Wooden and bamboo materials in the implementation of water for all Tanzanians by 1991

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/29898

Version: Published

Publisher: © WEDC, Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
ABSTRACT
Lack of foreign money, ill conceived and unde
fined levels of service, adverse global econo
mics of the 80's and embezzlement of funds
and dishonesty on the part of the implemen
ting authorities are but a few of the snags
that hindered implementation of a reso
lution by the ruling party; then TANU, of
1971 which stipulated water for all Tanzanian
by 1991 within a distance of short walk, defi
ned as 400 m.
A government sponsored project to investigate
on use of locally available materials; wood
and bamboo as water conduits was started by
T.N.Lipangile in 1974. Results of this re
search and their possible impact in the imple
mentation of the rural water supply programme
are discussed in this paper.

INTRODUCTION
Ten years before launching the International
Water and Sanitation Decade, the Tanzanian
government embarked on a twenty year program
of safe water for all Tanzanians by the year
At 1971 prices it was estimated that the gov
ernment would be spending not less than 260
million TAS (Tanzanian shillings) annually of
which 80% was expected to be acquired from fo
reign sources in form of materials, transport
equipment and training of staff.
No sooner than the program took off, follow
ing problems that hindered smooth implemen
tation became apparent:

- Scarcity of foreign money
- Adverse global economic conditions also
affected those countries which would have
contributed to the success of the program
- Although rarely put onto records, funds
embezzlement and dishonesty on the part of
the implementing authorities, misuse and
mishandling of resources are also signifi
cant factors that contributed adversely to
wards the programmes progress.
- Increased costs of projects due to general
rise in cost of industrial products.
- Desirable levels of service were ill conce
ved by water experts and were not defined.
As a result unnecessarily stringent condi
tions governed selection and development
of water sources leading to enormous invest
ments benefiting only few people. It is on
ly at present that government is thinking
to alter the existing adopted technological
mix in favour of less expensive technolo
gies. Shallow wells should serve 50% of
the rural population in stead of the ori
ganally planned 9% (ref.1). However even
with shallow wells constituting 50% of
the technological mix for rural water sup
ply, government would be required to in
vest not less than TAS 1030 million an
nually (100 TAS = 4.67 Pound Sterling). This
represents about 15% of the entire 1984
National Budget if the 1991 target is to
be met. From the previous money supply re
cords (ref.2) it seems unlikely though
that government will, in the near future
be in a position to afford such massive
investment in the rural water sector. The
previous annual financial inputs are shown
in figure 1.

Fig 1. Required, assumed and actual annual
financial input for rural water supply

From the foregoing it is apparent that little
success has been recorded so far in implemen
ting the programme and the future of the pro
gramme remains gloomy. Improvement of this
situation calls for:
- More elaborate definition of levels of ser
vice in short and long terms i.e. desirable
combinations of availability, dependability
quality and quantity of water to be supplied
at different development stages.
- Simpler and cheaper technologies in the de-
velopment of sources and distribution of supplies.
- Increased beneficiaries participation in realization, implementation, operation and maintenance of supply systems.
- Enhancing education; as benefits of safe water supply are a bit obscure compared to those of health service and education, community participation in water supply has not been as pronounced as in those other two sectors.
- Less dependence on external inputs as the number of external supporters has been variably decreasing. Water expert's attitude should reflect more of the national policy of self-reliance.

BAMBOO PIPES

Bamboos, belonging to the family of the grasses, vary greatly in appearance from small thin species to species with stems as thick as 30 cm and as high as 30 m. All are however characterized by hollow stems with solid partitions at intermediate distances. This property makes them attractive for use as water conduits (after removing of the partitions). Although there are many varieties of bamboo, those extensively used by the project include Arundinaria alpina, also known as the green African mountain bamboo, and Bambusa vulgaris (a green striped yellow bamboo). Whereas the former is an indigenous specie, the latter was introduced by the Germans from Asia. Both species are found in millions in a number of places in Tanzania.

Physical and mechanical properties

Bamboos reach their full length in the first year of growth and become only thicker after that. The culm of a mature bamboo starting from one metre to five metres above ground is more or less of uniform size and thickness. Variation of average bore size and the difference in pipe diameters between the two ends within those four metres is as shown in table 1.

<table>
<thead>
<tr>
<th>Average bore size</th>
<th>38</th>
<th>50</th>
<th>63</th>
<th>75</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference in diam</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>nil</td>
<td>mm</td>
</tr>
</tbody>
</table>

From the table it is apparent that the smaller the bore size, the larger is the difference in diameter at the two ends.

