Secondary distribution network power-flow analysis

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper

Metadata Record: https://dspace.lboro.ac.uk/2134/3116

Publisher: © Acta Press

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
SECONDARY DISTRIBUTION NETWORK POWER-FLOW ANALYSIS

Murray Thomson†, David Infield†
Melody Stokes*, Mark Rylatt*, John Mardaljevic* and Kevin Lomas*

† CREST (Centre for Renewable Energy Systems Technology), Loughborough University, Loughborough, LE11 3TU, UK
* Institute of Energy and Sustainable Development, De Montfort University, Scraptoft Campus, Leicester, LE7 9SU, UK

† Tel: +44 (1509) 228144; Fax: +44 (1509) 610031; E-mail: M.Thomson@Lboro.ac.uk

ABSTRACT
Existing design methods for sizing conductors in secondary distribution networks (LV networks – typically below 500V) often employ Diversity Factors and rely heavily on a wealth of experience with similar networks and similar loads. The introduction of photovoltaic (PV) systems and micro co-generation (domestic combined heat and power: DCHP) will inevitably alter power flows in these networks, but since, at present, these distributed generators are few and far between, there is little data or experience on which to predict any effects they may have when widely installed. This paper describes on-going development of thorough and detailed modelling techniques, applicable to secondary distribution networks, using 1-minute time-series data and accurate unbalanced power-flow analysis (load-flow). These modelling techniques will provide a sound basis for the consideration of micro distributed generators.

KEY WORDS
Distributed Generation, Micro-Generators, Photovoltaics, Network Analysis

1. INTRODUCTION
Distributed generators alter the power flows in distribution networks. This can lead to localised over-voltages or exceedance of thermal limits, and these factors can present an upper limit to the allowable installation of generators in an existing network. Indeed, the risk of over-voltage is often the limiting factor for the connection of wind-turbine generators to primary distribution networks (typically 10–20kV), and the cost of reinforcing the network can be substantial.

Installation of photovoltaic (PV) systems and micro co-generation (domestic combined heat and power: DCHP) could face similar limits regarding connection to existing secondary distribution networks (LV networks – typically below 500V). Furthermore, increased use of solar water heating and improved architecture could dramatically reduce electricity consumption for heating and cooling, which would also alter network power flows. The authors are currently developing simulation software to investigate and quantify the potential effects of solar energy technologies and DCHP on existing distribution networks. The project is divided into two areas: load/generation modelling and network analysis.

Load models are very well established for the purposes of predicating bulk generation requirements and bulk power flows. However, these models are designed to predict the aggregated loads of large numbers of customers, and do not, therefore, represent the highly stochastic nature of individual customer loads. Such models are of limited value in modelling power-flows in secondary-distribution networks. Other models exist that do predict energy consumption for individual properties, but these tend to provide only monthly or annual average data, which again is of limited value in modelling secondary-distribution networks. To address this, the authors are currently developing load and generation models that will provide data for individual properties at one-minute intervals [1]. This will fully represent the highly stochastic nature of individual customer loads and will be used as input to the network power-flow analysis software being developed in parallel, and discussed in remainder of this paper.

Computer modelling of power flows in high-voltage transmission networks is long-established, typically using Newton-Raphson or Gauss-Seidel iterative methods or embellished versions of these. Balanced 3-phase operation is often assumed, though many commercial software packages can now perform unbalanced analysis, if the necessary additional data is available. Such software has also been extensively used to model primary-distribution networks, though the Newton-Raphson algorithm can sometimes fail to converge, due to high R upon X ratios. Alternative algorithms, exploiting the radial nature of distribution networks, have been developed by Kersting [2] and Shirmohammadi [3] over the last decade. This approach, known by Kersting as the Ladder Iterative Technique, involves making forward and backward sweeps through the network, and avoids the need to construct and manipulate a large network-admittance matrix. It has good convergence...
characteristics, can include detailed non-linear models of
tap-changing transformers etc. and is highly efficient for
networks with large numbers of nodes.

Any of the power-flow analysis algorithms mentioned
above can be applied to secondary-distribution networks;
however, the highly stochastic nature of individual loads
renders any single-point-in-time “snapshot” analysis of
very limited value. Traditionally, the stochastic nature of
individual loads is accommodated by use of Diversity
Factors \(^4\). Ideally, diversity factors should be
determined though a comprehensive survey of local loads.
In practice however, it is usual to rely on decades of
experience with similar loads, which is valid, provided
that the loads can be expected to have similar behaviour
in the future. This however may not be the case, if there is
significant uptake of solar-energy technologies or DCHP
or both.

2. POWER-FLOW ALGORITHM

Monte-Carlo versus Probabilistic

In a Monte-Carlo simulation, a single-point-in-time
power-flow algorithm is run repeatedly with loads
sampled from appropriate probability distributions. If a
large number of time-series values are available, the
approach can be reduced to simply undertaking a steady
state load flow for the data corresponding to each time
step. A more elegant, probabilistic, approach manipulates
the probability density functions directly as part of the
power-flow solution algorithm. Earlier research at
CREST \(^5\)[\(^6\)], implemented two alternative probabilistic
power-flow algorithms. This work demonstrated the
difficulties of probabilistic power-flow, particularly
regarding the handling of partial correlations. Also,
because the fast Fourier transforms employed to
manipulate the probability density functions are
computationally intensive, the work failed to demonstrate
any significant reduction in overall computing time, when
compared with the Monte-Carlo approach. Consequently
the latter approach has been adopted for the project in
hand.

