The importance of vigorous-intensity, leisure-time physical activity in reducing cardiovascular disease mortality risk in the obese

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: O’DONOVAN, G. ...et al., 2018. The importance of vigorous-intensity, leisure-time physical activity in reducing cardiovascular disease mortality risk in the obese. Mayo Clinic Proceedings, 93 (8), pp.1096-1103.

Additional Information:

- This paper was published in the journal Mayo Clinic Proceedings and the definitive published version is available at https://doi.org/10.1016/j.mayocp.2018.01.016.

Metadata Record: https://dspace.lboro.ac.uk/2134/28062

Version: Accepted for publication

Publisher: Elsevier © Mayo Foundation for Medical Education and Research

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
The importance of vigorous-intensity leisure-time physical activity in reducing cardiovascular disease mortality risk in the obese

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Mayo Clinic Proceedings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>2017-1202.R1</td>
</tr>
<tr>
<td>Manuscript Categories:</td>
<td>Original Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | O’Donovan, Gary; Loughborough University, School of Sport, Exercise and Health Sciences
Stamatakis, Emmanuel; University of Sydney Sydney Medical School, School of Public Health
Stensel, David; Loughborough University, School of Sport, Exercise and Health Sciences
Hamer, Mark; Loughborough University, school sport exercise health sciences; University College London Medical School, |
| Keyword: | Cohort studies, Exercise, Primary prevention |
The importance of vigorous-intensity leisure-time physical activity in reducing cardiovascular disease mortality risk in the obese

Running head: Vigorous activity, obesity and mortality risk

Gary O’Donovan, Ph.D.¹ Emmanuel Stamatakis, Ph.D.²,³ David J Stensel, Ph.D.¹ and Mark Hamer, Ph.D.¹,³

¹School of Sport, Exercise and Health Sciences, National Centre for Sport & Exercise Medicine – East Midlands, Loughborough University, Loughborough LE11 3TU, United Kingdom. ²Charles Perkins Centre, Prevention Research Collaboration, School of Public Health, University of Sydney, Sydney, Australia. ³Department of Epidemiology and Public Health, University College London, London WC1E 6BT, United Kingdom.

Correspondence: Dr Gary O’Donovan, National Centre for Sport & Exercise Medicine – East Midlands, Loughborough University, Loughborough LE11 3TU, United Kingdom. Phone: +44(0)1509 226 302. Email: G.ODonovan@lboro.ac.uk

Conflicts of interest: The authors have nothing to disclose.

Sources of support: O’Donovan, Stensel and Hamer were supported by the National Institute for Health Research Leicester Biomedical Research Centre, which is a partnership between University Hospitals of Leicester NHS Trust, Loughborough University, and University of Leicester.
Abstract

Objective: To investigate the role of vigorous-intensity leisure-time physical activity in reducing cardiovascular disease (CVD) mortality risk in the obese.

Methods: Trained interviewers assessed physical activity and body mass index (BMI) in 59,005 adult participants (57±12 years of age [mean±SD]; 46.5% male) in the household-based surveillance studies, Health Survey for England and Scottish Health Survey. Mortality was ascertained from death certificates. Data were collected from January 1994 to March 2011. Cox proportional hazards models were adjusted for age, sex, smoking habit, total physical activity, longstanding illness, prevalent CVD, and occupation.

Results: There were 2,302 CVD deaths during 532,251 person-years of follow-up (9±4 years). Some 25% of participants were categorized as obese (BMI ≥30 kg·m²). Leisure-time physical activity was inversely associated and BMI was positively associated with CVD mortality. Compared to those who reported meeting physical activity guidelines, including some vigorous-intensity physical activity, and who had a normal BMI (18.5-24.9 kg·m²) (reference group), CVD mortality hazard ratio was not significantly different in the obese who also reported meeting physical activity guidelines, including some vigorous-intensity physical activities (1.25; 95% confidence interval: 0.50, 3.12). Compared to the reference group, CVD mortality hazard ratio was more than twofold in the obese who reported meeting physical activity guidelines, including only moderate-intensity physical activities (2.52; 95% CI: 1.15, 2.53).

