon and Hong utilized a somewhat complex device using the ionic iridium complex 20 (fig. 5) as a triplet–singlet energy donor in the presence of polyethylene oxide (PEO) in conjunction with the BHJ pairing of P3HT:PC_{61}BM.[121] They postulated that improved morphological properties will arise from the hydrophobic quinolone based ligand while the mobile Na\(^+\) ions in PEO will minimize electrode energy barriers. While efficient energy transfer between 20 and P3HT was identified, in practice the gains in device efficiency were modest with the best consisting of a blend of P3HT:PC_{61}BM:20:PEO in the weight ratio of 1:0.8:0.01:0.01 and annealed at 150 °C. High J_{sc} of over 10 mA cm\(^{-2}\) were observed however the FF of the devices deteriorated in the presence of 20. A noteworthy result from this study is that simply incorporating PEO itself in the absence of 20 actually gave rise to markedly increased V_{oc}, J_{sc}, and FF in the non-doped, non-annealed P3HT:PC_{61}BM BHJ.[121]

Yao et al. presented a study focused upon the influence of varying levels of tris(phenylpyrazole)iridium 21 as a dopant in BHJ devices consisting of P3HT and the indene-C\(_{60}\)-bisadduct ICBA, the structure of which is shown in figure 5.[122] In the presence of 0.1 wt% 21 V_{oc} and FF values showed almost no variation going from 0.827 V and 0.65 when non-doped and 0.821 V and 0.63 after doping. However the presence of 21 did yield an increase in J_{sc} from 10.09 to 11.76 mA cm\(^{-2}\) thereby a moderate improvement in η from 5.41 to 6.08%. Upon annealing at 150 °C the J_{sc} of the doped device increased further to 12.40 mA cm\(^{-2}\) which ultimately provided $\eta = 7.08\%$. Femtosecond time-resolved photoluminescence spectra revealed that energy transfer with 21 increased the L_D of the P3HT:ICBA blend from 1.35 to 1.53 nm. The presence of 21 in the BHJ also resulted in smoother films while thermal studies in conjunction with AFM and secondary ion mass spectroscopy identified that the annealing temperature can be used to control the vertical distribution of the complexes in the heterojunction. Prior to annealing the complexes have settled towards the bottom of the active layer. As the annealing temperature increases the complexes migrate vertically through the BHJ eventually reaching an optimum distribution in which to assist charge generation and transport. Increasing the annealing temperature further has a detrimental effect on device performance as had been observed in other studies.[120]

Figure 6

An elegant example of how heavy metal complexes can be employed as dopants was presented by Qian et al. whereby trace amounts of the iridium complex 22 (figure 6) were “doped” into the high performance polymer PTB7 in very small quantities by Stille type copolymerization to produce the
new metallo polymer 23.[123] By synthesizing batches of 23 with controlled levels of doping between 0 and 5% then incorporating these polymers into BHJ devices with PC71BM as acceptor they obtained cells with $V_{oc} = 0.75$ V, $J_{sc} = 18.14$ mA cm$^{-2}$, FF = 0.64 and $\eta = 8.71\%$. Improvements in η of up to 45% were observed compared to PTB7 at a dopant loading of 1%. These improvements were primarily attributed to large increases in J_{sc} and moderate increases in FF. Similarly to previous studies, further increasing the dopant concentration proved detrimental to performance and AFM imaging identified the smoothest morphology at 1% loading. This is further evidence that the presence of the octahedral Ir complex can assist in minimizing phase separation, cavity formation and other morphological defects if implemented correctly.

Figure 7

In a 2016 report a variety of Ir phosphors 24-27 (figure 7) were studied as triplet-singlet energy transfer dopants in a PTB7:PC71BM BHJ.[124] Photoluminescence spectroscopy confirmed energy transfer between the complexes and PTB7 and the best performing complex 25 showed little change in V_{oc} and FF but a significant improvement in J_{sc} from 13.3 to 16.1 mA cm$^{-2}$ increasing η from 7.23 to 8.62%. These improvements were correlated to both the efficient energy transfer between dopant and host and the large FRET radius of 25 at 8.2 nm. Similar behavior was identified between 27 and P3HT. This study also identified explicitly that the complex must be blended into the active layer itself to have any effect, simply using the complex as a further layer in its own right did not enhance performance.

