Effects of montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is the peer reviewed version of the following article: KEANE, K.M. ... et al, 2018. Effects of montmorency tart cherry (L. Prunus Cerasus) consumption on nitric oxide biomarkers and exercise performance. Scandinavian Journal of Medicine and Science in Sports, 28(7), pp. 1746-1756, which has been published in final form at https://doi.org/10.1111/sms.13088. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Metadata Record: https://dspace.lboro.ac.uk/2134/32428

Version: Accepted for publication

Publisher: © Wiley

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Effects of Montmorency tart cherry (*L. Prunus Cerasus*) consumption on nitric oxide biomarkers and exercise performance.

Keane, KM¹, Bailey, SJ², Vanhatalo, A.³, Jones, AM³, Howatson, G¹,⁴.

¹Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom;

²School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom;

³Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, United Kingdom;

⁴Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa

Running head: Montmorency tart cherry consumption and exercise performance

Corresponding Author:

Karen Keane

Department of Sport, Exercise and Rehabilitation

Faculty of Health and Life Sciences

Northumbria University

Newcastle upon Tyne, UK

Tel: 00 44 (0) 191 227 7086

Email: k.keane@northumbria.ac.uk
Abstract

The purpose of this study was to investigate the effects of Montmorency tart cherry juice (MC) on nitric oxide (NO) biomarkers, vascular function and exercise performance. In a randomized, double blind, placebo (PLA) – controlled, crossover study, 10 trained cyclists (mean ± SD; \(\dot{V}O_{2\text{peak}} \) 59.0 ± 7.0 ml/kg/min) acutely ingested 30 mL of either MC or PLA following dietary restrictions of polyphenol-rich compounds, and completed 6 min moderate- and severe-intensity cycling bouts 1.5 h post ingestion on two occasions for each experimental condition. The severe-intensity cycling test was continued to exhaustion on one occasion and immediately followed by a 60 s all-out sprint on the other occasion. Blood pressure, pulse wave measures, tissue oxygenation index and plasma nitrite concentration were assessed pre and 1.5 h post ingestion. Time to exhaustion was not different between conditions (P > 0.05), but peak power over the first 20 s (363 ± 42 vs. 330 ± 26 W) and total work completed during the 60 s all-out sprint (21 ± 3 vs. 19 ± 3 kJ) were 10% higher in the MC trial compared to the PLA trial (P < 0.05). Systolic blood pressure was 5 ± 2 mmHg lower 1.5 h post MC supplementation compared to PLA supplementation (P < 0.05). There were no differences in pulse wave measures, plasma nitrite concentration or tissue oxygenation between the MC and PLA trials (P > 0.05). These results suggest that acute supplementation with MC can lower blood pressure and improve some aspects of exercise performance, specifically end-sprint performance, in trained cyclists.

Keywords: Tart cherries, exercise performance, blood pressure, nitric oxide

AIx Augmentation index
ANOVA Analysis of variance
AOX Antioxidant
BP Blood pressure
CV Coefficient of variation
DBP Diastolic blood pressure
GET Gas exchange threshold
HbO₂ Oxygenated-haemoglobin
HHb De-oxygenated-haemoglobin
LSD Least significant difference
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRT</td>
<td>Mean response time</td>
</tr>
<tr>
<td>MC</td>
<td>Montmorency tart cherries</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near-infrared spectroscopy</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric Oxide</td>
</tr>
<tr>
<td>NO$_2^-$</td>
<td>Nitrite</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>Nitrate</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>PLA</td>
<td>Placebo</td>
</tr>
<tr>
<td>PWA</td>
<td>Pulse wave analysis</td>
</tr>
<tr>
<td>PWV</td>
<td>Pulse wave velocity</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>TOI</td>
<td>Tissue oxygenation index</td>
</tr>
<tr>
<td>$\dot{V}CO_2$</td>
<td>CO$_2$ production</td>
</tr>
<tr>
<td>$\dot{V}O_2$</td>
<td>O$_2$ uptake</td>
</tr>
</tbody>
</table>
Introduction