Conclusion: This large, statistically powerful study suggests that vigorous-intensity leisure-time physical activity is important in reducing CVD mortality risk in the obese.
Abbreviations

BMI = body mass index
CI = confidence interval
CVD = cardiovascular disease
HR = hazard ratio
HSE = Health Survey for England
ICD = International Classification of Disease
MET = Metabolic equivalent
SHS = Scottish Health Survey
Introduction

Compared to normal weight adults, cardiovascular disease (CVD) mortality risk is greater in overweight adults and greater still in obese adults (1). The American College of Sports Medicine and the American Heart Association recommend physical activity in the primary prevention of morbidity and mortality in the general population (2); nonetheless, the relationship between physical activity and CVD mortality in the obese is unclear. The inverse association between physical activity and CVD mortality risk in the general population is independent of body mass index (BMI) (3); however, few studies have been large enough to investigate the association between physical activity and CVD mortality risk in the obese per se (4). Compared to being inactive, any participation in vigorous-intensity physical activity is associated with lower CVD mortality risk in the general population (3). Therefore, the objective of the present study was to investigate the role of vigorous-intensity physical activity in reducing CVD mortality risk in the obese using a pooled analysis of 11 population-based cohorts.
Methods

Participants

The methods used in Health Survey for England (HSE) and Scottish Health Survey (SHS) are consistent and are described in detail elsewhere (5,6). Briefly, HSE and SHS are household-based surveillance surveys in which households are selected using a multistage, stratified probability design in order to be representative of the target populations of each country. Stratification is based on geographical areas, not individual characteristics: postcode (zip code) sectors are selected at the first stage and household addresses are selected at the second stage. Participants in the present study were from surveys conducted in 1994 (HSE only), 1995 (SHS only), 1997 (HSE only), 1998 (HSE and SHS), 1999 (HSE only), 2003 (HSE and SHS), 2004 (HSE only), 2006 (HSE only), and 2008 (HSE only). Participants aged 40 years or older were included in the present study because it was deemed likely that congenital abnormalities would be responsible for cardiac events in young individuals and lifestyle would be responsible for such events in middle-aged and older adults (7). Data were collected from January 1994 to March 2011. Local research ethics committees approved each survey and participants gave written informed consent.

Physical activity

Trained interviewers asked about physical activity. Physical activity was assessed using an established questionnaire that is described elsewhere (8). Briefly, the interviewer used the questionnaire to enquire about the following aspects of the respondent’s physical activity in the four weeks prior to the interview: frequency and duration of participation in domestic
physical activity (‘light’ and ‘heavy’ housework, gardening and ‘do-it-yourself’); frequency, duration and pace of walking (slow, average, brisk or fast); frequency, duration and perceived intensity of participation in sports and exercise using a prompt card showing 10 main groupings, including cycling, swimming, jogging/running, football, rugby, tennis and squash (six open entries could also be recorded). The validity (9) and reliability (10) of the physical activity questionnaire are described elsewhere. A compendium was used to identify physical activity intensities according to metabolic equivalents (METs), where one MET represents resting energy expenditure (11). Light-intensity activities were of 1.5-2.9 METs, moderate-intensity activities were of 3.0-5.9 METs, and vigorous-intensity activities were of ≥6.0 METs. A MET-hour was computed by multiplying the MET score of an activity by the time (in hours). Total physical activity was computed by summing the MET-hours of all light-, moderate-, and vigorous-intensity activities. Only leisure-time physical activities were included in the present analysis, not occupational and routine domestic activities.

Obesity

Trained interviewers measured weight and height (6), and BMI was expressed as weight in kilograms divided by height in meters squared. Overweight was defined as a BMI of 25-<30 kg·m⁻² and obese as a BMI of ≥30 kg·m⁻² (12). Trained and qualified nurses measured waist circumference at the midpoint of the iliac crest and costal margin (lower rib). Obesity was defined as a waist circumference >102 cm in men and >88 cm in women (13).
Covariates

The trained interviewers also asked about age, sex, smoking habit, longstanding illness, cardiovascular disease, occupation, and ethnicity. Socioeconomic status was determined from participants’ occupations using the four-group version of the Registrar General’s classification: professional and managerial occupations; skilled, non-manual occupations; skilled manual occupations; and, routine and manual occupations.

Mortality follow-up

The British National Health Service Central Registry flagged participants. Data for survivors were censored to the end of 2009 (SHS) or the first quarter of 2011 (HSE). Diagnoses for the primary cause of death were based on the International Classification of Diseases, Ninth (ICD-9) and Tenth (ICD-10) Revisions. Codes corresponding to CVD mortality were 390-459 for ICD-9 and I01-I99 for ICD-10.

