Poly aluminium chloride as an alternative coagulant

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/29004

Version: Published

Publisher: © WEDC, Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Poly aluminium chloride as an alternative coagulant

Miss Sonu Malhotra, NEERI, Nagpur, India.

ALUMINIUM SULPHATE Commonly known as alum is widely used as a coagulant in water treatment plants. Generally large sludge volumes are produced with alum which requires frequent desludging operations at the treatment plants causing increased wastage of water. There is also possibility of aluminium carry over in water treated with alum. High levels of aluminium in potable water is reported to cause Alzheimer’s disease, a form of senility. However, till now there is no clear evidence to suggest a link between aluminium & Alzheimer’s disease (Cole, 1990). Poly aluminium chloride (PAC) has been developed as an alternative coagulant for alum by an Indian manufacturer.

PAC hydrolyses with greater ease as compared to alum, emitting polyhydroxides with long molecular chains & greater electrical charge in the solution, thus contributing to maximise the physical action of the flocculation. Better coagulation is obtained with PAC as compared to alum at medium & high turbidity waters. Floc formation with PAC is quite rapid. The sludge produced by PAC is more compact than that produced by alum.

Preparation of coagulant solution

The working alum solution was freshly prepared by dissolving 10g of alum in one litre of distilled water. For making 1% solution of PAC the dilution of PAC was done with distilled water on daily basis.

Jar test equipment

All the laboratory tests were carried out using Phipps & Bird Multiple Stirring Device (jar tester) equipped with stirring paddles & provisions for controlled mixing. The floc size & its settleability were observed with the illuminating device at the base of the apparatus.

Test conditions

Measured volumes (500 ± 10 mL) of samples were flocculated using the jar test apparatus in 600mL beakers. The beakers were placed in position in the jar tester. The motor of the stirrer paddles was started after addition of coagulant in each beaker simultaneously, rapid mix was maintained at 90 ± 10 rpm for 0.5 minutes followed by slow mix for high turbidity samples at 40 ± 5 rpm for 9.5 minutes. In case of low turbidity samples, after rapid mix & after addition of PAC or alum, slow mix was done at 25 ± 5 rpm for 9.5 minutes. At the end of the stirring period, the beakers were removed slowly from the jar tester platform & the contents of the beakers were allowed to settle for 20 minutes. For each series, jar tests were repeated & average value of turbidity recorded to eliminate subjective errors. The criteria used for the evaluation of the efficiency of the coagulants were settled water turbidity & visual appearance of flocs.

Floc size index & flocculation

The floc size during jar tests were observed visually & recorded arbitrarily as per the following classification:

<table>
<thead>
<tr>
<th>Floc Size Index (FSI)</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No flocculation</td>
</tr>
<tr>
<td>2</td>
<td>Pin Point floc</td>
</tr>
<tr>
<td>3</td>
<td>Small floc</td>
</tr>
<tr>
<td>4</td>
<td>Large floc</td>
</tr>
<tr>
<td>5</td>
<td>Lump floc</td>
</tr>
</tbody>
</table>

The above classification was made by the author throughout the sets & observations were tabulated for each set of jar test conducted for comparison of floc size for PAC & alum.

The comparative performance of alum & PAC at four turbidity levels viz. 150 NTU, 550 NTU, 800 NTU and 2200 NTU are tabulated in Tables 1 to 4 and summarised under Table 5. The results of sludge volume produced by alum & PAC are tabulated in Tables 6 & 7. The experiments on sludge volume were performed using Imhoff cones. Results of residual aluminium with alum & PAC are tabulated in Table 8. Aluminium analysis was performed colorimetrically using ECR method (Standard Methods, 1992).

Summary and conclusion

PAC is an effective & useful substitute for solid alum which is conventionally used as a coagulant in most of the water treatment plants in India. It can cause rapid coagulation of water at different turbidities, produces less sludge & leaves less amount of residual aluminium.
Table 1. Comparative performance of alum and PAC.