Montmorency tart cherries (MC) are a rich source of polyphenols including the flavonoidsisorhamnetin, kaempferol, quercetin, catechin and anthocyanins. It has been well documented that these plant compounds are associated with beneficial anti-inflammatory, antioxidant (AOX), immunomodulatory and vasodilatory properties. Previous studies demonstrated the positive effects of MC concentrate on indices of cardiovascular function that included increased cell migration, cerebral blood flow and reduced systolic blood pressure at rest. These effects might be mediated, in part by the ability of polyphenols to facilitate endothelial nitric oxide synthase (eNOS) phosphorylation, thereby increasing endogenous nitric oxide (NO) production. However, an increase in NO biomarkers has not been demonstrated with polyphenol-rich MC.

An increased muscle blood flow may increase the oxidative energy contribution over the initial stages of exercise and reduce the development of the VO₂ slow component (a progressive increase in O₂ uptake (VO₂) as high intensity exercise is continued). Supplementation with MC might have the potential to improve aspects of the dynamic VO₂ response during exercise by enhancing endothelial function and, hence, have a positive effect on performance. In addition, cyanidin-3-glucoside, an anthocyanin found in abundance in MC concentrate, has been shown to increase endothelial NO synthase (eNOS) expression and decrease inducible NO synthase (iNOS) expression. Such changes in the balance between eNOS and iNOS expression/activity would favour the bioavailability of the vasoactive NO. Therefore, if MC does increase NO bioavailability, it is possible that muscle O₂ delivery and/or its intramuscular distribution might be enhanced which, in turn, could be advantageous at the onset of exercise and during maximal exercise. Further to these mechanisms, other compounds in tart Montmorency cherries such as quercetin (which is reported to be present in MC) binds and antagonises the adenosine receptor, which could improve performance in a caffeine-like manner. Similarly, MC concentrate is rich in AOX compounds that also have the potential to augment performance.

Despite the potential vasodilatory and AOX properties of tart cherries, only two studies have investigated the effect of tart Montmorency cherry supplementation on continuous exercise capacity and performance. Clifford and colleagues investigated the influence of different sources of polyphenols on sub-maximal cycling and time trial performance. Supplementation with 200 mg of dried Montmorency cherry capsules for three days, did not improve cycling
time trial performance, heart rate, respiratory exchange ratio, gross mechanical efficiency, oxygen consumption, or blood [lactate] in moderately trained cyclists (VO_{2peak} 52.4 ± 8.7 ml/kg/min). In contrast, when participants were supplemented with powdered tart cherry capsules for 10 days, half-marathon completion times were 13% faster than their placebo counterparts, although the mechanism for this improvement remains unclear. It should be noted that the actual race pace was slower compared to the projected race pace in both groups, but the difference tended to be smaller in the tart cherry group compared to the placebo group. Furthermore, the authors of this study acknowledged that the participants were matched based on average reported race pace, and therefore there might be some variability amongst groups. As a result, further studies with a strong study design are needed to evaluate if supplementation with tart cherries can provide benefits to exercise performance.

Similar performance-enhancing findings have been reported in other studies where polyphenolic content of a fruit-derived supplement is similar to tart cherries. Kang and colleagues reported that oligomerized lychee fruit extract increased the anaerobic threshold by 7.4%. More recently, Cook et al. reported that following a seven-day intake of New Zealand blackcurrant extract, there was an improvement in cycling time-trial performance by 2.4%. The authors speculated that this improvement might have been the result of improved endothelial function and increased peripheral blood flow. Conversely, in another study, supplementation with a polyphenol antioxidant for 1 week failed to improve exercise performance, cardiovascular function, and thermoregulatory control in well-trained cyclists. The lack of improvement in exercise performance may be related to the training status of the subjects, exercise modality, and/or the experimental conditions under which performance was assessed.

