Numerical quadrature and its applications

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This thesis consists of copies of separate publications. It has been redacted for reasons relating to the law of copyright. For more information please contact the author.
- A doctoral thesis submitted in partial fulfilment of the requirements for the award of Doctor of Science at Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/31985

Publisher: © G.A. Evans et al.

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 2.5 Generic (CC BY-NC-ND 2.5) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/2.5/

Please cite the published version.
This item was submitted to Loughborough University as a PhD thesis by the author and is made available in the Institutional Repository (https://dspace.lboro.ac.uk/) under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
<table>
<thead>
<tr>
<th>AUTHOR/FILING TITLE</th>
<th>EVANS, G. A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCESSION/COPY NO.</td>
<td>09426402</td>
</tr>
<tr>
<td>VOL. NO.</td>
<td></td>
</tr>
<tr>
<td>CLASS MARK</td>
<td></td>
</tr>
<tr>
<td>20 MAR 1992</td>
<td>Loan copy</td>
</tr>
<tr>
<td>20 MAR 1992</td>
<td></td>
</tr>
</tbody>
</table>

009 4264 02
Numerical Quadrature

and its Applications

by

G. A. Evans
Acknowledgements

In a period of eighteen years many people influence one's academic development, especially remembering that in the early years one is setting off on a career as a junior lecturer and at the end one has enjoyed senior status for almost a decade.

I have been fortunate to have had continuing support from Professor Storey who has been my head of department throughout almost the whole period of this work. He has provided an environment to allow research development despite at times departmental pressure caused by high teaching loads.

Of equal importance has been the close co-operation and support I have had from David Hogg and his computer centre and staff. Again he has been in office throughout the period of research, and the machines employed range from an early 32K 1900 through to Primes and a Honeywell system. Some work was also done on the 2900 at Nottingham and the regional CDC at Manchester. A large number of micros have been employed in recent years (even electronic calculators were not available in the early stages), in particular the presentation was made using TEX on a Macintosh.

It is the personal contacts which keep work progressing on a day to day basis, and result in considerable influence. One man stands out in this respect. Dr. John Hyslop became a friend and colleague and a provider of superb problems in his area of quantum mechanics in the early stages of this work. He died tragically in February, 1985.
Contents
Ch 1. Introduction and philosophy
1. Introduction
2. Philosophy

Ch 2. Oscillatory integrals – finite range
1. Introduction
2. Introduction to the structure of Newton-Cotes formulae
3. Use of interpolatory polynomials
4. Use of Taylor series
5. Comparison of the error terms
6. Derivation of Newton-Cotes formulae using Taylor series
7. Classical methods – finite range
8. Automatic generation of Newton-Cotes like quadrature rules for oscillatory functions
9. Results
10. Algorithm for \(\sigma \)
11. Computing Bessel functions
12. A direct algorithm using Chebyshev series
13. Stability of the algorithm and practical recommendations
14. Computational procedure and numerical application

Ch 3. Oscillatory integral – infinite range
1. Introduction
2. The use of accelerators
3. A comparison with other approaches
4. Implementation of the acceleration techniques
5. Numerical comparison and discussion
6. Two special examples
7. Conclusions and physical applications

Appendix A
Chebyshev based quadrature formulae for trigonometric integrals

Appendix B
Gaussian formulae for trigonometric integrals
Ch 4. Singular quadrature
1. Introduction
2. Generation of quadrature sequences
3. Acceleration methods
4. Results and discussion
5. Introduction
6. Polynomial transformations
7. Further tests and discussion
8. Introduction to the tanh transformation
9. Derivation of the quadrature rules
10. Truncation strategies and error estimates
11. Results for singular integrals using Schwartz's optimum h
12. Automatic quadrature procedure
13. Introduction to generalized transformations
14. Generating the transformation
15. Implementation of the quadrature rules
16. Results and conclusion

Ch 5. Multiple integrals
1. Introduction
2. The formulation of the rule
3. The precision of the integrand
4. Results and Conclusions
5. Introduction
6. Extension to three dimensions
7. Tests and results
Ch 6. Integral equations and
 a numerical differentiator