Statistical analysis

Cox proportional hazards models were used to estimate the associations between physical activity, obesity and CVD mortality risk. In keeping with prevailing guidelines (2), exposure to physical activity was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity activity, or equivalent combinations. We further distinguished between the physically active who reported taking part in vigorous-intensity activity and those who did not in order to investigate the role of physical activity intensity in reducing CVD mortality risk. The proportional hazards
assumption was examined by comparing the cumulative hazard plots grouped on exposure; and, no appreciable violations were noted. Calendar time (months) was the timescale. Data from the underweight (BMI <18.5 kg·m2) and those who died during the first 24 months of follow-up were not used. Analyses were adjusted for age and sex (Model 1) and further adjusted for smoking habit, total physical activity, longstanding illness, prevalent CVD, and occupation (Model 2). The associations between physical activity, obesity and CVD mortality risk in those who reported never smoking was investigated in a sensitivity analysis. All analyses were performed using SPSS version 22 (IBM Inc.).
Results

Supplemental Figure 1 shows the sample selection; 59,005 participants in HSE and SHS were included in the present study. Table 1 shows participants’ characteristics at baseline according to BMI. The average age was 57 years and was significantly different in the normal, overweight, and obese groups. Some 47% of participants were men and the proportions of men were lower in the normal BMI and obese groups. The average leisure-time physical activity level was higher in those with a normal BMI but there were considerable differences within each BMI group. The proportion of current smokers was higher in those with a normal BMI than those who were overweight or obese. The proportion in professional and managerial occupations was lower and the proportion in semi-skilled and unskilled manual occupations was higher in the obese group than the other groups. The proportions with longstanding illness and prevalent CVD were also higher in the obese group than the other groups. The proportion of CVD deaths during follow-up was 3.6% in the normal, 4.0% in the overweight, and 4.1% in the obese BMI groups. Supplemental Table 1 shows physical activity levels according to prevailing physical activity guidelines. Moderate-to-vigorous-intensity physical activity was 327±354 min·wk\(^{-1}\) (mean±SD) in those who reported meeting the guidelines including some vigorous-intensity activity and 404±394 min·wk\(^{-1}\) in those who reported meeting the guidelines including only moderate-intensity activity. Total physical activity was 50±43 MET-hr·wk\(^{-1}\) in those who reported meeting the guidelines including some vigorous-intensity activity and 48±47 MET-hr·wk\(^{-1}\) in those who reported meeting the guidelines including only moderate-intensity activity.

Table 2 shows mean waist girth values in men and women according to BMI and physical activity. Statistical significance was investigated in the obese. Compared to obese men who
reported meeting physical activity guidelines, including some vigorous-intensity physical
activity (reference group), waist girth was not significantly different in obese men who
reported meeting physical activity guidelines, including only moderate-intensity physical
activities (mean difference: 1.4 cm; 95% confidence interval, CI: -0.4, 3.2; \(p = .54 \)). Compared
to the reference group, waist girth was not significantly different in obese men who were
active, but did not meet physical activity guidelines (mean difference: 1.1 cm; 95% CI: -0.2,
2.5; \(p = .36 \)). Compared to the reference group, waist girth was significantly different in
obese men who were inactive (mean difference: 3.2 cm; 95% CI: 2.0, 4.5; \(p < .001 \)). Compared
to obese women who reported meeting physical activity guidelines, including some vigorous-
intensity physical activity (reference group), waist girth was not significantly different in
obese women who reported meeting physical activity guidelines, including only moderate-
intensity physical activities (mean difference: 1.2 cm; 95% CI: -1.0, 3.4; \(p = .99 \)). Compared to
the reference group, waist girth was not significantly different in obese women who were
active, but did not meet physical activity guidelines (mean difference: 0.8 cm; 95% CI: -0.9,
2.6; \(p = .99 \)). Compared to the reference group, waist girth was significantly different in
obese women who were inactive (mean difference: 2.9 cm; 95% CI: 1.2, 4.5; \(p < .001 \)).
Supplemental Table 2 shows that the correlation between waist girth and BMI was .85 to .86
in men and women of different physical activity levels.

There were 2,302 CVD deaths during 532,251 person-years of follow-up (9±4 years). Table 3
shows the associations between BMI and CVD mortality. Compared to those with a normal
BMI (reference group), the fully-adjusted hazard ratio for CVD mortality was not
significantly different in the overweight (hazard ratio, HR: 0.97; 95% CI: 0.87, 1.07), but was
higher and significantly different in the obese (HR: 1.23; 95% CI: 1.10, 1.37). Waist girth
was measured in 45,259 participants and the fully-adjusted hazard ratio for CVD mortality
was 1.18 (95% CI: 1.07, 1.29) in the obese compared to the non-obese. Compared to those
who were willing to have their waist girth measured, those who were unwilling were younger
(57.7 vs. 56.7 years, \(p < .001 \)), were more likely to be women (53.2 vs. 54.4 %, \(p = .007 \)), were
less physically active (86 vs. 59 minutes per week of moderate- and vigorous-intensity
physical activity, \(p < .001 \)), and were of higher BMI (27.5 vs. 27.7 kg·m\(^{-2}\), \(p < .001 \)).