Although the potential beneficial role of MC in expediting exercise recovery has been unequivocally demonstrated, it is still unclear whether acute MC supplementation can improve endurance exercise performance. Given that most polyphenol compounds are either absorbed or excreted quickly, longer-term (10-day) supplementation periods may not be necessary to observe improvements in performance. Furthermore, the potential mechanisms that might underpin any ergogenic effects of MC consumption are yet to be fully resolved. Therefore, the purpose of this study was to investigate the effects of acute MC supplementation on plasma NO_{2} concentration ([NO_{2}^-]), a sensitive marker of NOS activity, as well as blood pressure, VO_{2} kinetics, muscle oxygenation and exercise performance using a double-blind, cross-over experimental study design. We also used near-infrared
spectroscopy to provide insight into the matching between skeletal muscle O₂ delivery and utilisation and, therefore the potential underlying mechanisms for improvement in VO₂ kinetics or exercise performance following MC supplementation.

Methods

Participants

Eleven trained male cyclists volunteered to take part in the study, but one participant withdrew after the second study day (mean ± SD age; 28 ± 7 years, stature 1.83 ± 0.06 m, body mass 78.0 ± 8.5 kg and VO₂peak 59.0 ± 7.0 ml/kg/min). Exclusion criteria for the study were: VO₂peak < 50 ml/kg/min (determined on visit 1), smoking, food allergy (as discussed with research team), history of gastrointestinal, renal or cardiovascular disease and current use of any food supplementations. All participants provided written, informed consent prior to the commencement of the study. For 24 h prior to and for each of the testing days, participants were asked to avoid strenuous exercise, alcohol, caffeine, nutritional supplements and any anti-inflammatory drugs. Participants were instructed to follow a low phenolic diet for 24 h prior to each arm of the trial by avoiding fruits, vegetables, tea, coffee, alcohol, chocolate, cereals, wholemeal bread, grains and spices and were asked to refrain from strenuous exercise. Compliance with the dietary restrictions was monitored with a standardised, self-reported dietary record. Participants were asked to arrive at the laboratory in a rested and fully hydrated state, ≥10 h postprandial. All tests were performed at the same time of day. The study was conducted in accordance with the Helsinki Declaration and ratified by the University’s Research Ethics Committee.

Study Design

Participants were required to report to the laboratory on five occasions over a 4-5 week period to complete the experimental testing (1 familiarization / VO₂peak visit and 4 experimental visits). On the first visit to the laboratory, participants completed a ramp incremental exercise test for determination of the gas exchange threshold (GET) and peak VO₂ (VO₂peak). Participants were also familiarized with the two exercise performance tests employed in the study on this visit to avoid any order effect on the performance results as a consequence of a potential “learning effect”. Participants then returned to the laboratory on visits 2, 3, 4 and 5 to complete the experimental testing (MC × 2 trials, PLA × 2 trials). During these tests, resting blood pressure, arterial stiffness, pulmonary VO₂ kinetics during moderate and severe intensity exercise, muscle oxygenation, and exercise performance were
assessed, and venous blood samples were obtained. The MC concentrate and placebo (PLA) drinks were administered in a randomized order as part of a double-blind, crossover experimental design. Each supplementation day was separated by at least 3 days, but no more than 7 days.

Incremental Test.

During the first laboratory visit, participants completed a ramp incremental cycle test on an electronically braked cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands). Initially, participants performed 3 min of baseline cycling at 0 W, after which the work rate was increased by 30 W/min until the limit of tolerance. The participants cycled at a self-selected pedal rate, which, along with saddle and handle bar heights and configuration, was recorded and reproduced in subsequent tests. Breath-by-breath pulmonary gas exchange data were collected continuously during the incremental tests and averaged over consecutive 10 s periods. The \(\dot{V}O_2\) peak was taken as the highest 30 s rolling mean value attained prior to the participant’s volitional exhaustion in the test. The GET was determined as 1) the first disproportionate increase in CO\(_2\) production (\(\dot{V}CO_2 \)) from visual inspection of individual plots of \(\dot{V}CO_2 \) and \(\dot{V}O_2 \), and an increase in expired ventilation \(\dot{V}E/\dot{V}O_2 \) with no increase in \(\dot{V}E/\dot{V}CO_2 \). The work rate that would require 90% of the GET (moderate-intensity exercise) and 70% \(\Delta \) (GET + 70% of the difference between the work rate at the GET and \(\dot{V}O_2\) peak; severe intensity exercise) were calculated. The \(\dot{V}O_2 \) peak attained in the ramp incremental test was 4.56 ± 0.3 l/min, which equated to a relative \(\dot{V}O_2 \) peak of 59.0 ± 7.0 ml·kg\(^{-1}\)·min\(^{-1}\). The work rates that corresponded to 90% GET and 70%\(\Delta \) were 121 ± 19 and 303 ± 28 W, respectively. The mean response time (MRT) for \(\dot{V}O_2 \) during ramp exercise was taken into account, specifically two-thirds of the ramp rate was deducted from the work rate at GET and peak \(\dot{V}O_2 \) (i.e., 20 W\(^2\))