Newton-Raphson versus Ladder-Iterative Technique

With Monte-Carlo simulation, the single-point-in-time
power-flow algorithm is run a great many times and must
therefore be very fast in itself. The authors wrote single-
phase (balanced) versions of both Newton-Raphson and
Ladder-Iterative algorithms in MATLAB. Both were
carefully written, with regard to execution time, and made
full use of MATLAB’s powerful matrix-manipulation
functions. The two programs were tested on a typical
radial rural 11-kV primary-distribution network with 328
nodes. They both converged within 5 iterations. The
Newton-Raphson algorithm took just over 5 seconds,
whereas, the Ladder-Iterative algorithm took under 0.5
seconds. This tends to confirm the findings of other
researchers \(^3\), although it should be noted that
comparisons of this kind are very sensitive to the chosen
test network and unintentional differences in
programming efficiency. The Ladder-Iterative algorithm
was selected for use in this project.

Unbalanced Power-flow

At the primary-distribution level, it is sometimes
reasonable to assume balanced operation and to conduct
power-flow analysis on that basis. (Often, the assumption
is not entirely sound, but is made anyway because
individual phase data is not available.) At the secondary-
distribution level, balanced operation cannot normally be
assumed and unbalanced analysis is a necessity.

The extension of the balanced Ladder-Iterative program,
described above, to perform unbalanced 3-phase power-
flow was fairly straightforward: – because well-structured
MATLAB code uses matrixes in preference to “for”
loops, the extra dimension is readily accommodated. The
program was checked against a leading commercial
distribution-network analysis package and the results
were virtually identical.

The greatest challenge lay in obtaining the cable
impedance parameters relevant to unbalanced operation.
Some cable manufactures list sequence impedances for
high-voltage cables but no such values are readily
available for 600/1000-Volt cables. Clearly, unbalanced
analysis of low-voltage networks is rarely attempted.

3. TEST NETWORK

Figure 1 – Test Network
Testing of the software was carried out on a 400/230-Volt secondary-distribution circuit in city-centre Leicester, Midlands, UK. The circuit has 40 nodes and feeds 21 houses, as shown in Figure 1. The locations and cable types of the 3-phase mains were accurately modelled, according to the network operators' database. The locations and cable types of the single-phase services to individual houses were assumed and the choice of phase randomly generated.

The source voltage, at the secondary of the distribution transformer, was taken as 400 V exactly. Clearly this will vary in practice, and it would be very much better to model the whole primary-distribution feeder and all its secondary-distribution circuits, which is the intention in due course.

4. LOAD DATA

The detailed load models, mentioned in the introduction, are not yet complete and so measured load data from 15 houses elsewhere in the Midlands, UK, was employed for demonstration purposes. (Data from all 15 houses recorded on Wed 14-Dec-0095 was used, together with data from 6 of the same houses recorded on Wed 15-Dec-0094.) The data was recorded at 1-minute intervals and displays the highly stochastic nature expected of individual house loads.

It is common to describe loads as constant-power, constant-current, constant impedance or any combination of these, and this can readily be accommodated in the power-flow analysis program. For measured power data, as in this case, the constant-power model is appropriate and was employed.

Reactive power had not been measured so a power factor of between 0.94 and 0.98 was randomly assigned for every data point. This caused the reactive power data to be even more stochastic than the active power. For comparison, a constant power factor of 0.96 was used, and made virtually no difference to the overall results. The load models, mentioned in the introduction, will include estimation of reactive power based on end-use.
5. RESULTS

One full day’s operation of the test network was simulated at 1-minute intervals. This is 1440 time steps and, at each time step, the software calculates 3-phase complex voltages and currents throughout the 40-node network. The whole analysis takes around 100 seconds to perform, which is very respectable at this early stage of development. The program is currently written in MATLAB that is interpreted at runtime. There are various routes through which performance could be dramatically improved.

Some example results are shown in Figure 2. The top graph shows the active power consumed by one of the houses with respect to time throughout the 24-hour day (input data). The highly stochastic nature of an individual customer load is immediately apparent. The middle graph shows the percentage voltage at the same house calculated by the power-flow software. (Recall that this demonstration assumes 100% voltage at the source node. When the rest of the network is considered voltage variations will be much greater.) The bottom graph shows the aggregated load of all 21 houses. The “smoothing” of the load profile through aggregation is apparent.

Retuning to the middle graph (calculated voltage), it can be seen, as expected, that the voltage is depressed around 19:00h when the house load is high. However, the voltage is also depressed during the night; this is due to a neighbour’s off-peak heating system and could not have been anticipated from house’s own load profile or from the aggregated load profile. Close inspection of the middle graph reveals that the voltage occasionally exceeds 100%. This is due to neutral voltage displacement, and is to be expected in unbalanced 3-phase systems. These points demonstrate that voltage prediction in such networks is not entirely intuitive.

Similar graphs for all the other houses can readily be plotted and examined; likewise conductor currents, losses etc, can be studied. The network area can be increased to include many more houses and the time frame may be extended. Clearly, manual interpretation of the results will quickly become impossible. To address this, post-processing will be provided to identify, for example: frequency of voltage excursions.

6. CONCLUSIONS

Improved power-flow analysis techniques are required for secondary distribution networks, in particular to predict effects caused by significant uptake of solar-energy technologies or DCHP or both. The authors are currently developing such techniques and this paper has discussed the selection of the power-flow analysis algorithm: Monte-Carlo application of an Unbalanced Ladder-Iterative Technique. Initial results are promising and the work is ongoing.

7. ACKNOWLEDGEMENT

This research is funded by the Engineering and Physical Sciences Research Council, UK, project number GR/N35694/01.

REFERENCES