Table 4 shows the associations between physical activity, BMI, and CVD mortality.

Compared to those who reported meeting physical activity guidelines and who had a normal
BMI (reference group), the fully-adjusted hazard ratio for CVD mortality was not
significantly different in the overweight (HR: 1.41; 95% CI: 0.94, 2.10) or the obese (HR:
1.41; 95% CI: 0.84, 2.38) who also reported meeting physical activity guidelines. Compared
to the reference group, the full-adjusted hazard ratio for CVD mortality was not significantly
different in the overweight who reported doing less than the recommended amounts of
leisure-time physical activity (HR: 1.34; 95% CI: 0.92, 1.95), but was higher and
significantly different in the obese who reported doing less than the recommended amounts
of leisure-time physical activity (HR: 1.84; 95% CI: 1.21, 2.81). Compared to the reference
group, the fully-adjusted hazard ratio for CVD mortality was around twofold in those who
reported no leisure-time physical activity per week, including those with a normal BMI, the
overweight, and the obese. Supplemental Table 3 shows that the associations between
physical activity, BMI, and CVD mortality were similar in men and women. Supplemental
Table 4 shows that the associations between physical activity, obesity and CVD mortality risk
were also similar in those who reported never smoking.

Table 5 shows the associations between leisure-time physical activity, BMI, and CVD
mortality in the physically active who reported taking part in vigorous-intensity activity and
those who did not. Compared to those who reported meeting physical activity guidelines, including some vigorous-intensity physical activity, and who had a normal BMI (reference group), the fully-adjusted hazard ratio for CVD mortality was not significantly different in the overweight (HR: 1.85; 95% CI: 0.92, 3.70) or the obese (HR: 1.25; 95% CI: 0.50, 3.12) who also reported meeting physical activity guidelines, including some vigorous-intensity physical activity. Compared to the reference group, the fully-adjusted hazard ratio for CVD mortality was not significantly different in those with a normal BMI (HR: 1.45; 95% CI: 0.70, 3.01) or the overweight (HR: 1.70; 95% CI: 0.86, 3.37) who reported meeting physical activity guidelines, including only moderate-intensity physical activities. Compared to the reference group, the fully-adjusted hazard ratio for CVD mortality was more than twofold in the obese who reported meeting physical activity guidelines, including only moderate-intensity physical activities (HR: 2.52; 95% CI: 1.15, 2.53).
The objective of this study was to investigate the role of vigorous-intensity leisure-time physical activity in reducing CVD mortality risk in the obese. There were two main findings. First, in comparison to those who reported meeting prevailing physical activity guidelines, including some vigorous-intensity activity, and who had a normal BMI (reference group), CVD mortality risk was not significantly different in the obese who also reported meeting prevailing physical activity guidelines, including some vigorous-intensity activity. Second, in comparison with the reference group, CVD mortality risk was increased more than twofold in the obese who reported meeting physical activity guidelines, including only moderate-intensity physical activities. These findings indicate the importance of vigorous-intensity leisure-time physical activity in reducing CVD mortality risk in the obese.

Few investigators have reported the joint association between physical activity and overweight and obesity with mortality. Hu and colleagues (4) reported that, compared to those who were 'moderately' or 'highly' active and who had a BMI <30 kg·m⁻², CVD mortality hazard ratio was 2.09 (95% CI: 1.68, 2.59) in those who were inactive and who had a BMI ≥30 kg·m⁻² (physical activity was 'moderate' in those who reported moderate or high levels of either occupational or leisure-time physical activity; physical activity was 'high' in those who reported moderate or high levels of both occupational and leisure-time physical activity). Leitzman and colleagues (3) reported that, compared to the inactive who had a BMI ≥25 kg·m⁻², all-cause mortality hazard ratio was 0.60 (95% CI: 0.54, 0.66) in those who reported taking part in the recommended amount of moderate-intensity activity and who had a BMI ≥25 kg·m⁻², and 0.58 (95% CI: 0.52, 0.65) in those who reported taking part in the recommended amount of vigorous-intensity activity and who had a BMI ≥25 kg·m⁻² (the
recommended amount of moderate activity was equivalent to around 30 minutes on most
days of the week; the recommended amount of vigorous activity was at least 20 minutes on
three days of the week). Leitzman and colleagues (13) did not report the association between
physical activity and all-cause mortality in the obese per se. Moholdt and colleagues (14)
reported that physical activity was associated with reduced risk of mortality in overweight
and obese adults with coronary heart disease. It is biologically plausible that physical activity
reduces CVD mortality risk in the overweight and obese because exercise training improves a
number of CVD risk factors independent of weight loss (15,16). For example, 24 weeks of
aerobic exercise training improved 10 of 11 lipoprotein variables in overweight and obese
adults with mild-to-moderate dyslipidemia who were counseled to maintain body weight
(17).