A report from earlier this year also used an Ir(III) phosphor as a FRET pairing with P3HT and and efficiencies of up to 4.44% were obtained with 1 wt% dopant and solvent annealing. This is an improvement of almost 50% over a non-doped, non-annealed device.[125] Unfortunately however, the complex is written as bis(1-phenylisoquinoline) acetylacetonate iridium(III) Ir(piq)2(acac) 28 but the structure in the supporting information is that of 29 (both shown in figure 6) therefore these results must be interpreted with some caution.

Iridium Complexes as BHJ Donors

Despite the promising results obtained using Ir complexes as dopants, a number of studies have employed Ir complexes as donor materials in their own right although the results of these studies have been less encouraging.

Figure 8

Lee et al. synthesized the short series of complexes 30-32 (figure 8) with 2-picolinic acid as the ancillary ligand which were then employed as donors alongside PC61BM in solution processed BHJs and C60 in thermally evaporated BHJ devices.[126] Photoinduced charge transfer between donor
and acceptor was identified although photovoltaic performance was low with the best device consisting of an evaporated BHJ of 31:C_{60} having $V_{oc} = 0.49$ V, $J_{sc} = 2.32$ mA cm$^{-2}$, FF = 0.53 and $\eta = 0.60\%$.

In 2012, Wang et al. utilized bis(1,2-diphenyl-1H-benzoimidazole) iridium (acetylacetonate) 33 (fig. 8) in conjunction with C_{60} to produce vacuum deposited BL devices.[127] The J-V curves of these devices displayed an S-shaped kink attributes to the low hole mobility of 33 ($\mu = 6.49 \times 10^{-6}$ cm2V$^{-1}$s$^{-1}$). This kink could be resolved by carefully controlling the donor layer thickness and by using a thin layer of a hole transporting material such as NPD (fig. 4) at the donor/anode interface, ultimately producing cells with $V_{oc} = 0.78$ V, $J_{sc} = 4.82$ mA cm$^{-2}$, FF = 0.60 and $\eta = 2.23\%$. An improvement in efficiency of 35% compared to devices without the NPD layer.

Fleetham and co-workers produced a BL device using the azaperylene complex 34 (fig. 8) as donor and C_{60} as acceptor.[128] The azaperylene ligand conferred a very broad absorption profile to the complex, with triplet absorption stretching into the near-IR and giving the complex favorable solar energy harvesting properties. The performance of this complex in solar cells was compared to control devices fabricated with platinum(II) octaethylporphine (PtOEP, fig. 8) and zinc(II) phthalocyanine (ZnPc). L_0 for each complex was measured and, as expected, both of the 5d metal complexes 34 (10.1 nm) and PtOEP (12.0 nm) had a longer exciton diffusion length than ZnPc (<5 nm). Despite having a slightly shorter L_0 than PtOEP, 34 actually produced the most efficient devices at $\eta = 2.8\%$ (rather high for a simple bilayer device) thanks to its improved V_{oc} of 0.99 V versus 0.62 V for PtOEP ($\eta = 1.8\%$), the ZnPc device performed the most poorly ($\eta = 1.4\%$). The V_{oc} of 34 proved very sensitive to film thickness, but demonstrated robust stability towards temperature over the range of 100-300 K. The differences in L_0 between 34 and PtOEP and the variations in V_{oc} with respect to film thickness and temperature were attributed by the authors to the influence of the octahedral geometry of 34 compared to the planar PtOEP molecules of which will tend to stack leading to favorable charge transport pathways.