Following the incremental test and a 45-minute rest, participants were familiarized with the exercise tests. Participants completed a moderate-intensity and severe-intensity, step test finishing with an all-out sprint followed (after a 30-minute passive recovery period) by a severe-intensity constant-work-rate step exercise test to the limit of tolerance.

Experimental tests.

On all subsequent visits, participants were required to rest in a seated position for 10 min in an isolated room. Thereafter, baseline blood pressure of the brachial artery was measured using an automated sphygmomanometer (M10-IT Omron Healthcare, UK) according to
British Hypertension Society guidelines. Additionally, pulse wave velocity and pulse wave analysis were determined by using Arterial Tonometry (SphygmoCor CPV system, ScanMed Medical, UK). Three measurements were taken, and the mean of the measurements were calculated. A venous blood sample was then collected into a lithium-heparin tube and centrifuged at 4,000 rpm at 4°C for 10 min, within 2 min of collection. Lithium-heparin plasma was subsequently extracted and immediately frozen at -80°C for later analysis of \([\text{NO}_2^-]\) in duplicate via ozone-based chemiluminescence.

Participants were then provided with standardised breakfast. Descriptive measures and a Physical Activity Level of 1.7 was used to calculate the participant’s individual resting energy expenditure (Schofield Equation, 1985). This subsequently identified the amount of cereal (Rice Snaps, Tesco, Manchester, UK) and semi-skimmed milk (1g/kg/bm) each individual needed to consume to meet 10% of their daily energy requirements. This standardised fixed-energy breakfast meal consisted of a cereal: milk ratio of 30 g: 120 ml and delivered fat, protein and carbohydrate with a macronutrient composition of 14, 14 and 72%, respectively. One-hour post breakfast consumption, participants received the intervention drink. Ninety minutes after ingestion of the supplement, vascular measures were reassessed and participants completed one of the two cycle tests described below, as published pharmacokinetic data have shown that this time frame should coincide with peak plasma concentrations of phenolic acids following MC supplementation.

The exercise protocol consisted of three “step” exercise tests including two moderate intensity step tests followed by one severe-intensity exercise bout. All participants performed a total of four bouts of moderate intensity exercise and two bouts of severe-intensity exercise for each experimental condition; this protocol replicated previously work. Each transition began with 3 min of baseline cycling at 20 W before an abrupt transition to the target work rate. Each moderate intensity bout lasted 6 min. A passive recovery of 5 min separated the transitions. On two of the study visits (one occasion for each supplement), participants cycled for 6 min at a severe-intensity constant work rate (70% Δ), followed immediately by a 60 s all-out sprint at maximum effort. The resistance on the pedals during this sprint was set using the linear mode of the Lode ergometer, so that each participant would attain the power output calculated to be 50% Δ when considering the participants preferred cadence (linear factor = power/preferred cadence²). Participants were provided with a 5 s countdown prior to the sprint. On the other two study visits (one occasion for each supplement), the severe-
intensity constant-work-rate bout was continued to the limit of tolerance. The time to task
failure was used as a measure of exercise tolerance and was immediately recorded when the
pedal rate fell by \(> 10 \) rpm below the required pedal rate.

