Environmental pollution problems of small communities in the Niger Delta

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/30364

Version: Published

Publisher: © WEDC, Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Environmental Pollution Problems of Small Communities in the Niger Delta
C. E. EGBORGE

ABSTRACT

This paper discusses the seemingly negligible but important environmental problems of the small communities in the Delta region of Nigeria and stresses the need to introduce measures that will make the inhabitants conscious of the preservation of the environment as a means of checking the occasional outbreak of diseases such as cholera. Some simple measures and systems are suggested which if introduced will go a long way towards improving the quality of the environment in these communities. The author concludes that the achievement of the objective depends much on the simplicity of the system and their effective management.

INTRODUCTION

In nearly all the developing countries the world over, finances are generally so stretched that social amenities are the prerogatives of the capital cities and a few other urban centres. Pipe-borne water, electricity, solid waste disposal systems even where provided are usually a far cry from what a well organized system should be. The constraints on finances imposed by national priority development projects and technological limitations in these countries have sort of 'doomed' the rural communities to a state of utter neglect.

The plight of the small communities living in the delta areas of the Niger river as it empties into the Atlantic ocean is worth giving some consideration. Perched, as small fishing villages, on the higher levee soils along the banks of the numerous meandering rivers and creeks, the inhabitants seem resigned to fighting their annual battle against the ravaging floods and destructive erosion. While in some areas, houses have been built on stilts because of the floods, in other portions of the delta region some sections of villages have been forced to either retreat to lower grounds more susceptible to flooding or to move to areas less threatened by erosion. Such is the magnitude of these natural hazards that the evolution of any large communities in the region have been greatly hampered. The problems of flooding and erosion coupled with the remoteness of the region and the difficulty of transportation which is only by river craft or dug out canoes, will continue to retard the pace of any meaningful development of the region. This paper however is not intended to suggest solutions to the enormous problems of flooding and erosion, but to draw attention to the comparatively negligible but important problems of water supply and environmental sanitation of the riverine communities. Finding simple solutions to these problems will greatly enhance the health of the people. The first part of the paper discusses the water supply and pollution aspects, while the second part touches briefly on the solid waste disposal and air pollution aspects. In the concluding section, the planning aspect as a means of ensuring a healthier and more attractive environment is discussed. Although examples have been drawn from the Rivers State, the delta communities referred to in this paper can be found in the Cross Rivers, Bendel and Ondo states of the Federation of Nigeria. The population of such communities range between 100 to more than 5,000 inhabitants.

WATER SUPPLY AND POLLUTION ASPECT

Lack of potable water supply and proper sanitation practices are two environmental problems common to the communities of the delta. In the freshwater zone of the region, the groundwater is highly mineralized while the coastal and mangrove areas experience the problem of salt water intrusion. Most of the communities rely on the collection of rainwater in drums or other small containers for domestic use during the wet season. In some areas, shallow wells tap the infiltrated rainwater which overlies the local groundwater but this too becomes unsuitable for drinking when the salt or mineralized water resurfaces after such infiltration water is exhausted. All the communities however depend on the rivers and creeks as the only sources of water during the dry season which normally extends from about
December to March.

The most disturbing aspect of the use of the river water for domestic purposes is that the quality is highly questionable because the same river receives the untreated human wastes of the communities. The common practice is to build family privies supported on wooden columns and protruding from the banks over the water courses. In the larger communities, a series of these privies line the banks from one end of the village to the other with a good number of them located immediately upstream of where water is withdrawn for domestic use by those living downstream. This method of waste disposal is particularly dangerous in the creeks where the waters remain relatively stagnant with little or no mixing and replenishment during the dry season. The reported cases of the outbreak of cholera in these areas usually coincide with this period of the cessation of rainfall and scarcity of good drinking water when the communities are forced to resort to the polluted streams as their only source of water supply.

