Kaolin reinforcement of some rubbers with novel sulfur cure systems

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

• This paper is produced with kind permission of the publisher.

Metadata Record: https://dspace.lboro.ac.uk/2134/32146

Version: Published

Publisher: Dr Heinz B. P. Gupta

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Enhanced rubber compounds with Kuraray Liquid Rubber

- Functionalized grades improve adhesion to metal
- Co-vulcanizable characteristics prevent oil migration
- Improved silica/carbon black dispersion in certain formulations
- Glass transition temperature (Tg) control enables grip control in a wide temperature range

- Beadfiller/Apex
- Side wall/Carcass
- Rim cushion
- Tread
- Cushion

Visit us: Tire Technology Expo, Booth C438 www.elastomer.kuraray.com
Reinforcement with kaolin

Kaolin reinforcement of some rubbers with novel sulfur cure systems

S. H. Sheikh, A. Ansarifar

A large amount of kaolin (China clay) was used to reinforce the hardness, tensile strength, elongation at break, stored energy density at break, tear resistance, and Young’s modulus of some sulfur-cured NR, BR and EPDM. The kaolin surface had been pre-treated with 3-mercaptopropyltrimethoxysilane (MPTS) to reduce its polarity and prevent it from adsorbing moisture which could have been detrimental to the cure of the rubbers. For NR, the hardness and Young’s modulus improved, tensile strength and tear resistance were unchanged and the remaining properties deteriorated when kaolin was added. The viscosity increased and the scorch and optimum cure times decreased with kaolin. The highest cure rate ever reported for a sulfur-cured NR-based compound was achieved when kaolin was mixed with the rubber. For BR and EPDM, most of the properties including the viscosity gained significantly from the presence of kaolin in the rubbers. It was concluded that kaolin was an extending or non-reinforcing filler for NR, and highly reinforcing for BR and EPDM. Notably, the scorch and optimum cure times and cure rate of BR benefited so much, whereas with the exception of the scorch time, the optimum cure time and cure rate of EPDM were adversely affected by kaolin. The addition of kaolin increased the crosslink density of NR but had a detrimental effect on the crosslink density of BR and EPDM. The early indications are that kaolin is a viable alternative to carbon black and silica/silane systems in rubber reinforcement.

200 nm

Fig. 1: Transmission electron micrograph showing kaolin particles

Dr. Ali Ansarifar
m.a.ansarifar@lboro.ac.uk
Senior Lecturer in Polymer Engineering
in the Materials Department

Saad H. Sheikh
Polymer Group, Materials Department
Loughborough University,
Leicestershire, United Kingdom
www.lboro.ac.uk

All figures and tables, unless otherwise stated,
have been kindly provided by the authors.
The rubber filled with SRSO-modified kaolin cured faster than that of a similar mix containing unmodified kaolin. In addition, the NR vulcanisates containing SRSO-modified kaolin showed considerable increases in tensile modulus, tensile strength, and elongation at break. This indicated kaolin potential as an organo-modified nanofiller. NR nanocomposites reinforced with 20 – 50 phr of saline-modified kaolin showed very impressive mechanical properties and higher thermal stability compared with the pure NR. The hardness and tensile properties improved when the filler loading was raised and an optimum tensile strength was achieved at the highest loading of the modified kaolin [9]. In a recent study, the author and co-worker [10], using kaolin pre-treated with 3-mercaptopropyltrimethoxysilane (MPTS), developed a new method that optimised the reaction between the sulfur in MPTS on the kaolin surface and NR, and the rubber was then cured with additional sulfur and its mechanical properties measured. The hardness and Young’s modulus improved noticeably and the tensile strength rose marginally. Other properties such as the scorch and optimum cure times and rate of cure also benefited from the addition of kaolin to the rubber. All the indications were that kaolin had promising capability for reinforcing rubber properties with major benefits for cure too.

The aim of this preliminary study was to use a high loading of kaolin pre-treated with MPTS to improve the hardness and mechanical properties of some commercially important rubbers. The effect of kaolin on viscosity and cure properties of the rubbers was also investigated. The study used a new method for measuring the exact amount of the chemical curatives required in the sulfur vulcanisation of the rubbers.