Bamboo fibres are longitudinal and are more or less glued together by pectins with few inter connections. This gives bamboo a low shear strength. Experiments carried out to ascertain pressures that bamboos can withstand revealed the following:
- For Bambusa vulgaris instantaneous pressures as high as 10 bars were recorded
- For Arundinaria alpina instantaneous pressures of 8 bars were recorded

It has to be mentioned however, that pressure-bearing capability differs from bamboo stem to bamboo stem and that maximum values drop considerably when the stem is exposed to those pressures for longer times. Parameters affecting pressure capability are yet to be established. From field experience it has been concluded that working pressures of Arundinaria alpina and Bambusa vulgaris should not exceed respectively 1.5 and 3.0 bars. The lower working pressures compared to instantaneous pressures are thought to be due to water hammer effects and possibly less-effective tightening of the reinforcement wires onto the bamboo in a field situation. The higher pressure bearing capability of Bambusa is probably due to its shorter internode distances and thicker walls.

Hydraulic properties

Discharge-pressure measurements were conducted by the Hydraulics laboratory, University of Dar es Salaam. The variation of friction factor (λ) as determined by Darcy-Weisbach equation with Reynolds number (Re) is plotted as shown on the Moody diagram (fig 2)(ref 3).

![Moody diagram](image)

fig 2: friction factor λ of tested pipes on Moody diagram

The diagram clearly depicts that the values plotted in the turbulent flow zone where λ is governed by the relative surface roughness of the pipes. Consequently the use of the exponential formula for the flow through the pipes is justified. The average values of Manning's (n) and Hazen-William's (C) roughness coefficient were determined and found to vary between 0.013 - 0.016 and 75 - 90 respectively. The lower n-value and the higher C-value correspond to good node removal. For design purpose the project adopts a value of C between 70 - 75. This is because presently pipes are not centrally processed which makes control of quality unreliable.
Economics of bamboo pipes

With the assumptions made in SIDA's evaluation mission report (ref 4), bamboo pipes of sizes 63 - 75 mm are found to be price competitive to polythene pipes both in terms of financial and economic annualized costs. In terms of present expenditure however, bamboo pipes are several times cheaper both in financial and economic costs (ref 5). The economic costs in table 2 are based on CCA - a copper, chrome, arsenic preservative - treatment of the pipes to enhance their durability.

Table 2: Economic cost comparison between bamboo pipes and plastic pipes.

<table>
<thead>
<tr>
<th></th>
<th>ECONOMIC COST TAS/MTR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arund. Bambusa PE 63mm</td>
</tr>
<tr>
<td>manufacture of bamboo</td>
<td>13.80</td>
</tr>
<tr>
<td>purchase of poly</td>
<td>16.45</td>
</tr>
<tr>
<td>transport, installat.</td>
<td>20.85</td>
</tr>
<tr>
<td></td>
<td>20.85</td>
</tr>
<tr>
<td></td>
<td>46.45</td>
</tr>
<tr>
<td>SUB - TOTAL</td>
<td>34.65</td>
</tr>
<tr>
<td>maintenance</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>1.60</td>
</tr>
<tr>
<td>ANNUALIZED COST</td>
<td>7.35</td>
</tr>
<tr>
<td></td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td>12.85</td>
</tr>
</tbody>
</table>

Remarks:
- transport cost based on weighted average distances to construction site
- for calculations a shadow exchange rate of 200% of the fixed rate of March 1983 is used (all calc. based on March 83 level)
- overhead expenses for bamboo are 50% of manufacturing cost and non for PE
- bamboo pipes are depreciated in 10 years, PE pipes assumed to have a residual value of 50% after 10 years

From the analysis transport costs is seen to be a major contributor to the costs of bamboo pipes. It is hoped that once the research on preservation gives positive results, transport costs can be significantly reduced by encouraging wide spread growth of bamboo all over the country.

Depending on what size of a polythene pipe a bamboo pipe is going to replace, the economic advantage of using bamboo pipes as a function of hydraulic gradient and discharge is depicted in fig 3.

It is generally observed from the figures that at low gradients, say up to 10 m/km, a system of bamboo pipes will convey increased flows with economic advantage. This is because manufacture costs of bamboo are not dependant on the size of the pipe unlike purchase of polythene pipes.