The need for a healthy environment has for a long time past been realised by the various communities, hence the practice of collection of rainwater for domestic use and the provision of family facilities for the disposal of their human wastes. A community organised water supply scheme is imperative for the elimination of water-borne diseases in the area. Even where it is possible to obtain drinkable water from shallow wells, the high water table and water logging conditions preclude the simultaneous use of these wells and privy pits or septic tanks for the disposal of human and domestic wastes. Some attempts have been made to provide water from boreholes in both the freshwater and coastal areas but many of these had to be abandoned because of the poor quality of the water. The use of river water for domestic purposes would involve costly and sophisticated treatment plants which the communities can ill-afford to maintain at the present economic level of subsistent living conditions. The use of rainwater seems to offer the cheapest, least complicated and the most reliable alternative of all the water supply schemes attempted in the region under consideration.

The only attempt in this region to provide a working community with rainwater is the Peremabiri water supply project which has so far been successful in providing enough water to tide over the entire dry season. It consists of two underground storage tanks of total capacity $910 \text{ } \text{m}^3$ ($200,000 \text{ gallons}$) in which rainwater is collected via down spouts from the guttered eaves of the roofs of a rice mill with a total roof area of 9292 m^2 ($1,00,000 \text{ sq. ft.}$). An overhead tank (13.65 m^3), a young and distribution lines complete the water supply system. The design was based on an average annual rainfall of 330 mm (139 in.). The simplicity of the system makes it an attractive alternative as a water supply scheme for such small and remote rural communities. Table 1 gives the average annual rainfall and the seasonal distribution in some selected towns of the area. The table shows that there is abundant rainfall to meet the needs of the communities. The major problem is the provision of collection and storage facilities to meet the demands of the community during the dry season.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>BONY</th>
<th>1090</th>
<th>PEREMABIRI</th>
<th>YENACOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>102.4</td>
<td>71.1</td>
<td>54.5</td>
<td>31.1</td>
</tr>
<tr>
<td>FEB</td>
<td>142.9</td>
<td>45.7</td>
<td>143.9</td>
<td>120.4</td>
</tr>
<tr>
<td>MAR</td>
<td>194.1</td>
<td>236.2</td>
<td>140.4</td>
<td>132.8</td>
</tr>
<tr>
<td>APR</td>
<td>350.8</td>
<td>345.4</td>
<td>350.4</td>
<td>212.3</td>
</tr>
<tr>
<td>MAY</td>
<td>320.4</td>
<td>429.3</td>
<td>270.9</td>
<td>247.1</td>
</tr>
<tr>
<td>JUN</td>
<td>736.6</td>
<td>535.4</td>
<td>430.8</td>
<td>345.7</td>
</tr>
<tr>
<td>JUL</td>
<td>411.3</td>
<td>533.4</td>
<td>255.8</td>
<td>256.5</td>
</tr>
<tr>
<td>AUG</td>
<td>628.5</td>
<td>292.1</td>
<td>408.6</td>
<td>250.0</td>
</tr>
<tr>
<td>SEP</td>
<td>684.8</td>
<td>520.7</td>
<td>439.3</td>
<td>429.8</td>
</tr>
<tr>
<td>OCT</td>
<td>616.5</td>
<td>553.7</td>
<td>416.0</td>
<td>322.9</td>
</tr>
<tr>
<td>NOV</td>
<td>309.2</td>
<td>368.3</td>
<td>261.8</td>
<td>106.0</td>
</tr>
<tr>
<td>DEC</td>
<td>115.8</td>
<td>81.3</td>
<td>46.9</td>
<td>48.8</td>
</tr>
<tr>
<td>MEAN</td>
<td>6622.9</td>
<td>4013.1</td>
<td>3203.2</td>
<td>2506.8</td>
</tr>
</tbody>
</table>

For a fairly large community, it may be necessary to have several catchments and storage tanks. Where the community can afford it, the individual tanks may be buried underground and all interconnected to one overhead tank and pumping plant for distribution. Otherwise it might be necessary to have several overhead tanks each serving the conglomeration of houses from which the rainwater was collected. With regards to the
smaller settlements, it will be unwise to
design a system requiring the use of a
pumping system to raise the water to an
overhead tank for distribution. It would
be preferable to install a supply system
that will lead the water from the catchment
directly into elevated storage tanks so that
distribution will be by gravity flow only
and the maintenance will not be more than
occasional cleaning of the storage tanks.
If it becomes necessary to supplement the
rain water with river water for domestic use,
sand filtration units could be built close
to the points of withdrawal. This could be
followed by coagulation with small doses of
alum and chlorine to render the water fit for
consumption. A type of arrangement for the
distribution of such water by gravity flow is
also recommended for the smaller communities.