2 Experimental

2.1 Materials

The raw rubbers used were standard Malaysian natural rubber (NR) grade L (98 wt% 1,4-cis content, SMRL), high cis polybutadiene rubber (96 wt% 1,4-cis content, Buna CB24, Bayer, Newbury, UK, not oil extended), ethylene-propylene-diene rubber (EPDM, 48 wt% ethylene content, 9 wt% ethylidene norbornene content, and 13 wt% oil content, Keltan 6251A, Lanxess, The Netherlands). The reinforcing filler was Mercap 100 (Imerys Ceramics, USA). Mercap 100 is kaolin (China clay, Al₂Si₂O₅(OH)₄), the surface area and Young’s modulus improved noticeably and the tensile strength improved marginally. Other properties such as the scorch and optimum cure times and rate of cure also benefited from the addition of kaolin to the rubber. All the indications were that kaolin had promising capability for reinforcing rubber properties with major benefits for cure too.

In addition to the raw rubbers and kaolin, the other ingredients were elemental sulfur (curing agent, Solvay, Hanover, Germany), Santocure TBB (N-tert-butyl-2-benzothiazole sulphenamide, a fast-curing delayed-action accelerator with a melting point of 105 °C, Sovereign Chemicals, USA), zinc oxide (ZnO, an activator, Harcros Durham Chemicals, Durham, UK), stearic acid (an activator, Anchor Chemicals Ltd, UK), and Santoflex 13 (6PPD, N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine, an antioxidant with a melting point of 45 – 51 °C, Taminc BVBA (Eastman Chemical), Gent, Belgium).

2.2 Mixing

The raw rubbers were mixed with the chemical ingredients in a Haake Rheocord 90 (Berlin, Germany), a small laboratory mixer with counter-rotating rotors, to produce compounds. The Banbury rotors and the mixing chamber were initially set at ambient temperature (23 °C) and the rotor speed was set at 45 rpm. The volume of the mixing chamber was 78 cm³ and it was 60 % full during mixing. Polylab monitor 4.17 software was used for controlling the mixing condition and storing data. To prepare the unfilled NR, BR and EPDM compounds, the raw rubber was introduced first into the mixer and mixed for 1 min and then sulfur, TBBS, ZnO, stearic acid, and antioxidant were added and mixed for another 12 min. A similar procedure was used for making the kaolin-filled compounds where kaolin was added 3 min after mixing started. A total mixing time of 13 min was sufficient to disperse the kaolin particles fully in the rubber matrix (fig. 2). The temperature of the compounds during mixing was 58 – 62 °C.
2.3 Determination of the optimum amount of chemical curatives

Sulfur is used extensively in the vulcanisation of a wide range of industrial rubber articles. For example, the cure system in a NR-based tyre belt skim compound has 5 phr [11], in a SBR/BR-based compound for footware 2 phr [12], and in an EPDM-based general gaskets 1 phr of sulfur [13]. In this preliminary study, the NR had 1 phr and 4 phr, BR 0.5 phr and 1 phr, and EPDM 1 phr of sulfur. To react the sulfur with the rubber to form crosslinks, TBBS was added. The loading of TBBS was raised from 0.25 phr to 4.5 phr and 47 compounds were made. Zinc oxide was used as primary activator to improve the effectiveness of TBBS during curing. The loading of ZnO in the rubbers with sulfur and TBBS was increased from 0 to 0.5 phr and 44 compounds were mixed. To evaluate the effect of stearic acid (used as secondary activator with ZnO) on the cure properties of the rubbers with sulfur, TBBS and ZnO, 22 compounds were prepared. The loading of stearic acid was raised from 0 to 2.5 phr to measure the amount needed to improve efficiency of the cure systems.