1. Introduction to the iterative
 solution of Volterra integral
 equations

2. Integral equations for the
 slowing down of neutrons

3. Other examples of integral equations

4. Numerical integration formulae

5. Results and discussion

6. Introduction to the solution of
 non-linear Fredholm equations

7. The tubular reactor equation and
 and its integral form

8. Iterative solution of the integral
 equations

9. Modified iterative scheme

10. Conclusion

11. Introduction to the variational
 solution of integral equations

12. Formulation of the iterative scheme

13. Variational solution

14. Implementation

15. Examples and results

16. Introduction

17. The differentiation formulae

18. Errors

19. Results and conclusions

Int. J. Comp. Math. 22 (1987)

J. Comp. Phys. 32 (1979)
Ch 7. Applications

Quantum mechanics

1. Introduction

2. The variational functionals and formulation of the integrals

3. Direct numerical evaluation of the integrals

4. The use of Shanks' non-linear transformations to accelerate convergence

5. Fourier transform techniques

6. Evaluation of the auxiliary integrals $A_1, A_2, A_3 \ldots$

7. Analytic reduction of the integral I

8. Analytic reduction of the integral I'

9. Numerical evaluation of the analytically reduced integrals I and I'

10. Results arising from the semi-analytic methods

11. Introduction to the use of Slater orbitals

12. Separated atom trial functions

13. Evaluation of the integrals

14. The integrals v_{aa} and v_{ab}

15. The integral g_{aa}

16. The integral g_{ab}

17. Application to the H_2^+ molecule

Ch 7 Appendix A

Definition of the spherical harmonics $Y_{l,m}(\theta, \phi)$

18. Introduction to the implementation of variational procedures

19. Formulation of the unscaled equations and optimization

20. Numerical applications and discussion

21. Introduction to a numerical integration scheme for atomic systems

22. Basic equations and the numerical integration scheme

23. Applications and discussion

24. Conclusions

Appendix B

25. Introduction to the variation-iteration solution of the Hartree-Fock equation

26. The variation-iteration solution of the Hartree-Fock equations

27. Applications and numerical results

28. Conclusions

Int. J. Quantum. Chem. 11 (1977)

Int. J. Quantum. Chem. 12 (1977)
<table>
<thead>
<tr>
<th>Section</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>J. Aerosol Sci. 3 (1972)</td>
</tr>
<tr>
<td>2. Introduction to low Reynolds' number flow</td>
<td></td>
</tr>
<tr>
<td>4. Introduction to computational model of liquid metal ion sources</td>
<td></td>
</tr>
<tr>
<td>5. The geometric modelling and solution of Poison's equation</td>
<td></td>
</tr>
<tr>
<td>6. Determination of the ion velocities and charge densities</td>
<td></td>
</tr>
<tr>
<td>7. Discussion</td>
<td></td>
</tr>
<tr>
<td>8. Introduction to high accuracy ion optics computing</td>
<td>Vacuum 36 (1986)</td>
</tr>
<tr>
<td>9. The geometric modelling and solution of Laplace's equation</td>
<td></td>
</tr>
<tr>
<td>10. Trajectory analysis and analytical comparisons</td>
<td></td>
</tr>
<tr>
<td>11. Instrument design applications</td>
<td></td>
</tr>
<tr>
<td>11.1. Individual ion lenses</td>
<td></td>
</tr>
<tr>
<td>11.2. SIMS extraction optics</td>
<td></td>
</tr>
<tr>
<td>11.3. Lithography columns</td>
<td></td>
</tr>
<tr>
<td>12. Conclusions</td>
<td></td>
</tr>
<tr>
<td>13. Introduction to eddy current computations</td>
<td>Proc. Eddy</td>
</tr>
<tr>
<td>15. The numerical process</td>
<td></td>
</tr>
<tr>
<td>16. Results</td>
<td></td>
</tr>
<tr>
<td>Appendix A</td>
<td></td>
</tr>
</tbody>
</table>