The fine sediment conundrum; quantifying, mitigating and managing the issues

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: MATHERS, K.L. ...et al., 2017. The fine sediment conundrum; quantifying, mitigating and managing the issues. River Research and Applications, 33(10), pp. 1509-1514.

Additional Information:

- This is the peer reviewed version of the following article: MATHERS, K.L. ...et al., 2017. The fine sediment conundrum; quantifying, mitigating and managing the issues. River Research and Applications, 33(10), pp. 1509-1514, which has been published in final form at https://doi.org/10.1002/rra.3228. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Metadata Record: https://dspace.lboro.ac.uk/2134/28116

Version: Accepted for publication

Publisher: © Wiley

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Abstract

Excess fine sediment is a global cause of lotic ecosystem degradation. Despite historic interest in identifying sediment sources and quantifying instream dynamics, tackling fine sediment problems remains a key challenge for river managers and a continued focus of international research. Accordingly, a national meeting of the British Hydrological Society brought together those working on fine sediment issues at the interface of hydrology, geomorphology and ecology. The resulting collection of papers illustrates the range of research being undertaken in this interdisciplinary research arena, by academic researchers, environmental regulators, landowners and consultants. More specifically, the contributions highlight key methodological advancements in the identification of fine sediment sources, discuss the complexities surrounding the accurate quantification of riverbed fine sediment content, demonstrate the potential utility of faunal traits as a biological monitoring tool and recognize the need for improved mechanistic understanding of the functional responses of riverine organisms to excess fine sediment. Understanding and mitigating the effects of fine sediment pressures remains an important and multifaceted problem which requires inter-disciplinary collaborative research to deliver novel and robust management tools and sustainable solutions.

Keywords: sedimentation, ecology, sediment sources, management tools.
The erosion, transport, and storage of fine sediment in riverine catchments is widely recognised to be a global cause of habitat and ecological degradation (Collins et al., 2011; Jones et al. 2012; Wharton et al., 2017). Fine sediments are an essential component of healthy riverine functioning. However, sediment yields of many rivers currently exceed background levels due to changing land cover, land use and management practices (Farnsworth and Milliman, 2003; Owens et al., 2005; Foster et al., 2011; Collins and Zhang, 2016). In addition, it is anticipated that fine sediment pressures will increase in the future due to climatically driven changes to rainfall and runoff regimes (Walling and Collins, 2016; Burt et al., 2016). Developing an improved understanding of fine sediment dynamics (i.e. key sources, pathways and exports, deposition and ingress of fines into riverine substrates) and the associated implications for aquatic habitats and ecology is therefore essential for the development of effective intervention and management strategies. Such strategies should seek to combine both slope-based (e.g. on-farm) and morphological restoration in order to tackle both the sources and consequences of sediment mobilisation. Slope-based interventions are commonly supported by agricultural policy including agri-environment schemes, but also by management strategies funded by water companies in the form of payment for ecosystem services (PES) schemes. The increasing numbers of river restoration schemes being implemented as a result of widespread habitat degradation (Palmer et al., 2005; Kail et al., 2015; Geist and Hawkins, 2016) reflects the need for a twin-track approach to manage the degradation of aquatic ecosystems. In all instances, management must be considered in the context of catchment processes (Gurnell et al., 2016a, 2016b), with some interventions required to be catchment-wide whilst others may be targeted to the main areas of concern.

To explore and discuss ongoing challenges and uncertainties associated with improving the capacity to address the fine sediment ‘conundrum’, a national meeting of the British Hydrological Society was held in 2016 at Loughborough University (UK). This meeting considered the fine sediment cascade in its broadest sense attracting a diverse and multi-disciplinary group of attendees including hydrologists, geomorphologists, ecologists, environmental regulators, landowners and consultants. This special issue stems from that meeting and the papers herein reflect on three main themes (notwithstanding some inevitable overlap) associated with managing
the fine sediment problem, namely; (i) characterising the primary catchment sources of fine sediment inputs into riverine systems; (ii) physical and biological approaches to the assessment of fine sediment pressures on aquatic ecosystems, and; (iii) evaluating the ecological consequences of excessive fine sediment using empirical and modelling approaches.