2.4 Determination of viscosity, cure properties, hardness and mechanical properties

The viscosity, cure properties, hardness and mechanical properties of the rubbers were measured according to the procedures described in the British Standards:

- Viscosity: British Standard 1673: Part 3 (1969), using a Mooney viscometer (Wallace Instruments, Surrey, UK) and the results were expressed as Mooney Units (MU).
- Cure properties: British Standard 1673: Part 10 (1977), using an oscillating disc rheometer curemeter (ODR, Monsanto, Swindon, UK) at 160 ± 2 °C. From the cure traces, scorch time, t_s, which is the time for the onset of cure, and the optimum cure time, t_m, which is the time for the completion of cure were determined. ΔTorque, which is the difference between the maximum and minimum torque values on the cure trace of a compound (fig. 3) and is an indication of crosslink density changes in the rubber was also measured. ΔTorque was afterwards plotted against the loading of TBBS, ZnO, and stearic acid.
- Hardness: British Standard 903: Part A26 (1995), using cylindrical samples 6 mm thick and 15 mm in diameter, in a Shore A Durometer hardness tester (The Shore Instrument & MFG, Co., New York, USA). The test temperature was 23.5 °C.
- Tensile stress-strain properties (tensile strength, elongation at break, stored energy at break, and Young’s modulus): British Standard 903: Part A2 (1995), in a LR50K plus materials testing machine (Lloyd Instruments, UK), using standard dumbbell test pieces. Lloyd Nexygen 4.5.1 was used to process and store the data. The test temperature was 22 °C and the crosshead speed was set at 100 mm/min.
- Tear energy: British Standard 903: Part A3 (1995), in a LR50K plus materials testing machine (Lloyd Instruments, UK), using trouser test pieces. The test temperature was at ambient (23 °C), tear angle 180°, and crosshead speed was set at 50 mm/min.

3 Results and discussion

3.1 Optimum sulfur cure systems for NR, BR and EPDM

Figure 4 shows ΔTorque as a function of TBBS loading for the NR rubbers with 1 phr and 4 phr sulfur. For the rubber with 1 phr sulfur, ΔTorque increased from 5 dNm to 23 dNm as the loading of TBBS was raised to 1.5 phr, and it continued rising at a much slower rate to about 32 dNm when the loading of TBBS reached 3.5 phr. The addition of 1.5 phr TBBS was sufficient to react the

![Fig. 4: ΔTorque versus TBBS loading for NR compounds with different sulfur loadings](image)

![Fig. 5: ΔTorque versus ZnO loading for NR compounds with different sulfur and TBBS loadings](image)

![Fig. 6: ΔTorque versus stearic acid loading for rubber compounds with different sulfur and TBBS loadings in the presence of ZnO](image)
sulfur with the rubber to form crosslinks. For the rubber with 4 phr sulfur, \(\Delta \text{torque} \) increased from 24 dNm to 41 dNm as the loading of TBBS was increased from 0.5 phr to 3.5 phr. Subsequently, \(\Delta \text{torque} \) rose to 43 dNm when an additional 1 phr TBBS was incorporated in the rubber. Clearly, 3.5 phr TBBS was sufficient to react the sulfur with the rubber.

To enhance the efficiency of cure in the NR with sulfur and TBBS, ZnO was added (fig. 5). The addition of 0.2 phr ZnO to the rubber with 1 phr sulfur and 1.5 phr TBBS was enough to improve the efficiency of TBBS as indicated by an increase in \(\Delta \text{torque} \) from 21 dNm to 26 dNm. However, when the loading of ZnO was raised to 0.5 phr, \(\Delta \text{torque} \) rose at a much slower rate to about 33 dNm. Similarly, \(\Delta \text{torque} \) for the rubber with 4 phr sulfur and 3.5 phr TBBS reached optimum value at 0.2 phr ZnO and thereafter the rise was marginal. Note that a small amount of ZnO, i.e. as low as 0.2 phr, when added as primary activator, improved the performance of TBBS to such a degree during curing as shown by increase in \(\Delta \text{torque} \) (fig. 5).