Compared to normal weight adults (BMI 18.5<25 kg·m$^{-2}$), CVD mortality hazard ratio is
1.22 (95% CI: 1.20, 1.24) in overweight adults (BMI 25<30 kg·m$^{-2}$) (1). For BMI over 25
kg·m$^{-2}$, the CVD mortality hazard ratio per 5 kg·m$^{-2}$ higher BMI is 1.49 (95% CI: 1.45, 1.53)
(1). It is alarming therefore that, if post 2000 BMI trends continue, there is virtually zero
probability of meeting the World Health Organisation target of halting by 2025 the rise in
obesity at its 2010 levels (18). Physical activity improves cardiorespiratory fitness (19) and it
has been consistently shown that moderate to high levels of fitness attenuate, if not negate,
the association between obesity and cardiovascular disease (16). This concept is known as the
fat-but-fit paradigm and is present in one fifth of obese individuals (16). Physical inactivity
cost global healthcare systems at least US$54 billion in 2013 (20) and policymakers have
been urged to take physical inactivity seriously (21). We agree with those who would have
policies to increase physical activity and cardiorespiratory fitness (16,19,22). Vigorous-
intensity exercise increases cardiorespiratory fitness more than the same amount of moderate-
intensity exercise (19); And, there are two reasons to think that vigorous-intensity physical activity was particularly important in the present study. First, total physical activity was similar in participants who reported meeting the guidelines including some vigorous-intensity activity and in participants who reported meeting the guidelines including only moderate-intensity activity. Second, the reduction in CVD mortality risk in obese participants who reported meeting the guidelines including some vigorous-intensity activity was independent of total physical activity. Waist girth was not significantly different in obese men and women who took part in vigorous-intensity activity and those who took part in only moderate-intensity activity; however, magnetic resonance imaging and spectroscopy suggest that visceral fat and liver fat are lower in men who are fat, fit and vigorously active (23).

The present study has some limitations. A causal relationship cannot be inferred from an observational study. The possibility of reverse causation cannot be discounted, where those with underlying disease are less likely to be physically active; however, data from the underweight and those who died during the first 24 months of follow-up were not used; and, the hazard ratios were adjusted for longstanding illness and prevalent CVD to address the notion of reverse causation. Physical activity was self-reported; however, questionnaires are still regarded as the mainstay of established surveillance studies like HSE and SHS (24).
Conclusion

Few studies are large enough to investigate the joint associations of physical activity and obesity with CVD mortality. This large, statistically powerful study suggests that vigorous-intensity leisure-time physical activity is important in reducing CVD mortality risk in the obese.
Acknowledgements

O’Donovan, Stensel and Hamer were supported by the National Institute for Health Research Leicester Biomedical Research Centre, which is a partnership between University Hospitals of Leicester NHS Trust, Loughborough University, and University of Leicester. This work received no specific funding. The authors have no conflicts of interest. O’Donovan conceived the study and drafted the manuscript. Stamatakis acquired and harmonized the dataset. Hamer carried out the statistical analysis, had full access to the data, and takes responsibility for the integrity and accuracy of the results. All authors contributed to the critical revision of the manuscript.

Conflicts of Interest

The authors have nothing to declare.
References

7. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA, 3rd et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition,
Physical Activity, and Metabolism and the Council on Clinical Cardiology.

Circulation 2007;115(17):2358-68.

Table 1. Participants’ characteristics at baseline according to body mass index

<table>
<thead>
<tr>
<th></th>
<th>Body mass index (n)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal (18,401)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overweight (25,602)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Obese (15,002)</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>56.3±12.3</td>
<td>57.9±11.8</td>
</tr>
<tr>
<td>Men, %</td>
<td>39</td>
<td>53</td>
</tr>
<tr>
<td>Physical activity, min·wk⁻¹</td>
<td>93±238</td>
<td>83±257</td>
</tr>
<tr>
<td>Smoking, %</td>
<td></td>
<td><.001</td>
</tr>
<tr>
<td>Never</td>
<td>45.3</td>
<td>45.1</td>
</tr>
<tr>
<td>Ex-smoker</td>
<td>25.7</td>
<td>34.5</td>
</tr>
<tr>
<td>Current, <10 a day</td>
<td>6.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Current, 10-19 a day</td>
<td>12.1</td>
<td>7.7</td>
</tr>
<tr>
<td>Current, ≥20 a day</td>
<td>10.5</td>
<td>7.9</td>
</tr>
</tbody>
</table>
Social occupation class, %<.001