Catchment scale evaluation of sediment sources

To manage increased fine sediment loading effectively requires reliable knowledge of the sources of such material at a catchment scale. Fine sediment is typically referred to as particles <2mm in diameter, but it is important to note that predicting the effect of excess loadings on instream organisms is heavily dependent on a number of critical factors including, grain size distribution, chemical composition, duration of exposure and concentration (Bilotta and Brazier, 2008). Available methods for investigating sediment sources can be divided into indirect and direct approaches (Collins and Walling, 2004). The most commonly applied direct method of identifying catchment sediment sources is the fingerprinting approach which quantifies the relative contributions of individual sediment sources to target sediment samples, including those collected in gravel beds or from the suspended load (Owens et al., 2017; Collins et al., 2017). Potential sources of sediment and associated organic matter are identified and sampled, such as agricultural top soils, channel banks, damaged road verges, septic tanks, farmyard manures and decaying instream vegetation. Representative samples of target sediment are also collected, including channel bed sediments, often via remobilisation (Duerdoth et al., 2015) or time-integrating methods (Phillips et al., 2000). These samples are analysed in the laboratory for unique physical or biogeochemical properties known as tracers or ‘sediment fingerprints’. By coupling the composition of source materials with channel sediments, the contribution of each source may be quantified at catchment scale. This approach is a valuable tool in the identification of priority source types and geographical areas for sediment management and mitigation programmes.

Four papers within this special issue illustrate and reflect on how sediment fingerprinting can be implemented in the management of sediment and associated organic matter using diverse case study examples. Zhang et al., (2017) present the findings of a study conducted in three tributaries of the River Itchen, in southern England, which successfully identifies the main sources of sediment-associated
organic-matter inputs. In all three sub-catchments, the top three sources were found
to be watercress farms, farmyard manures / slurries and decaying instream
vegetation, although the relative contributions and importance varied. These results
highlight that sediment management strategies should be undertaken on a sub-
catchment specific basis to accommodate scale dependency and corresponding
spatial variations in source contributions. Biddulph et al. (2017) reflect on the
perennial problem associated with the identification of diffuse sources of fine
sediment across relevant spatial scales and the implications for on-farm
management of the sediment problem. They highlight the need for sediment sources
to be considered from individual farms through to the landscape scale in order to
effectively partition the relevant contributions of individual sources. They advise
coordinated farm-scale interventions taking due account of sediment source and
corresponding erosion process domains to maximise management impacts at the
landscape scale.

Collins et al., (2017) examined the provenance of fine sediment-associated organic
matter and complimented this with sediment oxygen demand (SOD) measurements.
By utilising the two methods simultaneously it was possible to account for the key
sources of sediment-associated organic matter that contributed to oxygen demand
and therefore habitat and ecological degradation. Pulley et al. (2017) discuss the
importance of carefully defining source group classifications when using sediment
fingerprinting. The classification of sources is often the least considered aspect of
the methodology. Their methodology introduces an additional step that complements
conventional decision-tree methods by enabling assessment of the environmental
relevance of different source groupings.

In-channel sources of sediment, and in particular the role of tributary inputs, are
considered by Marteau et al., (2017). Much of the research focusing on sediment
delivery by tributaries has typically tended to consider coarse grain fractions in
perennial rivers (Rice et al., 2001; Hooke, 2003; Rice 2017). However, the authors
illustrate that following a restoration project which reconnected an ephemeral river to
the main stem, sediment yields increased by 65%. They highlight that even a small
increase in catchment area, in this instance 1.2% of the catchment size, can result in
significant alterations to fine sediment dynamics, particularly in sediment starved and
regulated rivers. This also clearly highlights the importance of considering alternative
sediment sources which may have previously been overlooked in sediment dynamic models.

Physical and biological approaches to the appraisal of fine sediment pressures

Many of the deleterious effects of enhanced fine sediment levels on instream ecology are associated primarily with the deposited rather than suspended component since substrate characteristics exert an important control on habitat availability especially during the critical life stages of many organisms (Culp et al., 1986; Berry et al., 2003; Jones et al., 2012). Consequently, the ability to quantify accurately the fine sediment content of a river bed is vital for assessing habitat status, checking compliance with recommended thresholds and successfully implementing management strategies. Fine sediment pressures in river substrates can be measured using two primary means. First, the fine sediment content of riverbeds can be physically measured or estimated, and second; biological metrics derived from the sediment tolerance of a community of organisms can be used as a proxy to monitor deviation from reference conditions. Six papers within this special issue address the complexities surrounding the accurate quantification of fine sediment content in stream substrates.