<table>
<thead>
<tr>
<th>Source: Wainganga river</th>
<th>Turbidity: 150 NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum, mg/L</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td>148</td>
</tr>
<tr>
<td>Turbidity, NTU</td>
<td>153</td>
</tr>
<tr>
<td>Reduction %</td>
<td>0</td>
</tr>
<tr>
<td>FSI</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>8.2</td>
</tr>
<tr>
<td>Alkalinity mg/L as CaCO₃</td>
<td>168</td>
</tr>
</tbody>
</table>

PAC, mg/L	0	4	8	12	16	20	30
Residual	152	106	33	18	13	11	4
Turbidity, NTU	152	78.3	88.1	91.4	92.8	97.4	
Reduction %	0	30.3	78.3	88.1	91.4	92.8	97.4
FSI	1	2	3	4	5	5	5
pH	8.2	8.2	8.2	8.2	8.1	8.1	8.1
Alkalinity mg/L as CaCO₃	166	166	165	164	162	160	156

Table 2. Comparative performance of alum and PAC.

<table>
<thead>
<tr>
<th>Source: Narmada river</th>
<th>Turbidity: 550 NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum, mg/L</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td>570</td>
</tr>
<tr>
<td>Turbidity, NTU</td>
<td>570</td>
</tr>
<tr>
<td>Reduction %</td>
<td>0</td>
</tr>
<tr>
<td>FSI</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>7.7</td>
</tr>
<tr>
<td>Alkalinity mg/L as CaCO₃</td>
<td>85</td>
</tr>
</tbody>
</table>

PAC, mg/L	0	4	8	12	16	20
Residual	565	129	44	24	10	4
Turbidity, NTU	565	92.2	95.7	98.2	99.2	
Reduction %	0	77.2	92.2	95.7	98.2	99.2
FSI	1	3	4	4	5	5
pH	7.7	7.7	7.6	7.5	7.4	7.3
Alkalinity mg/L as CaCO₃	85	84	84	82	82	82

Table 3. Comparative performance of alum and PAC.

<table>
<thead>
<tr>
<th>Source: Narmada river</th>
<th>Test water turbidity: 800 NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum, mg/L</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td>770</td>
</tr>
<tr>
<td>Turbidity, NTU</td>
<td>770</td>
</tr>
<tr>
<td>Reduction %</td>
<td>0</td>
</tr>
<tr>
<td>FSI</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>7.0</td>
</tr>
<tr>
<td>Alkalinity mg/L as CaCO₃</td>
<td>88</td>
</tr>
</tbody>
</table>

PAC, mg/L	0	5	10	20	30	40
Residual	780	331	79	17	9	5
Turbidity, NTU	780	145	97.8	98.8	99.3	
Reduction %	0	57.6	89.9	97.8	98.8	99.3
FSI	1	3	4	5	5	5
pH	7.8	7.9	7.8	7.7	7.6	
Alkalinity mg/L as CaCO₃	88	88	87	86	84	84

Table 4. Comparative performance of alum and PAC.

<table>
<thead>
<tr>
<th>Source: Kanhan river</th>
<th>Test water turbidity: 2200 NTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alum, mg/L</td>
<td>0</td>
</tr>
<tr>
<td>Residual</td>
<td>2250</td>
</tr>
<tr>
<td>Turbidity, NTU</td>
<td>2250</td>
</tr>
<tr>
<td>Reduction %</td>
<td>0</td>
</tr>
<tr>
<td>FSI</td>
<td>1</td>
</tr>
<tr>
<td>pH</td>
<td>7.4</td>
</tr>
<tr>
<td>Alkalinity mg/L as CaCO₃</td>
<td>120</td>
</tr>
</tbody>
</table>