Stearic acid is a fatty acid that is added as co-activator with ZnO in sulfur vulcanisation. It also acts as plasticiser and internal lubricant between polymer chains, and aids dispersion of solid ingredients in the rubber. Zinc stearate is formed when stearic acid reacts with ZnO and is an essential cure activator [14]. The loading of stearic acid in the NR with 1 phr sulfur, 1.5 phr TBBS and 0.2 phr ZnO was raised from 0 to 2.5 phr to increase the dispersion and solubility of ZnO and enhance efficiency of the curing reaction in the rubber. Figure 6 shows \(\Delta \text{torque} \) versus stearic acid loading. The inclusion of stearic acid in the cure system had no benefit for \(\Delta \text{torque} \) at all, which stayed constant at about 27 dNm. It is abundantly clear that ZnO is a very effective primary activator in improving the performance of TBBS in the absence of secondary activators such as stearic acid.

Figure 7 shows \(\Delta \text{torque} \) as a function of TBBS loading for the BR rubbers with 0.5 phr and 1 phr sulfur. For the rubber with 0.5 phr sulfur, \(\Delta \text{torque} \) increased from 25 dNm to 45 dNm as the loading of TBBS was raised to 1.75 phr, and then it stopped rising once the loading of TBBS reached 3 phr. The addition of 1.75 phr TBBS was sufficient to react the sulfur with the rubber to form crosslinks. For the rubber with 1 phr sulfur, \(\Delta \text{torque} \) increased from 39 dNm to 61 dNm as the loading of TBBS was raised from 0.5 phr to 3 phr. Subsequently, \(\Delta \text{torque} \) remained essentially unchanged when an additional 0.8 phr TBBS was incorporated in the rubber. Clearly, 3 phr TBBS was sufficient to react the sulfur with the rubber.

Zinc oxide was then added to enhance the efficiency of cure in the BR with sulfur and TBBS. For the rubber with 0.5 phr sulfur and 1.75 phr TBBS, the addition of 0.2 phr ZnO was enough to make TBBS more effective as indicated by an increase in \(\Delta \text{torque} \) from 62 dNm to 71 dNm. But when the loading of ZnO was raised to 0.35 phr, \(\Delta \text{torque} \) showed no increase and remained at about 72 dNm (fig. 8). \(\Delta \text{torque} \) for the rubber with 1 phr sulfur and 3 phr TBBS reached optimum value, i.e. 92 dNm, at 0.2 phr ZnO, and afterwards it rose marginally to about 94 dNm when an extra 0.25 phr ZnO was added. Notably, when 0.5 phr stearic acid was added to the BR with 0.5 phr sulfur, 1.75 phr TBBS and 0.2 phr ZnO,
Reinforcement with kaolin

Δ Torque first decreased sharply from 71 dNm to 50 dNm and then remained almost steady until the loading of stearic acid reached 2.5 phr. Evidently, small amounts of stearic acid, i.e. up to 0.5 phr, were detrimental to the crosslink density of the rubber as indicated by a drop in Δ torque (fig. 6).

Figure 9 demonstrates Δ torque versus TBBS loading for the EPDM with 1 phr sulfur. Δ Torque increased steeply from 26 dNm to 42 dNm as the loading of TBBS was boosted from 0.25 phr to 1 phr. Subsequently, there was no improvement in Δ torque once the amount of TBBS reached 3.8 phr. Apparently, 1 phr TBBS was enough to react the sulfur with the rubber. Zinc oxide was later added to improve the efficiency of TBBS. Δ torque rose noticeably from 41 dNm at 0 phr ZnO to 56 dNm at 0.075 phr ZnO and the rate of increase slowed down significantly thereafter. Δ Torque then reached to about 67 dNm when the loading of ZnO was raised by an additional 0.325 phr (fig. 10). It is remarkable that a small amount of ZnO, i.e. as low as 0.075 phr, had such a major influence on the performance of TBBS in the cure system as indicated by a significant rise in Δ torque.

When 0.5 phr stearic acid was mixed with the EPDM with 1 phr sulfur, 1 phr TBBS and 0.075 phr ZnO, Δ torque decreased from 56 dNm to 47 dNm and subsequently continued decreasing slowly to about 42 dNm when the amount of stearic acid was raised to 2.5 phr (fig. 6). The crosslink density as shown by Δ Torque did not benefit from the addition of stearic acid to the rubber.