Figure 9

At time of writing, the most recent report of a device relying upon an Ir complex as the sole donor in an OSC utilized complexes of 2-(2’-pyridyl)benzothiophene ligands functionalized with 4-methoxyphenyl 35 and 4-triphenylamine 36 moieties (figure 9) alongside the acac analogue 2,2,6,6-tetramethyl-3,5-heptanediene as the ancillary ligand.[129] These complexes were employed in BHJ devices with PC$_{71}$BM at very high acceptor loadings. Devices were poor with the best performing devices consisting of 35:PC$_{71}$BM (1:2.5) with $V_{oc} = 0.77$ V, $J_{sc} = 4.30$ mA cm$^{-2}$, FF = 0.35, $\eta = 1.2\%$ and 36:PC$_{71}$BM (1:2) having $V_{oc} = 0.74$ V, $J_{sc} = 6.52$ mA cm$^{-2}$, FF = 0.42, $\eta = 2.0\%$. The triphenylamine...
substituted 36 showed better performance in all respects. The authors identified the very short excited state lifetimes of 35 (108 ns) and 36 (122 ns) in the solid state as a limiting factor.

2.4 Group 10

Palladium and Platinum

PtOEP (fig. 8) was used in a bilayer device reported by Shao and Yang with C60 as acceptor.[130]

Despite the low mobility of PtOEP at \(\mu = 10^{-5} \text{ cm}^2 \text{V}^{-1} \text{s}^{-1} \) a \(V_{oc} = 0.66 \text{ V} \), \(J_{sc} = 5.6 \text{ mA cm}^{-2} \), \(FF = 0.57 \) and \(\eta = 2.1\% \) were obtained. \(L_d \) of the heterojunction was estimated to be 30 nm by measuring the dependence of \(\eta \) on the thickness of the PtOEP layer. The magnitude of \(L_d \) is ascribed solely to a long exciton lifetime of PtOEP itself which the authors note has a triplet lifetime of approximately 90 μs.[131]

Subsequently, Rand et al. doped PtOEP into the poly(p-phenylene vinylene) derivative Super Yellow at a loading of 5 wt% in a BL device alongside C60 to obtain a device with a 10% improvement in photocurrent compared to the non-doped device.[132] They identified that the presence of the heavy Pt atom was essential to producing improved photovoltaic performance by comparing it to a device that used the metal free ligand octaethylporphine as a dopant which lead to a decrease in all device parameters. \(L_d \) were estimated at 9 and 4 nm for the sensitized and non-sensitized devices respectively with the difference attributed to the presence of triplet excitons in the PtOEP device.

Figure 10

In 2007 a single layer solar cell was prepared using the fullerene functionalized thiophene-2,5-di(platinum bis(acetylide)) complex 37 (figure 10).[133] It was envisioned that the Pt centers will undergo photoinduced electron transfer to the pendant fullerenes while also encouraging ISC to form triplet charge separated states as the authors had observed for a related polymer in a BHJ with PC61BM.[134] While photophysical evidence supported aspects of this postulation, device performance was ultimately poor with \(\eta < 0.06\% \) which the authors attributed to the heavy Pt atom assisting in both ISC upon excitation and rapid reverse ISC from the triplet state back to the short lived singlet state.

The groups of Thompson and Forrest conducted comparative studies of Pt and Pd tetraphenylbenzoporphyrin (PtTPBP and PdTPBP, fig. 10) derivatives in layered heterojunction devices with C60 alongside other donors including CuPc, PtOEP, tetracene, rubrene and others. While the overall efficiencies of the TPBP complexes outperformed most other donors (PdTPBP \(\eta = 1.8\% \), PtTPBP \(\eta = 1.9\% \)) they did not display the high \(J_{sc} \) observed in other triplet sensitized devices due to their poor absorbance with respect to the solar spectrum.[135,136] This was followed by a report on PtTPBP focused on studying the ISC processes occurring in a phosphor doped organic
semiconductor, specifically diphenyltetracene 38.[137] By controlling the thickness of a film of 38
doped with 5 wt% PtTBPB this triplet sensitized layer was used as the donor in a BL with C₆₀. The
formation of triplet excitons due to the presence of the Pt phosphor in 38 was identified as occurring
in the picosecond timescale and was observed to increase J_{sc} from 30 μA cm⁻² in a film of pristine 38
to 66 μA cm⁻² in the doped film.

