Rural water supply and community development: a study of Kajola area of Nigeria

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/28587

Version: Published

Publisher: © WEDC, Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
6th WEDC Conference: March 1980: Water and waste engineering in Africa

'LAYI EGUNJOBI

RURAL WATER SUPPLY AND COMMUNITY DEVELOPMENT:
A STUDY OF KAJOLA AREA OF NIGERIA

INTRODUCTION

The objective of this paper is to corroborate the writer's general observations among the People of Kajola Local Government Area that the high degree of enthusiasm demonstrated by the people in community development activities has not been channelled towards solving the area's acute water problems. The paper also attempts to explain why this is so and then offers some suggestions for improvement.

Two sets of data are presented: the first set describes the state of domestic water supply generally in the area using three selected villages as typical examples. The second set reveals the number and type of community development projects recently undertaken in the area and highlights the lack of prominence of water projects.

BACKGROUND

Kajola Local Government Area is situated in the extreme western part of Oyo State of Nigeria. Covering an area of 3,750 square kilometers, it has a 1979 estimated population of 173,643. This gives a population density of approximately 46 persons per sq.km. Compared with the state average density of 505 persons, this area is obviously one of the most sparsely populated. The region falls within the flat of gently rolling grassland belt. Altitude rises steadily from the south-east (200 m) towards the north-east (500 m) while the land surface is sometimes broken by granite inselbergs or lateritic outcrops. The top-soils are light-textured loamy sand or sandy loam; in the sub-soil, the texture usually varies from sandy-clay loam to clay.

Mean annual rainfall is in the range of 1,100 and 1,200 mm. On average, the effective rainfall duration varies from 185 to 200 days. In general, the area is among the least developed parts of the state even though its environmental conditions suggest an immense scope for development.(1)

WATER SITUATION

That Kajola Local Government Area of Oyo State is faced with an acute water problem is axiomatic. A casual visitor to the area especially during the drier parts of the year will see more of the ubiquitous 'water drawers' - mostly women and children - than anything else. It is worthy of note that none of the twenty-seven settlements that constitute the local council enjoys treated water. The sources that provide water for domestic use are mainly shallow, hand-dug wells, springs, brooks and ponds. These are often polluted and unreliable sources. A probable reflection of the poor water situation is the relatively high incidence of diarrhoea, dysentery and guinea-worm in the area. (2)

The magnitude of water problems in the area has recently prompted the local authority to purchase 51 water tanks which were shared among the settlements. These 500-gallon tanks cost the government a sum of $15,300. One lorry tanker was also bought at a cost of $20,397.50. Water is drawn from Oyo Water Works in the lorry tanker and distributed into the tanks. Obviously, this has represented a frantic effort by the local authority to alleviate the people's suffering. However, the effort has not produced any positive results. First, the distances between Oyo and the various settlements in the local government area (LGA) are considerably lengthy. They vary from 72 km (Okeho) to 120 km (Ijilo). Second, most of the roads are not surfaced and can only be tolerated in the dry months. So, it is not possible to make more than one trip to fill only four tanks per day. Third, a continuous use of the only lorry tanker cannot be guaranteed; whenever it breaks down or needs to be serviced, distribution of water is necessarily suspended. In effect, most of the tanks are left dry for long periods in the year.

The general water situation in the area is depicted by data in respect of Isani-Ile, Ilaji-Oke and Itasa as shown in the following tables. Between November 1978 and June 1979, these three settlements were randomly selected for a general village survey out of which water supply was only a part. Table 1 shows that 18 out of 25 or 72% of the wells found within the villages are seasonal, i.e., they contain water only in the wet season. The remaining 7 or 28% can reasonably be relied on for steady supply of water throughout the year assuming normal climatic conditions. Under abnormal conditions such as
Table 1 - Wells

<table>
<thead>
<tr>
<th>Settlement</th>
<th>1979 Population</th>
<th>Number of wells</th>
<th>Availability of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isemi-Ile</td>
<td>4,895</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Ilaji-Oke</td>
<td>1,563</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Itasa</td>
<td>1,573</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>8,031</td>
<td>25</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 2 - Brooks, Springs and Ponds

<table>
<thead>
<tr>
<th>Settlement</th>
<th>Brooks, springs etc.</th>
<th>Distance range (in km)</th>
<th>Availability of Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isemi-Ile</td>
<td>5</td>
<td>1.25 - 30</td>
<td>3</td>
</tr>
<tr>
<td>Ilaji-Oke</td>
<td>3</td>
<td>1.0 - 4.5</td>
<td>2</td>
</tr>
<tr>
<td>Itasa</td>
<td>7</td>
<td>0.5 - 5.0</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>

Table 3 - Average Time Spent in Procuring Water in the Dry Season

<table>
<thead>
<tr>
<th>Settlement</th>
<th>Number of Households Interviewed</th>
<th>Average Time per day per household</th>
<th>Average time per month per household</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isemi-Ile</td>
<td>60</td>
<td>3.2 hrs</td>
<td>96 hrs or 4 days</td>
</tr>
<tr>
<td>Ilaji-Oke</td>
<td>42</td>
<td>3.8 hrs</td>
<td>114 hrs or 4.8 days</td>
</tr>
<tr>
<td>Itasa</td>
<td>37</td>
<td>4.5 hrs</td>
<td>135 hrs or 5.6 days</td>
</tr>
</tbody>
</table>