After these measurements were completed, three cure systems were selected for further work:

- for NR – 4 phr sulfur, 3.5 phr TBBS, and 0.2 phr ZnO
- for BR – 0.5 phr sulfur, 1.75 phr TBBS, and 0.2 phr ZnO
- for EPDM – 1 phr sulfur, 1 phr TBBS, and 0.075 phr ZnO.

To protect the rubbers against environmental ageing, 1 phr antidegradant (6PPD) was also added. Note that there were only three chemicals in the cure systems, i.e. sulfur, TBBS and ZnO, which added up to 7.7 phr in the NR compounds, 2.45 phr in the BR compounds and 2.075 phr in the EPDM compound. This is a significant reduction both in the number and amount of the chemicals in the cure system. In addition to the chemical curatives, the NR compounds had 60 phr and 140 phr kaolin and the BR and EPDM compounds 60 phr kaolin (tab. 1, compounds 1 – 7). These compounds were mixed as described above and their viscosity and cure properties measured. They were then cured at 160 °C and their hardness, tensile properties and tear resistance determined.

3.2 Effect of kaolin on the viscosity and cure properties of NR, BR and EPDM

The inclusion of kaolin did not affect the viscosity and cure properties of the rubbers in the same way. The viscosity of NR

![Fig. 11: Mooney viscosity versus kaolin loading for compounds 1 – 3 (tab. 1).](image1)

![Fig. 12: Optimum cure time t_{95} and scorch time t_s versus kaolin loading for compounds 1 – 3 (tab. 1).](image2)
increased from 44 MU to 85 MU when 140 phr kaolin was added (fig. 11). A similar trend was also observed for BR and EPDM where the viscosity rose from 42 MU to 66 MU and from 70 MU to 89 MU, respectively after 60 phr kaolin was mixed with the rubbers (tab. 1). This was expected, since the inclusion of solid particles in raw rubber raises the rubber viscosity [15].

The \(t_{5\%} \) and \(t_{95\%} \) of NR shortened from 4.7 min to 2.1 min and 8.3 min to 3.1 min, respectively with 140 phr kaolin (fig. 12). The rate of cure as indicated by CRI benefitted greatly from kaolin and increased from 21.5 min\(^{-1}\) to 40 min\(^{-1}\) when 60 phr kaolin was added. The rate of cure decreased as shown by a large fall in CRI from 6.5 min\(^{-1}\) to 2.7 min\(^{-1}\). The rubber lost some crosslinks as demonstrated by a reduction in \(\Delta \text{torque} \) from 55 dNm to 44.5 dNm (tab. 1). This revealed the damaging effect of kaolin on the crosslink density of both BR and EPDM.

For BR, the addition of kaolin shortened the \(t_{5\%} \) and \(t_{95\%} \) from 11.3 min to 3.5 min and 47.5 min to 12.5 min, respectively. The rate of cure also improved from 2.8 min\(^{-1}\) to 11.1 min\(^{-1}\). Though, kaolin had a detrimental effect on the crosslink density of the rubber because \(\Delta \text{torque} \) decreased from 72 dNm to 56 dNm (tab. 1).

For EPDM, the \(t_{5\%} \) decreased from 6.2 min to 2.6 min but surprisingly, the \(t_{95\%} \) increased from 21.5 min to 40 min when 60 phr kaolin was added. The rate of cure declined as shown by a large fall in CRI from 6.5 min\(^{-1}\) to 2.7 min\(^{-1}\). The rubber lost some crosslinks as demonstrated by a reduction in \(\Delta \text{torque} \) from 55 dNm to 44.5 dNm (tab. 1). This revealed the damaging effect of kaolin on the crosslink density of both BR and EPDM.

Kaolin was very beneficial to the properties of BR and EPDM. For BR, the hardness increased by 23 % and for EPDM, by 34 %, respectively when 60 phr kaolin was incorporated in the rubbers. For BR, the tensile strength, elongation at break and Young’s modulus rose by 759 %, 256 % and 114 %, respectively. The effect of kaolin on the properties of EPDM was even more impressive. For this rubber, the tensile strength, elongation at break and Young’s modulus improved by 964 %, 332 % and 71 %, respectively. The properties related to fracture were also enhanced very substantially. For BR, the stored energy density at break and tear resistance were increased by 2,442 % and 536 %, respectively and for EPDM, by 3,133 % and 1,479 %, respectively.