In 2009, Li et al. utilized the carbazole functionalized Pt porphine complex 39 (fig. 10) as a dopant in
a P3HT:C₆₀ BL device. Though the extent of doping is not clear the presence of 39 improved all device
properties. V_{oc} and J_{sc} almost doubled going from 0.214 to 0.412 V and 2.546 to 4.152 mA cm⁻² which
increased η from 0.17 to 0.70%. Devices doped with 39 were compared to those doped with CdTe
nanoparticles and the molecular dopant was shown to be superior. In a device consisting of just
39:C₆₀ values of J_{sc} and η are both very low due to the poor charge carrier mobility of the Pt
complex.[138]

The limitations on L_d that are imposed by poor charge mobility were clearly identified in two papers
by Jabbour et al.[139,140] which were published concomitantly with a similar investigation by Lane
et al.[141] These studies focus on group 10 phthalocyanine complexes and serve well to validate
each other. Jabbour’s initial study utilized ZnPc, PdPc and PtPc alongside CuPc for comparison.[139]
The complexes were incorporated into BL devices with the acceptor perylene tetracarboxylic
bisbenzimidazole (PTCBI). Both the donor and acceptor layers were 20 nm in thickness and the films
of all materials displayed similar morphology. Of the four complexes tested PdPc was the most
efficient. While CuPc, ZnPc and PtPc all displayed $J_{sc} \approx 3.0$ mA cm⁻², PdPc had $J_{sc} = 4.0$ mA cm⁻²
thereby providing the most efficient solar cells. Surprisingly PtPc produced the poorest device due to
a very combination of low J_{sc} and the influence of its high HOMO energy limiting the V_{oc}. The low J_{sc}
of PtPc is perhaps the most surprising result, however estimated L_d values increased in the order
PtPc(5.6 nm) < CuPc(5.8 nm) < ZnPc(6.2nm) << PdPc(10.1nm). PtPc was then shown to have a hole
mobility almost two orders of magnitude lower than the other members of the series which explains
its low J_{sc}. The 3d metal complexes CuPc and ZnPc actually displayed the largest charge mobility but
only intermediate J_{sc}, therefore a combination of high mobility (compared to Pt) and enhanced
exciton lifetime thanks to ISC explains the improved performance of PdPc. The authors confirmed
this by making further devices of CuPc and PdPc with C₆₀ as acceptor and increased J_{sc} was again
observed for PdPc. A subsequent comparison of ZnPc and PdPc in HJ architectures with a p-i-n
configuration yielded similar results.[140] The study by Lane et al. was being conducted at the same
time and compared NiPc, PdPc, and PtPc as donors in vacuum deposited BL devices alongside C₆₀.
While PtPc outperformed NiPc in this instance due to the higher HOMO of NiPc limiting its V_{oc}.
trends comparable to those observed in the preceding studies were made with PdPc clearly superior to NiPc and PtPc.\[141\]

Figure 11

The group of Fréchet synthesized multichromophoric Pt-acetylide oligomers 40-42 (figure 11) with varying chain lengths and employed them in BHJ devices with PC_{61}BM and PC_{71}BM.\[142\] As the frontier orbitals are located over the Pt acetylide and 2,1,3-benzothiadiazole moieties the optical and electrochemical properties of all three molecules are almost identical, therefore increasing the oligothiophene chain length should only affect charge transport and morphological properties. Ultimately the two shorter oligomers 40 and 41 displayed higher charge mobility possibly due to their better film forming properties while the best devices were obtained with the intermediate length terthiophene terminated 41 displaying $V_{oc} = 0.82$ V, $J_{sc} = 8.45$ mA cm$^{-2}$, FF = 0.43 and $\eta = 3.0\%$ in conjunction with PC_{71}BM.