The gradient difference shown for the two species is due to the fact that wire reinforcement on Bambusa vulgaris was then considered not effective in enhancing the pressure withstanding capability. Recently however, it was discovered that it was the mode of wire tightening which rendered reinforcement non-effective on Bambusa vulgaris.

It is unlikely though that at any discharge a system of bamboo pipes would be of economic advantage at increased gradients. This is because at higher gradients bamboo schemes require more break pressure chambers while also more closely spaced wire reinforcement is needed.

An added potential advantage of using bamboo pipes is the possibility of community participation by encouraging people to grow their own bamboo. This will make construction and maintenance more village orientated.

Preservation of bamboos

Being organic in nature, upon its death bamboo is bound to undergo biological decay caused by bacteria and fungi and termite attack. Thus without protection a bamboo pipe would not last long in the soil environment which normally harbours all these decaying organisms.

Present practise involves a combination of preservation procedures which include:
- External coating of the pipes by boiling them for a short time in tar
- trench treatment with aldrin
- intermittent chlorination of systems

The ideal solution would be the impregnation of the bamboo cane itself with a preservative which is both insecticide and fungicide. However experiments conducted so far, failed to guarantee the non-leaching of these chemicals into the drinking water.

WOODSTAVE MATERIALS

Introduction

The present woodstave technology started developing in the United States of America in the 1860’s. Although Wood/Bamboo project adopted this technology, it has nevertheless carried out investigations to ascertain actual carrying capacity for the locally manufactured staves and safety of water carried through or stored in woodstave structures treated with the toxic preservative CCA. Presently the project is also involved in investigations leading to use of staves pressurized flow conduits. Todate woodstaves have been success
fully used in the construction of tanks, irrigation channels, and culverts. It is envisaged that woodstave technology will also find use in construction of silos for grain storage and sewage pipes.

Although there are numerous types of trees available in the country, present efforts are mainly restricted to the use of soft wood (pine). This is because pine is abundantly available, cheap compared to other wood species, easily workable and can be treated to enhance its life-time.

Engineering properties

As a building material, mechanical properties are well known. The project carried out investigations to establish hydraulic performance of wooden pipes. Results from experiments carried out at Hydraulic's laboratory, University of Dar es Salaam, indicate minimum and maximum Hazen-William's C-values of 70 and 115 respectively (ref 3). Although earlier work by Scobery (1916) gave higher C-values of 120 (ref 6), the hydraulics laboratory recommended a value of 85 for hydraulic calculations. The experiments further showed that with the normal thickness of staves used there was excessive sweating at pressures above 0.5 atm. Recent trials however showed that sweating can be reduced considerably by using thicker staves or by coating the staves with tar or bitumastic paint. Pressures as high as 5 atm were reached without experiencing sweating.

A known additional advantage of timber pipes is its non-corrosive nature; unlike concrete and metallic pipes in which corrosion is a problem especially when used in chemical industries and sewerage systems.

Economics of investment

At present the Wood/Bamboo project buys ready made staves from the factory and assembles them on site. As it is apparent from fig. 4 ground level tanks are very cost competitive with the more conventional materials; steel and concrete.

420,000 TAS whereas the same would have costed 630,000 TAS and 1,125,000 TAS had it been constructed of respectively concrete or steel (ref.7).

Preservation and durability

Impregnation of chemicals into pine timber to preserve it, has been successfully practiced. Records on CCA preservation of pine wood in direct contact with the soil, show that the timber will last for at least 20 years (ref.8).

As all preservatives are however more or less poisonous, a careful selection of the preservative should be made when the treated timber is to be used in water conveying structures. Fixation characteristics of the preservative and intended use of the water are important parameters to count with.

At present CCA has been used in all water tanks and open flow pipes. Investigations showed that the leaching of the chemical compounds does not pose a health hazard when storage does not exceed 10 days (ref.9).

REFERENCES

1. MSIMBIRA N K. Rural water supply program. Regional Water Engineers Conference, Tanga, 1984. (paper)
2. NYENZA. Personal communication from economist in the Ministry of Water, Energy and Minerals.
4. BROCONSULT. Report SIDA evaluation mission June 1983
6. LIPANGILE T N. Paper for Rural Hydraulic Development Conference. Marseille, June 84
7. KOOTEN A J A. Personal communication from irrigation engineer in charge of construction.

![Diagram](attachment://fig.4.png)

fig.4: construction cost for ground level water tanks

A recently constructed irrigation pipeline of 600 mm diameter and 355 m length costed