Septage collection system economics

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/29281

Version: Published

Publisher: © WEDC, Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
INTRODUCTION

The progressive development of sanitation facilities in growing areas, and the sequential stages of such developments with time are of great interest to the sanitation planners. Such unplanned and uncontrolled spontaneous developments of sanitation facilities provide valuable information about the society awareness for sanitation requirements, society initiatives to participate in sanitation projects, people’s willingness to pay for the sanitation services, operation experiences, appropriateness of such technology and economics of the services.

The paper contains the economic characteristics of an intermediate sanitation system in a rapidly growing area in Jordan. The present system of sanitation in the area includes individual on-site septic tanks with private sullage-solid-mix collection by mobile tanks mounted on trucks. The contents are disposed of in an anaerobic pond for final stabilization. The pond is provided by municipal authority without any charge.

LOCATION AND SYSTEM BACKGROUND

This private septage collection system operates in the city of Irbid and its sub-urban areas. The city of Irbid is located at the northern border of Jordan. Until 30 years ago, the population of the city with its surroundings remained below 10,000. During fifties, sixties and seventies, the city has grown rapidly. The city is presently the center of Irbid Governorate and is the center of country’s largest university. The present population (1980) of the city with its surroundings is about 150,000. Among the adult (above 25) inhabitants of the area, 60 percent finished 8 years of schooling. Traditional Arab life style and way of united family living still exists. An average family has 21 members and an annual income of 4,000 J.D. (1 J.D. = 2.75 dollar).

Personal interviews with local elders revealed that about 50 years back, there was no defined sanitation facility within the area. About 30 years back, people started to use pit latrines. Since 20 years, single vault septic tanks started to be constructed with new houses. During the early development, solid-liquid septage would be carried away by donkey driven tanks to valleys away from the locality. Since 1975, by law every house must have septic tank or underground sewage disposal facility and such facilities need to be approved by the municipal engineers.

SEPTAGE MANAGEMENT SYSTEM

About 90 percent of the existing households in the Irbid area are served by septic tanks. The soil condition in the area is not suitable for sullage leaching systems. Hence a growing need for service to remove the septage was realized. At the demand for services, people interested in business started buying tank-trucks to serve the households for payments. Thus a free enterprise of private service developed.

Usually, the owner of the truck drives the vehicle with a helper and attends household calls. The names of the vehicle owners are registered with the municipality and appear in the local telephone directory.

Septage removal service thus remains as a commodity and the house owners and truck operators bargain freely over the rate for the service. Hence a spontaneous rate has been evolved under competitive economic market. Presently the rate varies from 5 to 6 J.D. per call. The physical and economical characteristics of the system appear in tables 1 and 2 respectively.

There are about 7,000 septic tanks for 150,000 people. Fifty percent of these septic tanks have some kind of soak pits attached to them. Average number of truck calls for each septic tank with pits is one per month when the number of calls for septic tanks without soak-pits is three per month.

OPERATION AND MANAGEMENT

Though the tank-trucks are owned by private individuals, however, they are registered with the municipality and their operation is closely supervised by the city municipal engineer and his staff. The municipality has no jurisdiction over truck ownership, vehicle maintenance, vehicle service schedule, service charges, limitation of service area and the number of customers. The principal supervision job of the city is to control the septage spillage, proper dumping of tank contents in the pond and the maintenance of the ponds. The city personnel involved in the system are the Mayor, a full time sanitary engineer and four field staff including two with some public health background.
In case of on-route breakdown of a truck, the
driver is supposed to call another truck to
empty the tank contents at the owner's cost.
The truck owner is penalised for any spillage
of tank contents on roads or any other place
other than the designated ponds. The trucks
receive servicing in specified maintenance
garages. These garages are very few in number
and are located in the truck servicing section
of city industrial area which is away
from the city residential areas.
As the trucks are free to travel anywhere to
pick up the waste, usually there is not any
defined route for a truck. However, due to
the local acquaintance of the truck owner and
his interest in operating in his locality,
it was found that without very few exceptions,
a truck usually maintains an area of service.
The truckers do have a tendency to accumulate
calls so that the tank will be filled before
it makes a trip to the pond. However, there
is always a chance of his loosing his custo-
mer in cases of much delay. It was observed
that nearly 50 percent of truck trips are