One physical method for measuring fine sediment deposition rates involves the installation of traps that collect fine sediment infiltrating into the river bed over a known time period. Harper et al., (2017) employed two different designs of such traps; one which permits vertical exchange and one which permits both vertical and lateral exchange. Their results corroborate a number of previous studies which demonstrate the importance of lateral transport for the accumulation and retention of fine sediment (Petticrew et al., 2007; Mathers and Wood, 2016; Casas-Mulet et al., 2017). However, the authors also raise questions about the accuracy of traps and the physical processes that they measure. Physical sampling techniques can however be labour and time intensive and, as such, many monitoring agencies (and increasingly researchers) employ rapid assessment methods. One such method is the visual assessment of substrate composition which involves an individual estimating the percentage cover of different particle sizes at a given site. Although such methods can be effective (e.g. Buffington and Montgomery, 1999) they can be associated with a high degree of operator subjectivity. Turley et al (2017) present a
novel, image-based technique that seeks to overcome operator subjectivity thereby providing non-destructive, rapid and less subjective estimates of surface sediment cover.

Given the widely-documented effects that excess fine sediment deposition has on a range of aquatic organisms, from fish through to macroinvertebrates and diatoms (Wood et al., 1997; Kemp et al., 2011; Jones et al., 2014), biomonitoring techniques, which use biota to track changes in the aquatic environment (Friberg et al., 2011), are increasingly being used to monitor fine sediment content. Based on quantified relationships between taxa abundances and benthic substrate composition, the extent of fine sediment stress on an ecosystem can be determined. A number of biological indices that relate the structural responses of macroinvertebrates to fine sedimentation have been proposed (e.g. Relyea et al., 2000; Murphy et al., 2015; Turley et al., 2016). Extence et al., (under review) evaluate one such biological index, the proportion of sediment sensitive invertebrates (PSI). They demonstrate its potential application as a national screening and catchment management tool in the identification of priority areas for sediment management practices and for post-management appraisals.

There is however, a growing body of biomonitoring research which is focused on the use of biological traits, including life history, behaviour and morphology characteristics, in environmental assessments. Trait-based approaches may be more widely applicable because they overcome the intrinsic problem with composition-based indices that are limited to the biogeographic region in which they were developed (Zullig and Schmidt, 2012). Despite the high potential of trait based indices as a tool for diagnosing fine sediment pressures, further research is required to improve their robustness. Two papers in this special issue call for an improved mechanistic understanding of macroinvertebrate functional responses to sedimentation (Murphy et al., 2017; Wilkes et al., 2017). In the first paper Murphy et al (2017) test the association of trait responses to fine sediment stress at national scale across England and Wales. They find limited evidence to support predictions made in previous studies by Descloux et al (2014) and Mondy and Usseglio-Polatera (2013), but they do identify a number of traits that exhibit consistent patterns in relation to sediment stress. Wilkes et al., (2017) test the mechanistic basis of biological indices to species traits. The authors report a poor fit
of two fine sediment indices against species traits. When only traits reported to respond to fine sediment based on available literature were included in the model, the fit was reduced further. Further refinement of the trait database is therefore required to enable trait-based approached to be embedded into statutory monitoring and research projects.

Identifying and quantifying relationships between fine sediment loading and ecological responses is often confounded because the physical controls of hydrology and geomorphology vary in time and space (Bond and Downes, 2003; Evans and Wilcox, 2014; Gurnell et al., 2016a). River regulation and land use changes are two of the most common catchment disturbances globally and may occur independently or concurrently, which makes it difficult to isolate which process is responsible for ecological degradation (Wood and Armitage, 1999; Jones et al., 2015; Wood et al., 2016). Bradley et al., (2017) present a hydro-ecological model which, when used in combination with flow indicators and other local environmental information, can identify target areas where flow and fine sediment pressures need to be managed independently or in combination. Application of such coupled approaches will increase the ability of regulatory agencies to make effective management decisions by avoiding consideration of a single stressor in isolation.