<table>
<thead>
<tr>
<th>Category</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional/managerial</td>
<td>34.6</td>
<td>35.1</td>
<td>30.0</td>
</tr>
<tr>
<td>Skilled non-manual/manual</td>
<td>42.0</td>
<td>42.1</td>
<td>42.3</td>
</tr>
<tr>
<td>Semi/unskilled manual</td>
<td>23.2</td>
<td>22.3</td>
<td>27.4</td>
</tr>
<tr>
<td>Other (armed forces, etc.)</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Longstanding illness, % 61.8 <.001

Prevalent CVD, % 10.6 <.001

*Body mass index: normal is defined as 18.5-24.9 kg·m²; overweight is defined as 25.0-29.9 kg·m²; obese is defined as ≥ 30 kg·m². Physical activity refers to moderate- and vigorous-intensity leisure-time physical activities. CVD is cardiovascular disease. Prevalent CVD defined as physician diagnosed angina, heart attack or stroke. CVD deaths refers to deaths during follow-up. Data from the underweight (BMI <18.5 kg·m²) and those who died during the first 24 months of follow-up were not used. Differences across groups were tested using ANOVA for continuous data and chi-squared tests for categorical variables.
Table 2. Mean waist girth values in men and women according to body mass index and physical activity\(^a\)

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Men</th>
<th></th>
<th>Women</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal BMI</td>
<td>Overweight</td>
<td>Obese</td>
<td>Normal BMI</td>
</tr>
<tr>
<td>Meets guidelines, including some vigorous activity</td>
<td>87</td>
<td>96</td>
<td>109</td>
<td>76</td>
</tr>
<tr>
<td>Meets guidelines, including only moderate activity</td>
<td>88</td>
<td>98</td>
<td>110</td>
<td>76</td>
</tr>
<tr>
<td>Active, but not meeting guidelines</td>
<td>88</td>
<td>97</td>
<td>110</td>
<td>77</td>
</tr>
<tr>
<td>Inactive</td>
<td>88</td>
<td>99</td>
<td>112</td>
<td>77</td>
</tr>
</tbody>
</table>

\(^a\)Values are centimeters. Trained interviewers assessed physical activity and body mass index. Meeting prevailing guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity physical activity, or equivalent combinations. Body mass index (BMI): normal is defined as 18.5-24.9 kg·m\(^{-2}\); overweight is defined as 25.0-29.9 kg·m\(^{-2}\); obese is defined as \(\geq\ 30\) kg·m\(^{-2}\). Trained and qualified nurses measured waist girth at the midpoint of the iliac crest and costal margin (lower rib).
Table 3. Cox proportional hazard ratios for the associations between body mass index and cardiovascular disease mortality

<table>
<thead>
<tr>
<th>Body mass index⁠a</th>
<th>Events/individuals</th>
<th>Model 1, HR (95% CI)</th>
<th>Model 2, HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>670/18401</td>
<td>1.0 (Reference)</td>
<td>1.0</td>
</tr>
<tr>
<td>Overweight</td>
<td>1015/25602</td>
<td>0.96 (0.87, 1.06)</td>
<td>0.97 (0.87, 1.07)</td>
</tr>
<tr>
<td>Obese</td>
<td>617/15002</td>
<td>1.28 (1.15, 1.43)</td>
<td>1.23 (1.10, 1.37)</td>
</tr>
</tbody>
</table>

⁠aBody mass index: normal is defined as 18.5-24.9 kg·m⁻²; overweight is defined as 25.0-29.9 kg·m⁻²; obese is defined as ≥ 30 kg·m⁻² (n=59,005). Model 1 adjusted for age and sex. Model 2 adjusted for age, sex, smoking, physical activity, longstanding illness, social occupation class, and prevalent CVD.
Table 4. Cox proportional hazard ratios for the associations between physical activity, body
mass index, and cardiovascular disease mortality in adults age 40 years or older

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Body mass index<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal, HR (95% CI)</td>
</tr>
<tr>
<td>Meets guidelines</td>
<td>1.0 (Reference)</td>
</tr>
<tr>
<td>Does not meet guidelines</td>
<td>1.41 (0.94, 2.12)</td>
</tr>
<tr>
<td>None</td>
<td>2.02 (1.44, 2.84)</td>
</tr>
</tbody>
</table>