In a study of platinum acetylide polymers in BHJ solar cells Li et al. synthesized the 9,10-anthraquinone oligomers 43 and 44 (fig. 11) however they only produced devices with the related polymers in conjunction with PC_{61}BM which performed poorly.\[143\]

Pd and Pt 8-hydroxyquinoline (Pdq$_2$ and Pqt$_2$, fig. 11) and 5,7-dimethyl-8-hydroxyquinoline complexes (PdMe$_2$q$_2$ and PtMe$_2$q$_2$, fig. 11) were reported by Che et al. in 2011 and were incorporated by vacuum deposition into organic field effect transistor (OFET) and BL solar cell devices with C$_{60}$ as acceptor. While the Pd and Pt complexes displayed similar morphologies the Pt complexes in this instance had marginally higher charge mobility than their Pd analogues as measured in the OFETs and also produced more efficient solar cells. The J_{sc} of Pt(Me$_2$q)$_2$ based OSCs was particularly high at 14.8 mA cm$^{-2}$ and it had a $V_{oc} = 0.42$ V, FF = 0.38 and $\eta = 2.4\%$.\[144\]

Figure 12

A further series of Pt acetylide oligomers 45-48 (figure 12) published in 2012 were studied in OFET and BHJ devices at a range of film thicknesses.\[145\] PC$_{71}$BM was used as the acceptor in a ratio of 45-48:PC$_{71}$BM = 1:4. 45 and 46 ultimately produced devices with high $J_{sc} > 7.0$ mA cm$^{-2}$ and $\eta = 2.37$ and 2.34% respectively. Again, the BHJ performance correlated well with the OFET measured mobility.

In 2015 multichromophoric Pt bis(acetylide) complexes 49 and 50 (fig. 12) were produced with the best performing BHJ device consisting of 49:PC$_{71}$BM (1:1) displaying $V_{oc} = 0.75$ V, $J_{sc} = 4.14$ mA cm$^{-2}$, FF = 0.45 and $\eta = 1.40\%$ in the presence of the additive 1,8-diiodooctane.\[146\]

Figure 13
Ma et al. used a triphenylamine substituted porphyrin to produce a range of metal complexes including those of Ni, Pd, and Pt 51-53 (figure 13) for BHJ devices with PC61BM.[147] Similarly to the studies on Pc complexes[139–141] Pt was outperformed again by the Pd complex 52. The triplet exciton lifetime of the Pd complex 52 is 890 μs compared to just 80 μs for 53[148] and 52 also proved to have the best charge transport properties with a hole mobility of 1.4×10⁻⁴ cm² V⁻¹ s⁻¹ compared to 6.2×10⁻⁵ cm² V⁻¹ s⁻¹. The OSC of 52 displayed the highest performance by a significant margin having $V_{oc} = 0.90$ V, $J_{sc} = 2.70$ mA cm⁻², FF = 0.25 and $\eta = 0.84\%$.

Finally, in 2016 Qin and collaborators presented cruciform Pt-bis(acetylide) complexes 54 and 55 (fig. 13) which they employed in BHJ devices with PC61BM and PC71BM.[149] The devices of 54 displayed high FF compared to other Pt bis(acetylide) complexes and in optimized BHJ displayed J_{sc} values as high as 11.9 mA cm⁻² for 54:PC71BM (1:0.8) and 10.7 mA cm⁻² for 54:PC61BM (1:0.8) leading to $\eta = 5.6$ and 5.1% respectively. These are very high values compared to other devices consisting of a sole Pt donor.