Table 2 summarises the hardness and mechanical properties of the rubber vulcanisates. These properties benefited to a great extent from the addition and progressive increases in the loading of kaolin. For NR, the hardness increased by 64 % when 60 phr kaolin was added and the trend continued rising by another 28 % when the loading of kaolin reached 140 phr. Similarly, the Young’s modulus rose by 170 % with 60 phr kaolin and then by an extra 148 % when the full amount of kaolin, i.e. 140 phr, was reached. This was expected, since when soft rubber is replaced with solid filler, the rubber becomes harder, causing the Young’s modulus to increase. The tensile strength and tear resistance were unchanged and the elongation at break and stored energy density at break deteriorated by a total of 65 % and 34 %, respectively when 140 phr kaolin was mixed with the rubber.

3.3 Effect of kaolin on the hardness and mechanical properties of the NR, BR and EPDM vulcanisates

Table 2: Hardness and mechanical properties of the rubber vulcanisates

<table>
<thead>
<tr>
<th>Properties</th>
<th>Compound number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Hardness in Shore A</td>
<td>33</td>
</tr>
<tr>
<td>Tensile strength in MPa</td>
<td>22</td>
</tr>
<tr>
<td>Range of values in MPa</td>
<td>21–22</td>
</tr>
<tr>
<td>Elongation at break in %</td>
<td>1,667</td>
</tr>
<tr>
<td>Range of values in %</td>
<td>1,645–1,669</td>
</tr>
<tr>
<td>Young’s modulus in MPa</td>
<td>1.0</td>
</tr>
<tr>
<td>Range of values in MPa</td>
<td>1.0–1.1</td>
</tr>
<tr>
<td>Stored energy density at break in MJ/m(^2)</td>
<td>90</td>
</tr>
<tr>
<td>Range of values in MJ/m(^2)</td>
<td>90–91</td>
</tr>
<tr>
<td>Tear resistance in kJ/m(^2)</td>
<td>13</td>
</tr>
<tr>
<td>Range of values in kJ/m(^2)</td>
<td>11–15</td>
</tr>
</tbody>
</table>

Fig. 13: Cure rate index versus kaolin loading for NR compounds 1 – 3 (tab. 1)

Fig. 14: \(\Delta \text{torque} \) versus kaolin loading for NR compounds 1 – 3 (tab. 1)
Reinforcement with kaolin

Evidently, kaolin is an extending or non-reinforcing filler for the strain-induced crystallising NR and highly reinforcing for the non-crystallising BR and EPDM. Since kaolin has a platelet structure (fig. 1), it may be assumed that the mechanism by which rubber is reinforced may be different to that by spherical particles such as CB and silica. The results suggest that strain-induced crystallising rubbers such as NR may benefit less from kaolin than the non-crystallising ones, e.g., BR and EPDM. The exact mechanism of reinforcement by kaolin in rubber is under investigation.

4 Conclusions

From this study, the following main conclusions can be drawn:

• A new method measured the exact optimum amount of TBBS accelerator and ZnO activator at a given loading of sulfur in the vulcanisation of NR, BR and EPDM and eliminated stearic acid from the cure system entirely. The requirement for ZnO was 0.075 – 0.2 phr.

• Kaolin was an extending or non-reinforcing filler for the strain-induced crystallising NR and highly reinforcing for the non-crystallising BR and EPDM.

It is anticipated that a reduction in the use of these chemicals will improve health and safety at the work-place, reduce cost, and minimise damage to the environment. The use of MPTS pre-tread kaolin in conjunction with the new method for measuring the exact amount of the curatives in sulfur vulcanisation provides an effective means for designing green compounds for industrial applications. The indications are that kaolin is an ideal replacement for carbon black and silica/silane systems in rubber reinforcement, at least for non-crystallising rubbers.

5 References