There were 2,302 cardiovascular disease events in 59,005 individuals. Those with a body
mass index <18.5 kg·m² and those who died in the first two years of follow-up were
removed to guard against reverse causation. Models adjusted for age, sex, smoking, total
physical activity, longstanding illness, social occupation class, and prevalent CVD. Meeting
physical activity guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity activity, or
equivalent combinations. ^aBody mass index: normal is defined as 18.5-24.9 kg·m²;
overweight is defined as 25.0-29.9 kg·m²; obese is defined as ≥ 30 kg·m².
Table 5. Cox proportional hazard ratios for the associations between leisure-time physical activity, body mass index, and cardiovascular disease mortality in the physically active who reported taking part in vigorous-intensity activity and those who did not

<table>
<thead>
<tr>
<th>Leisure-time physical activity<sup>a</sup></th>
<th>Body mass index<sup>b</sup></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal, HR (95% CI)</td>
<td>Overweight, HR (95% CI)</td>
<td>Obese, HR (95% CI)</td>
<td></td>
</tr>
<tr>
<td>Some vigorous</td>
<td>1.0 (Ref)</td>
<td>1.85 (0.92, 3.70)</td>
<td>1.25 (0.50, 3.12)</td>
<td></td>
</tr>
<tr>
<td>Moderate only</td>
<td>1.45 (0.70, 3.01)</td>
<td>1.70 (0.86, 3.37)</td>
<td>2.52 (1.15, 2.53)</td>
<td></td>
</tr>
</tbody>
</table>

There were 130 cardiovascular disease events. ^a6,799 participants reported meeting physical activity guidelines, including some vigorous-intensity physical activity; 4,163 participants reported doing at least 150 min·wk⁻¹ of leisure-time physical activity, including only moderate-intensity physical activities. Those with a body mass index <18.5 kg·m⁻² and those who died in the first two years of follow-up were removed to guard against reverse causation.

Models adjusted for age, sex, smoking, total physical activity, longstanding illness, social occupation class, and prevalent CVD. ^bBody mass index: normal is defined as 18.5-24.9 kg·m⁻²; overweight is defined as 25.0-29.9 kg·m⁻²; obese is defined as ≥ 30 kg·m⁻².
Supplemental Figure 1. Flow chart showing sample selection.

Baseline sample
n=78,884

Exclusions related to mortality record linkages:
- not linked, unknown reason (n=1,674)
- non-consent to mortality linkage (n=6,007)
- lost to follow-up (n=188)

Weight and height not recorded (n=10,610)

Early deaths in first 2 yrs of follow-up (n=1,400)

Analytic sample
N=59,005
Supplemental Table 1. Participants’ physical activity levels according to prevailing physical activity guidelines

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Physical activity level (mean±SD)</th>
<th>Moderate- to vigorous-intensity, min·wk⁻¹</th>
<th>Total, MET·hr·wk⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets guidelines, including</td>
<td>327±354</td>
<td>50±43</td>
<td></td>
</tr>
<tr>
<td>some vigorous activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meets guidelines, including</td>
<td>404±394</td>
<td>48±47</td>
<td></td>
</tr>
<tr>
<td>only moderate activity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active, but not meeting</td>
<td>54±37</td>
<td>20±24</td>
<td></td>
</tr>
<tr>
<td>guidelines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inactive</td>
<td>0</td>
<td>14±22</td>
<td></td>
</tr>
</tbody>
</table>

*Trained interviewers assessed physical activity and meeting prevailing guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity physical activity, or equivalent combinations (Haskell et al., Circulation, 2007, 116, 1081-93). A compendium was used to identify physical activity intensities according to metabolic equivalents (METs), where one MET represents resting energy expenditure (Ainsworth et al., Med Sci Sports Exerc., 2011, 43, 1575-81). Light activities were of 1.5-2.9 METs, moderate activities were of 3.0-5.9 METs, and vigorous activities were of ≥6.0 METs. A MET-hour was computed by multiplying the MET score of an activity by the time (in hours). Total physical activity was computed by summing the MET-hours of all light, moderate, and vigorous activities. Compared with the inactive group, every other group is significantly different (*p*<.001).*
Supplemental Table 2. Correlations between waist girth and body mass index in men and women according to physical activity level

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meets guidelines</td>
<td>.85</td>
<td>.86</td>
</tr>
<tr>
<td>Active, but not meeting guidelines</td>
<td>.86</td>
<td>.85</td>
</tr>
<tr>
<td>Inactive</td>
<td>.86</td>
<td>.85</td>
</tr>
</tbody>
</table>