long periods of drought, some of these also dry up completely. Further investigations revealed that only 4 of the 7 'reliable' wells are public; others are privately owned and can only be used by the owners or those authorised to do so. It follows therefore that a majority of the inhabitants rely solely on other sources for domestic water supply in the drier half of the year. Table 2 shows that 6 out of 15 or 40% of the other sources are seasonal. However, the problem with these sources of water is their distance from the built-up areas. According to column two, the distance varies from 0.5 kilometres to 5.0 kilometres. One can then surmise that in order to subsist, a great deal of time and energy has to be expended in walking the long distances and carrying water in heavy vessels. To have a sharper perspective of this problem, an attempt was made to compute the average number of hours spent by households per day in procuring water, using such information as the number of persons usually involved in drawing water for a household, usual source of water and distance away from home, and average number of trips per day. Table 3 summarises the findings. It shows that on average, a household could spend a maximum of 4.5 hours per day or 5.6 days in the month and a minimum of 3.2 hrs per day or 4 days in the month to procure water for domestic use. This implies a drastic reduction in the amount of time normally devoted to productive work. Alternatively, it may mean using up the normal leisure time. From whichever angle one may look at it, the fact remains that the effect of water problems on the people's social and economic life is considerable.

COMMUNITY EFFORTS

In line with what can be observed in several parts of Nigeria, the people of Kajola Local Government Area have adopted community self-help as part of the strategies to alleviate their state of underdevelopment. It usually takes the form of providing local amenities or improving the existing ones. The higher level governments encourage it by subsidising the cost of the projects and by providing community and social officers.
Table 4 shows the total number of projects embarked on within the Local Government Area as at June, 1979 even though many of these were carry-over projects from previous years. It shows further the estimated cost and actual amount already expended. In summary, there were 71 projects estimated at a cost of N901,965 out of which N227,340 had actually been spent. These figures indicate the high degree of enthusiasm with which community self-help was adopted. A break-down of the projects into categories shows the level of priority accorded certain types vis-a-vis others. Both in number and money, road projects have received the greatest attention. This is followed by health facility projects and then recreational projects. In terms of estimated cost and money actually spent, recreational type of projects comes next to roads. Those projects that appear to have been least embraced are postal facilities, schools/libraries and water supply. Each of these categories constitutes less than 2% of the total number of community development projects. In an attempt to explain why these projects have not received much attention, one may say that the needs for the projects might not have been pressing. However, if this is true of schools and postal services which are found almost everywhere, it is definitely untrue of water supply as we have seen in the previous section. What then is responsible for the low priority accorded to water supply in community development programmes despite the observable acute water problems? The following section attempts to make some inferences regarding this.

DISCUSSION

What seems to have underlined the choice and execution of projects is the people’s felt need and this in turn is a product of their perception of what constitutes community development. (3) Their conception of development is no more than modernisation as illustrated by such practice as substituting cement blocks for mud or lock-up stalls for open-air tree-shade markets. The idea is tied up with tangible and grandiose projects that can be seen, admired and exhibited. In one of the committee areas of the study area, the description of a highly publicised project is "Okeho Ultra-Modern Town Hall". The estimated cost of this project is N120,000 or 57% of the total cost of N 209,000 earmarked for all the fourteen projects within the committee area. Furthermore, a sum of N40,000 or 61% of the N65,600 already spent over the years has been on the ultra-modern hall. Thus, the glamour attached to it is easily seen in the way the project is being described (ultra-modern) and the subsequent high level funding of it.

For the same reason, a keen sense of competition is prevalent among the various communities. The motivation to undertake a project adjoining the village. This shows that the importance of relating development efforts to the solution of specific problems is not really grasped. With specific reference to water projects, it can be deduced that there is a lack of the recognition to link health problems to water problems. The incessant water shortages, pollution and relative inaccessibility of existing sources are therefore seen not as hazards but as physical inconveniences.

PROPOSALS

1. Need for Campaigns of Education: The first apparent need that emerges from this study is the infusion of public enlightenment into community development programmes. It is wrong to perceive community development merely as a means of getting structures erected as show-pieces or symbols of prestige. Human development necessarily needs to form an essential part of the whole process so that
the right decisions are made in selecting, executing and utilising development projects. In the example described in this paper, what constituted a problem was the inability to realise the health implications of a good water supply. This presupposes that community development officers should not depend only on what people perceive as their immediate needs. Just as a sick person may not be aware of his sickness until he has been screened by a physician, a community may not be in a position to perceive its true needs until attitudes and opinions are carefully shaped and guided.

2. Role of Engineers: What emerges as the second basic need is the involvement of engineers in community development programmes. As pointed out earlier, state and federal government assistance takes the form of giving grants and supplying social officers. Thus, there has been a continued absence of technical staff and this has served as serious handicaps in executing projects. Water projects in particular require adequate technical support to be successful. Engineers therefore have an important role to play; they need to advise, present alternative solutions and produce simplified, standardised designs that can be widely applied.

However, in making this proposal to get engineers involved, one is aware of the shortage of this category of professionals. Since they are difficult to recruit and retain even at the higher government levels, the local authorities are not likely to be in a position to offer necessary inducements. One possible solution therefore is to organise a corps of 'travelling engineers' at the higher level who will, in the fashion of the 'flying doctors', go from community to community to offer their services. This may go a long way to fill the gap presently being created by the absence of technical support in community programmes.

CONCLUSION

The sets of data presented in this paper have supported two observations:

1. that there is a critical shortage of domestic water supply in the area of study;
2. that although the people in the study area are enthusiastic in community development activities, water projects have not featured in their programmes.

It is believed that this observed phenomenon could have been due to the people's perception of what constitutes development. There is the tendency to embark on building projects that are not necessarily meant to solve specific problems but rather to enhance community status. In particular, there is a lack of recognition of health implications of water problems. Therefore, in order to help the people help themselves in the provision of

safe and adequate water and thereby contribute to make the 'International Drinking Water and Sanitation Decade' (1980s) a success, community development efforts have to include a campaign of enlightenment as well as the provision of technical support for programmes.

REFERENCES