2.5 Group 11

Gold

Figure 14

In 2014 Lai et al. reported the synthesis of three Au(III) corrole complexes 56–58 (figure 14) and used them as donor materials in vacuum deposited OSCs with C70 and as triplet sensitizers for the polymer PTB7 in solution processed BHJ devices with PC71BM.[150] Monolayer devices of C70 alone displayed $V_{oc} = 1.23$ V, $J_{sc} = 1.19$ mA cm⁻², FF = 0.32 and $\eta = 0.5\%$. Upon addition of just 5% of the standout material 57 to the C70 the post-annealing J_{sc} increased almost tenfold to 10.34 mA cm⁻² and the FF improved to 0.46, these improvements offset a drop in V_{oc} from 1.23 to 0.85 V and resulted in a device with $\eta = 4.0\%$ overall. All of the complexes 56–58 led to improved performance at loading of only 3-7% therefore it is not unreasonable to consider them as having “doped” C70 as much as having acted as a formal donor. A similar improvement in the performance of a solution processed PTB7:PC71BM BHJ was observed upon addition of 5% 57 which led to a $V_{oc} = 0.74$ V, $J_{sc} = 14.18$ mA cm⁻², FF = 0.57 and $\eta = 6.0\%$. Compared to the fullerene-only devices the presence of the donor polymer PTB7 had a very beneficial effect on the FF.

2.6 Others

Mixed porphyrin/phthalocyanine sandwich complexes of a number of lanthanides have employed in devices which seem like a hybrid of a BHJ and a DSSC using PC61BM or N,N'-bis(1-ethylhexyl)-3,4,9,10-perylenebis(dicarboximide) (PDI) as acceptor and a “buffer layer” of TiO₂. Device
performance is modest with the best η = 0.82% for Eu(III) but many of the devices did not function at all without TiO₂ being present.[151,152]

3. Summary and Outlook

The studies presented here clearly show that the presence of a metal based triplet sensitizer can provide notable improvements in one or all of the key performance indicators in OSCs with J_{sc} values showing particularly pronounced improvements due to energy transfer processes leading to increased triplet population and extended L_D.

Comparing the results obtained using metal complexes as dopants to those using the same or similar complexes as the sole donor material, it is quite clear that the former approach presents the greatest promise. The majority of these complexes have low charge mobility themselves and the sheer cost of precious metal complexes would appear to preclude their use as a major component of any device. Metal complex dopants also show a strong influence on heterojunction morphology which presents another opportunity to use these materials to influence charge transport properties.

The results obtained using Au(III) coronas as donors are particularly compelling as some of these devices are essentially sensitized fullerene monolayers and the presence of a small amount of these complexes resulted in a tenfold increase in the short circuit current of the fullerene. The tendency for planar Pd complexes to outperform those of Pt complexes is also noteworthy as studies of Pd complexes as active components in organic optoelectronics are much less frequently encountered.

Though challenges remain including truly unravelling the underlying mechanisms of operation, identifying structure-property relationships that influence charge carrier transport, and controlling the location and distribution of the metal phosphors in the ternary blend,[153] the fact that addition of very small amounts of metal complexes to the active layer has already been observed to improve BHJ efficiencies by up to four times identifies that this is a truly promising approach to the continued development of BHJ technologies.

The knowledge being gained from studies on other ternary systems should be extremely helpful in advancing this premise.

Producing molecules with bespoke optical and electronic behavior is an ideal area for inorganic and particularly coordination chemists to thrive therefore the application of metal complexes to BHJ solar cells can provide fertile ground for the development of useful new materials and technologies.

Acknowledgements

IAW would like to thank Loughborough University for financial support.

References

[30] S. Sakaki, T. Kuroki, T. Hamada, Synthesis of a new copper(I) complex, [Cu(tmdcbpy)2]+ (tmdcbpy = 4,4′,6,6′-tetramethyl-2,2′-bipyridine-5,5′-dicarboxylic acid), and its application to

[31] C.E. Housecroft, E.C. Constable, The emergence of copper(<scp>i</scp>-based dye

complexes as a convenient springboard for both dyes and redox mediators in dye sensitized

d10 route to dye-sensitized solar cells: step-wise assembly of zinc(ii) photosensitizers on TiO2

solar cells with hole-stabilizing surfaces: “inorganic” versus “organic” strategies, RSC Adv. 5

metals: Development of sensitizers in dye-sensitized solar cells (DSCs), Coord. Chem. Rev. 257

[36] B. Pashaei, H. Shahroosvand, P. Abbasi, Transition metal complex redox shuttles for dye-

[37] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light
doi:10.1021/ja809598r.