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year, full fledged septage collection system started</td>
<td>1975</td>
</tr>
<tr>
<td>2</td>
<td>Total number of household served</td>
<td>30,000</td>
</tr>
<tr>
<td>3</td>
<td>Total number of septic tanks</td>
<td>7,000</td>
</tr>
<tr>
<td>4</td>
<td>Area served</td>
<td>216 sq. Km.</td>
</tr>
<tr>
<td>5</td>
<td>Number of tank-trucks serving the area</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>Volume of each tank-truck</td>
<td>6-9 cu. m.</td>
</tr>
<tr>
<td>7</td>
<td>Average number of tank-trucks working per day</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>Tank-trucks receiving garage services per day</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Average distance travelled by each truck</td>
<td>50 Km.</td>
</tr>
<tr>
<td>10</td>
<td>Stabilization pond (anaerobic, unlined, earthen)</td>
<td>100,000 sq. m.</td>
</tr>
<tr>
<td></td>
<td>Area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth</td>
<td>2 m.</td>
</tr>
<tr>
<td>11</td>
<td>Personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Private</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Truck drivers</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>b. Helpers</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>City</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a. Sanitary Engineer (part-time)</td>
<td>1/30 (one day per month)</td>
</tr>
<tr>
<td></td>
<td>b. Pond attendant</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>c. Pond guard</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>d. Public-health inspector (part-time)</td>
<td>2 (30 days per month)</td>
</tr>
<tr>
<td>12</td>
<td>Time interval between septage pick-ups</td>
<td>10-30 days (2 calls per septic tank per month)</td>
</tr>
<tr>
<td>13</td>
<td>Tank-truck operation time</td>
<td>24 hrs.</td>
</tr>
<tr>
<td>14</td>
<td>Maximum length of pump hose in trucks</td>
<td>40 m.</td>
</tr>
<tr>
<td>15</td>
<td>Maximum distance from truck stop to septic tank</td>
<td>35 m.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank-truck capital cost (usually Mercedese 5-6 yrs. old, bought from Germany)</td>
<td>5,000-10,000 J.D.</td>
</tr>
<tr>
<td>2</td>
<td>Fuel (100 liter per day per truck, diesel)</td>
<td>8.3 J.D.</td>
</tr>
<tr>
<td>3</td>
<td>Cost per truck call</td>
<td>5-6.6 J.D.</td>
</tr>
<tr>
<td></td>
<td>b. Helper</td>
<td>120 J.D./month</td>
</tr>
<tr>
<td></td>
<td>c. Pond attendant</td>
<td>150 J.D./month</td>
</tr>
<tr>
<td></td>
<td>d. Pond guard</td>
<td>80 J.D./month</td>
</tr>
<tr>
<td></td>
<td>e. Sanitary Engineer</td>
<td>20 J.D./day</td>
</tr>
<tr>
<td></td>
<td>f. Health Technician</td>
<td>5 J.D./day</td>
</tr>
<tr>
<td>5</td>
<td>Average maintenance cost per truck per month</td>
<td>35-45 J.D.</td>
</tr>
<tr>
<td>6</td>
<td>Cost for land (Pond)</td>
<td>1,000 J.D./hectare</td>
</tr>
</tbody>
</table>
made with tanks partially full.
The trucks operate during day and night. Night calls are made where the truck drivers are familiar with the locations of the septic tanks.

COST

The cost of a household for cleaning the septic tank depends on the number of times a septic tank needs to be cleaned within certain time. On average, each septic tank needs cleaning twice a month. Based on the average cost of 5.8 J.D. per call, the cost per household of 21 people (average number of people per septic tank) is 11.6 J.D. per month which amounts to 32 U.S. dollar. This amount is directly for tank-truck service. Customers do not directly pay or are charged for municipal services. The municipality part of the operational cost is nearly 250 J.D. per month. This cost is met from the municipal general annual budget. However, when this cost is distributed over 7,000 customers, the cost per customer is insignificant.