Values are partial correlations adjusted for age. Trained interviewers assessed physical activity and body mass index. Meeting prevailing guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity physical activity, or equivalent combinations (Haskell et al., Circulation, 2007, 116, 1081-93). Body mass index: normal is defined as 18.5-24.9 kg·m$^{-2}$; overweight is defined as 25.0-29.9 kg·m$^{-2}$; obese is defined as ≥ 30 kg·m$^{-2}$ (World Health Organization, Obesity and overweight. Fact sheet No 311. Geneva: WHO, 2016). Trained and qualified nurses measured waist girth at the midpoint of the iliac crest and costal margin (lower rib).
Supplemental Table 3. Cox proportional hazard ratios for the associations between physical activity, body mass index, and cardiovascular disease mortality in men and women age 40 years or older

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Normal, HR (95% CI)</th>
<th>Overweight, HR (95% CI)</th>
<th>Obese, HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meets guidelines</td>
<td>1.0 (Reference)</td>
<td>1.26 (0.77, 2.06)</td>
<td>1.68 (0.90, 3.11)</td>
</tr>
<tr>
<td>Does not meet guidelines</td>
<td>1.17 (0.68, 2.01)</td>
<td>1.42 (0.89, 2.27)</td>
<td>1.99 (1.17, 3.39)</td>
</tr>
<tr>
<td>None</td>
<td>1.71 (1.11, 2.63)</td>
<td>1.68 (1.10, 2.56)</td>
<td>2.54 (1.66, 3.89)</td>
</tr>
<tr>
<td>Women</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meets guidelines</td>
<td>1.0 (Reference)</td>
<td>1.63 (0.82, 3.23)</td>
<td>0.91 (0.32, 2.54)</td>
</tr>
<tr>
<td>Does not meet guidelines</td>
<td>1.79 (0.94, 3.39)</td>
<td>1.15 (0.62, 2.19)</td>
<td>1.80 (0.91, 3.56)</td>
</tr>
<tr>
<td>None</td>
<td>2.54 (1.45, 4.44)</td>
<td>2.40 (1.38, 4.19)</td>
<td>2.57 (1.46, 4.50)</td>
</tr>
</tbody>
</table>

aThere were 1,242 cardiovascular disease events in 27,088 men and 1,060 cardiovascular disease events in 29,019 women. Those with a body mass index <18.5 kg·m\(^{-2}\) and those who died in the first two years of follow-up were removed to guard against reverse causation.

Models adjusted for age, sex, smoking, total physical activity, longstanding illness, social occupation class, and prevalent CVD. Meeting physical activity guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity activity, or equivalent combinations. Body mass index: normal is defined as 18.5-24.9 kg·m\(^{-2}\); overweight is defined as 25.0-29.9 kg·m\(^{-2}\); obese is defined as ≥ 30 kg·m\(^{-2}\).
Supplemental Table 4. Cox proportional hazard ratios for the associations between physical activity, body mass index, and cardiovascular disease mortality in non-smokers aged 40 years or older

<table>
<thead>
<tr>
<th>Leisure-time physical activity</th>
<th>Body mass index</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal, HR (95% CI)</td>
<td>Overweight, HR (95% CI)</td>
<td>Obese, HR (95% CI)</td>
</tr>
<tr>
<td>Meets guidelines</td>
<td>1.0 (Reference)</td>
<td>1.70 (0.86, 3.37)</td>
<td>1.84 (0.75, 4.51)</td>
</tr>
<tr>
<td>Does not meet guidelines</td>
<td>1.78 (0.89, 3.54)</td>
<td>1.41 (0.73, 2.71)</td>
<td>1.66 (0.79, 3.48)</td>
</tr>
<tr>
<td>None</td>
<td>2.28 (1.27, 4.10)</td>
<td>2.11 (1.18, 3.78)</td>
<td>2.94 (1.64, 5.30)</td>
</tr>
</tbody>
</table>

There were 802 cardiovascular disease events in 25,561 men and women who reported never smoking. Those with a body mass index <18.5 kg·m⁻² and those who died in the first two years of follow-up were removed to guard against reverse causation. Models adjusted for age, sex, total physical activity, longstanding illness, social occupation class, and prevalent CVD. Meeting physical activity guidelines was defined as at least 150 minutes per week of moderate-intensity physical activity, at least 75 minutes per week of vigorous-intensity activity, or equivalent combinations. Body mass index: normal is defined as 18.5-24.9 kg·m⁻²; overweight is defined as 25.0-29.9 kg·m⁻²; obese is defined as ≥ 30 kg·m⁻².