[38] M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics.

[39] S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices,

[40] S. Yang, W. Fu, Z. Zhang, H. Chen, C.-Z. Li, Recent advances in perovskite solar cells: efficiency,
doi:10.1039/C7TA00366H.

[41] M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells, J.

[100] K.S. Schanze, D. Brent MacQueen, T.A. Perkins, L.A. Cabana, Studies of intramolecular
electron and energy transfer using the fac-(diimine)ReI(CO)3 chromophore, Coord. Chem.

7641(20010417)2:4<252::AID-CPHC252>3.3.CO;2-N.

doi:10.1016/S0009-2614(02)01045-X.

band-gap, sublimable rhenium(I) diimine complex for efficient bulk heterojunction

heterojunction photovoltaic devices using sublimable rhenium diimine complexes as
168–175. doi:10.1117/12.558680.

Photovoltaic Cells using Sublimable Transition Metal Complex as Photosensitizers, MRS Proc.

Cruciform oligo(phenylenevinylene) with a bipyridine bridge: synthesis, its rhenium(i)

[107] X. Yi, J. Zhao, W. Wu, D. Huang, S. Ji, J. Sun, Rhenium(i) tricarbonyl polypyrpyridine complexes
showing strong absorption of visible light and long-lived triplet excited states as a triplet

tricarbonyl complexes as triplet photosensitizers in photooxidation and triplet–triplet

4857. doi:10.1002/ejic.201402427.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 7
Figure 8
Figure 9
Figure 11
Figure 12
Figure 13

51 $M = \text{Ni}$
52 $M = \text{Pd}$
53 $M = \text{Pt}$

55

54
Figure 14

56 \(R = \text{Ph} \)
57 \(R = 4-\text{CF}_3\text{Ph} \)
58 \(R = \text{C}_6\text{F}_5 \)
<table>
<thead>
<tr>
<th>Donor:Acceptor</th>
<th>V_{oc} (V)</th>
<th>J_{sc} (mA cm$^{-2}$)</th>
<th>FF</th>
<th>η (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5:PC$_{61}$BM</td>
<td>0.55</td>
<td>5.1</td>
<td>0.37</td>
<td>1.0</td>
</tr>
<tr>
<td>8:PC$_{61}$BM</td>
<td>0.48</td>
<td>4.5</td>
<td>0.37</td>
<td>1.0</td>
</tr>
<tr>
<td>5:PC$_{71}$BM</td>
<td>0.55</td>
<td>7.1</td>
<td>0.38</td>
<td>1.5</td>
</tr>
<tr>
<td>8:PC$_{71}$BM</td>
<td>0.56</td>
<td>8.3</td>
<td>0.34</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Table 1
Scheme 1

a) cathode

acceptor

donor

anode

b) cathode

acceptor

donor

anode

dopant metal complex

c) cathode

acceptor

donor

dopant metal complex
Step 1:

- **D**
- **D**
- **A**
- **PP**
- LUMO
- HOMO

Step 2:

- **D**
- **PP**
- **A**

Scheme 2
Scheme 3

Dexter Electron Transfer

\[D^* \rightarrow A \rightarrow D \rightarrow A^* \]

\[e^- \text{ electron transfer} \]

Förster Resonance Energy Transfer

\[D^* \rightarrow A \rightarrow D \rightarrow A^* \]

\[\text{energy transfer} \]
longer L_D

longer τ_{exc}

increase J_{sc}

increase η
Graphical abstract – synopsis

Phosphorescent metal complexes can act as triplet sensitizers in organic heterojunction solar cells. Energy transfer and spin-orbit coupling processes between the phosphor and the organic matrix greatly increases the number of triplet excitons formed upon photoexcitation which can contribute to significant improvements in device efficiency.