At an average of two calls per month per septic tank, total number of expected calls is 14,000 per month i.e. 467 calls per day. Assuming equal number of calls for each truck, the number of calls for each truck is 8 per day. Daily income of a truck at 5.8 J.D. per call amounts to 46.4 J.D. Bare operational cost of a truck is nearly 4.6 J.D. per day. Hence a truck owner receives nearly 8.3 J.D. each day. At this capital return rate and at an interest rate of 10 percent, the average capital cost on a truck may be realized in three years.

WORKERS' HYGEINE

A health related survey indicated no reports of unusual sickness or absence in work among the truck drivers and helpers.

While on duty, the drivers and the helpers use hand gloves and work clothes which they leave in trucks before returning home. The municipality provides hygiene and health advisory services to drivers and helpers. They are advised to take precautionary immunisation from government medical centers free of charge.

DISCUSSION

Irbid septic tank septage collection and disposal is an unique example of how private business interests may be utilized with benefits in programmes which are long known to be public burden. The problem of sanitation is treated as collective public problem and in many parts of the world, it is entirely managed by public agencies.

The treatment of the tanker services as a free commodity and maintaining the bargaining position for the septic tank owners have resulted in a balanced and irbitally healthy service rate for the system. Apparently a $32 dollar bill per month for sewage appears to be too high in comparison to worldwide estimated rate of $9 per month per household. However, the number of household members is about 4 times more than average household size anywhere else. Considering this factor, the sewage cost in Irbid is reasonable.

Recently some truck route scheduling study indicated that some saving in truck operational may be achieved if the trucks travel only through specified set routes. However, such advisory comments were not effective as the truck drivers and owners are free to operate without any organized controls, administration or pricing system.

In year 1980, the city of Irbid has undertaken the project of phase construction of a conventional sewage collection and treatment system. The project feasibility study mentioned several pluses in favor of the conventional pipe-network sewage collection system including the economic feasibility. Household sewage service cost was estimated to be 11 J.D. per month per household. Assuming that a household at best will be willing to pay 3 percent of its income for sewage service, the average household income in the service area should be more than 367 J.D. per month. Household income projection indicated that such income level will be achieved before the pipe-network sewage collection system starts operation. In case, incomes fail to reach the target, some Government economic subsidy will be necessary.

Irbid sewage management system passed through an ideal course of sanitation development. In developing countries, such sequential development of sanitation facilities probably is the most desired solution considering capital shortcomings and lower personal incomes. In sequential developments, the economic standard of the people goes up along with the attainment of higher users' comfort and hygiene safety.

Early planning of such sequences of developments are of much interest to the national planners. For determination of such time sequences of appropriate facilities, some relationships are needed to be developed, which relate the personal income, minimum sanitation standard and community desire for comfort. The following is an expression based on household income and facility cost on customers and was found to be very much representative of the natural time sequences of sanitation development in Irbid area. The relationship may be used if present household income and estimates of user's costs for various sanitation facilities are known.
\[C_i \frac{(1+a)^{n_i}}{f} = H (1+b)^{n_i} \] \hspace{1cm} (1)

where:

- \(C_i \): present monthly household cost for \(i \)th mode of sewage facility;
- \(a \): cost index yearly increase in fraction of previous index (average);
- \(b \): income index yearly increase in fraction of previous index (average);
- \(H \): present monthly household income;
- \(f \): fraction of household income people are willing to spend for sewage facility (3% appears to be a fair assumption?);
- \(n_i \): number of years in future after which \(i \)th mode of sewage facility will be economically feasible.

It is obvious that whatever the reason may be, if a community decides to adopt a sewage facility before its economical due time, the system needs to be subsidized financially from country's internal or external sources.

REFERENCE