Ecological effects of fine sedimentation

Improved understanding of the negative effects of excess fine sediment on ecosystem functioning remains an area where fundamental research is still required. Despite the wealth of literature and historic interest in the ecological consequences of sedimentation, many of the fundamental processes surrounding the effects remain unstudied. The implications of fine sediment deposition on salmonid embryos has been widely studied, partly because of their high economic value (Suttle et al., 2004; Sear et al., 2016). In this collection, Sear et al., (2017) present a study in which they model Sediment Intrusion and Dissolved Oxygen (SIDO) and quantify the implications for dissolved oxygen supply to salmonid redds. They indicate that high sediment-associated consumption rates reduce dissolved oxygen concentrations within redds but that the mass of fine sediment was the most important controlling factor. Higher quantities of fine sediment result in elevated sediment oxygen demand but also physically block substratum pores causing a more dramatic decline in dissolved oxygen concentrations. Béjar et al., (2017) conclude the special issue by
presenting a study that investigates the role of suspended sediment on macroinvertebrate drift. The authors found significant increases in suspended sediment concentrations (SSC) were sufficient to trigger changes in drift behaviour, with some taxa demonstrating an increase in drift propensity whilst others displayed a reduction. It is clear that further research is required in this area to understand the mechanisms underlying these behavioural adaptations.

Future directions

The thirteen papers in this special issue demonstrate the complex suite of issues that surround the management of excess fine sediment in aquatic habitats and the diversity of approaches used to inform characterisation and intervention. Ultimately, effective management of rivers requires a multi-scaled approach in which several disciplines combine to tackle the overarching problem. From this special issue, it is clear that research is required to further improve source fingerprinting procedures and to appraise the potential importance of additional sources of fine sediment that may become more important in the future, such as ephemeral streams (Acuña, Hunter and Ruhí, 2017). Despite significant advancements in sediment fingerprinting methods, there is a clear need to take account of the scale dependency of source apportionment data and to implement coordinated intervention strategies that target cumulative source contributions at the landscape scales and not just local problems. This requirement would be facilitated by developing comprehensive and transparent assessment methods that enable both landowners and advisors to fully understand the science of fine sediment dynamics and impacts. This would enable greater engagement and process understanding and thereby facilitate better implementation of management practices and subsequent appraisals of their effectiveness.

Fundamental problems still exist in the quantification of fine sediment content in river substrates. Many of the methods employed are subject to operator and methodological errors and/or are time and labour intensive. As such, further work is required that subjectively tests current methods to fully resolve their accuracy relative to resource implications (e.g. Duerdoth et al., 2015). Biological metrics provide an opportunity to monitor the health of lotic ecosystems effectively, but a deeper understanding of the mechanisms that link taxon responses to fine sediment pressure is required. This is particularly evident in the trait literature where results lack consistency. Experimental research is required that investigates and documents
specific responses of organisms to fine sediment (sensu Mathers et al., 2014; Vadher et al., 2015; Beermann et al., 2018) and which is subsequently corroborated via broad-scale field studies. There is also a growing body of work focused on the impacts that organisms have on fine sediment dynamics (e.g. Gurnell, 2014; Rice et al. 2016), recognising the two-way interactions and feedbacks between the biotic and abiotic components of river systems and the potential importance of these processes for full management solutions. Finally, and linked to the effective monitoring of lotic systems, further research is required to improve understanding of the individual processes and components of fine sediment dynamics that cause shifts in biota behaviour and survival. Pinpointing the most influential factors such as organic matter content and associated oxygen demand, sediment size or sediment quality will enable management practices to be implemented effectively whilst minimising time and monetary costs.

Acknowledgements
The authors acknowledge the British Hydrological Society with support from the Environment Agency of England and the Freshwater Biological Association for facilitating the meeting at Loughborough University from which many of these papers derived. Paul Wood and John-Davy Bowker are thanked for their help in co-convening the meeting. The authors thank Geoff Petts and Paul Wood for the opportunity to prepare this special issue in River Research and Applications. Finally, we would like to thank all the reviewers for their input and comments which helped improve the quality of the papers.

References