SOLID WASTE AND AIR POLLUTION PROBLEMS

The problem of solid waste disposal in
these small communities is not very acute.
For one thing, the quantity of waste produced
per household is quite small, and secondly
the type of refuse generated in these areas
is mainly organic in nature. A cursory
examination of the waste in one of the com-
munities revealed some rags, fish bones, plantain
peelings and corn husks, sea shells, coconut
and palm kernel shells, broken glassware,
paper cartons etc. These are usually disposed
of in the nearest convenient places or bushes
surrounding the house. While waste disposal
is presently not a serious problem, it creates
unseemly conditions and odours and is likely
to attract flies, rodents, cockroaches and
other disease spreading vectors.

Careful consideration must be given to
an early organised system of refuse disposal
in anticipation of improved economic situa-
tion of the people with the resultant better
purchasing power of items which are usually
more difficult to dispose of. An open dump
suitably located away from the residential
areas in which the refuse is occasionally
burnt would be preferable to the present habit
of indiscriminate disposal. With the recent
attention to rural areas through the creation
of local government authorities some of these
communities may well be centres of activities
in the not too distant future.

It would appear that it is unnecessary
to even mention pollution in any discussion
relating to rural communities in the develop-
ing countries since there are no industries
to pollute the air in these areas. Yet,
every day the inhabitants, mostly the women
and children, are exposed to intolerable high
concentration of smoke from the kitchens.
The wood used as fuel for cooking gives out
such smoke in the small, poorly ventilated
kitchens that would make the concentrations
of particulate matter, and carbon monoxide in
the much publicised 1952 London smog and
Denora Valley smog a child's play, especially
during the rainy season when the kitchen
windows are often looked. Sometimes the
entire family is exposed to this smoke as
either one room of the house or the
corridors usually serve as the kitchen.
Available records show a high Infant
mortality, about 20% on the average, in
these areas. Respiratory infections as a
result of such air pollution may well be one
of the many causes of the high infant morta-
ity. It is not unlikely that cases of lung
infections, bronchitis and other respiratory
diseases are common among children and
women in these areas, because of the long
term effect of inhaling the kitchen smoke.
Provision of well ventilated fireplaces to
ensure more complete combustion and the
entire separation of the kitchens from the
living rooms will reduce the degree of
exposure to high concentrations of smoke.

CONCLUSION

Various suggestions on the improve-
ment of the water supply and sanitation
practices in the Delta have been made in
this paper. Emphasis has deliberately been
laid on the design of simple systems
that can function with minimum of attention
than on complicated but technically sound
systems because of the problems of the
availability of competent personnel to
manage the systems.

Much can be achieved through careful
planning in the task of making these areas
more attractive to live in. Because land is a
premium in these areas, there is an
urgent need to evolve a land use zoning
system whereby certain areas are allotted
to specific uses. From the onset, industries
must be located in areas where their
effluents can be taken care of either by
treatment or otherwise to avoid creating
adverse pollution problems for the communi-
ties. If for example, the use of rainwater
is contemplated, the communities must draw
up guidelines as to the type of houses
that should be erected in order to provide
for the collection and storage of adequate
rainwater. It is through such planning and
involvement of the communities in the
organisation and management of projects
that the objectives of providing a better
environment could be achieved. In conclu-
sion, it is recommended that the project
of collection and use of rainwater as the
source of water supply on a community level
be given serious consideration, as this
would be a step forward in the effort to
make life worth living in these areas.

REFERENCES

1. Anderson B., Report on the soils of the
2. GRAVA B., Urban Planning Aspects of Water
3. MALONE P., Investigation of the Niger

Pollution Control. Columbia University Press