PAC, mg/L	0	5	10	20	30	40
Residual	2270	200	29	8	5	5
Turbidity, NTU	2270	78.7	98.7	99.2	99.6	99.8
Reduction %	0	91.2	98.7	99.6	99.8	99.8
FSI	1	3	4	5	5	5
pH	7.7	7.7	7.7	7.6		
Alkalinity mg/L as CaCO₃	120	110	105	100	95	90
Table 5. Comparative dose to bring down the turbidity to 5 NTU.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Turbidity (NTU)</th>
<th>Alum (mg/L)</th>
<th>PAC (mg/L)</th>
<th>% PAC Consumption against % Alum Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>150</td>
<td>35</td>
<td>25</td>
<td>71.4</td>
</tr>
<tr>
<td>2.</td>
<td>550</td>
<td>40</td>
<td>35</td>
<td>87.5</td>
</tr>
<tr>
<td>3.</td>
<td>800</td>
<td>80</td>
<td>40</td>
<td>50.0</td>
</tr>
<tr>
<td>4.</td>
<td>2200</td>
<td>65</td>
<td>40</td>
<td>61.5</td>
</tr>
</tbody>
</table>

Table 6. Residual Aluminium with PAC/alum.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Dose of Alum/PAC (mg/L)</th>
<th>Aluminium Conc. with mg/L</th>
<th>Resultant pH after treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alum</td>
<td>PAC</td>
<td>Alum</td>
</tr>
<tr>
<td>1.</td>
<td>0</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2.</td>
<td>200</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>3.</td>
<td>300</td>
<td>>0.80</td>
<td>0.05</td>
</tr>
<tr>
<td>4.</td>
<td>400</td>
<td>>0.80</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Table 7. Sludge volume produced by alum & PAC.

Raw water turbidity - 2010 NTU, pH - 8.0, volume - 1 L
Source: Narmada river

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Time (min.)</th>
<th>Sludge Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alum dose</td>
<td>PAC dose</td>
</tr>
<tr>
<td></td>
<td>80 mg/L</td>
<td>50 mg/L</td>
</tr>
<tr>
<td>1.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>5</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td>27</td>
</tr>
<tr>
<td>4.</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>5.</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6.</td>
<td>30</td>
<td>19</td>
</tr>
<tr>
<td>7.</td>
<td>45</td>
<td>17</td>
</tr>
<tr>
<td>8.</td>
<td>60</td>
<td>14</td>
</tr>
<tr>
<td>9.</td>
<td>90</td>
<td>14</td>
</tr>
<tr>
<td>10.</td>
<td>120</td>
<td>13</td>
</tr>
<tr>
<td>11.</td>
<td>150</td>
<td>13</td>
</tr>
<tr>
<td>12.</td>
<td>180</td>
<td>12.5</td>
</tr>
<tr>
<td>13.</td>
<td>240</td>
<td>11</td>
</tr>
<tr>
<td>14.</td>
<td>300</td>
<td>10.5</td>
</tr>
<tr>
<td>15.</td>
<td>1260</td>
<td>9</td>
</tr>
<tr>
<td>16.</td>
<td>1440</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Table 8. Sludge volume produced by alum & PAC.

Raw water turbidity - 1250 NTU, pH - 8.1, volume - 1 L
Source: Solapur water works (raw water)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Time (min.)</th>
<th>Sludge Volume, mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alum dose</td>
<td>PAC dose</td>
</tr>
<tr>
<td></td>
<td>120 mg/L</td>
<td>80 mg/L</td>
</tr>
<tr>
<td>1.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>3.</td>
<td>60</td>
<td>31</td>
</tr>
<tr>
<td>4.</td>
<td>90</td>
<td>28</td>
</tr>
<tr>
<td>5.</td>
<td>120</td>
<td>26</td>
</tr>
<tr>
<td>6.</td>
<td>150</td>
<td>25</td>
</tr>
<tr>
<td>7.</td>
<td>180</td>
<td>23</td>
</tr>
<tr>
<td>8.</td>
<td>210</td>
<td>20</td>
</tr>
</tbody>
</table>

References

1) Cole, H; Asian Water and Sewage, p.53, 1990