Treatments and dietary control
Participants consumed either 60 ml of commercially available MC concentrate
(CherryActive®, Hanworth, UK) or fruit-flavoured cordial in a double-blind, cross-over
manner. The choice to use 60 ml was based on previous work that showed a greater uptake
of anthocyanin and phenolic acids *in vivo* post-consumption when compared to a 30 ml dose
3,9,11. The concentrate was diluted with 100 ml of water prior to consumption. The PLA
supplement consisted of a commercially available, low fruit (<1%) cordial (Kia Ora, Coca
Cola Enterprises, Uxbridge, UK) cordial mixed with water, whey protein isolate (Arla Foods
Ltd., Leeds, UK) and maltodextrin (MyProtein Ltd., Northwich, UK), to match the MC
concentrate for volume and macronutrient content (Energy = 204 kcal, volume = 60 ml,
carbohydrates = 49 g, protein = 2.2 g and fat = 0 g).

Prior to study commencement, it was explained to participants that the aim of the study was
to investigate the effect of a fruit juice on vascular function. As a result, they were unaware
which beverage was the experimental drink. There were no adverse events reported in
response to the intervention products. Subjects consumed all doses of the supplement for each
experimental condition, and all participants complied with the low-polyphenolic experimental
diet according to the food diaries.

Measurements
During all tests, pulmonary gas exchange and ventilation were measured breath-by-breath.
Participants wore a nose clip and breathed through a low-dead-space, low-resistance
mouthpiece-and-impeller turbine assembly. Following calibration according to
manufacturer’s recommendations, the inspired and expired gas volume was continuously
sampled at 100 Hz; gas concentration signals were continuously sampled at 100 Hz using
paramagnetic (O₂) and infrared (CO₂) analyzers (Oxycon, Care Fusion, Rolle, Switzerland).
For data analysis, the moderate bouts of exercise were exported in 10-s averages and then
averaged for all bouts. End-exercise \(\dot{V}O_2 \) (average over the last 30 s and 60 s of the bout),
baseline \(\dot{V}O_2 \) (average over the 60 s prior to exercise) and the amplitude (the difference
between the end-exercise and baseline \(\dot{V}O_2 \)) were analysed. For the severe bouts of exercise,
the data were exported in 10-s averages and then all bouts were averaged. Baseline \(\dot{V}O_2 \)
(average over the 60 s prior to exercise), the $\dot{V}O_2$ at 120 s (the average from 110 s to 130 i.e. 120 s +/- 10 s) and the end-exercise $\dot{V}O_2$ (the average over the last 30 s of the bout) were identified. The peak $\dot{V}O_2$ was identified using the end-exercise $\dot{V}O_2$. Furthermore, the difference between the baseline and 120 s $\dot{V}O_2$ provides a surrogate for the fundamental amplitude whilst the difference between $\dot{V}O_2$ at 120 s and end-exercise (exhaustion) was used as a surrogate of the $\dot{V}O_2$ slow component.

The oxygenation status of the vastus lateralis of the right leg was monitored near-infrared spectroscopy system (NIRS; INVOS 5100C, Somanetics, Troy, MI, USA) at two different wavelengths (765 nm and 855 nm). The intensity of the transmitted light was continuously recorded at 1 Hz. Based on the absorption and scattering coefficients of light at each wavelength, determined by Beer–Lambert Law, concentrations were estimated for oxy (HbO$_2$), deoxy (HHb), and total haemoglobin. The leg was initially cleaned around the belly of the muscle, and the optodes were placed 20 cm above the fibular head. The probes were secured to the skin surface and covered with an elasticized, tensor bandage to minimize the influence of extraneous light, and to avoid movement of the probe relative to the skin, while allowing unrestricted movement. The NIRS data were acquired continuously throughout the exercise protocol and output every 5 s and recorded for later offline analysis. The NIRS data output was time stamped at the start of each task segment to assure that data corresponded to the relevant period of task performance. To provide information on muscle oxygenation, NIRS data was averaged at the time points of interest and relative concentration changes in HbO$_2$ and HHb were calculated.

The tissue oxygenation index (TOI) was calculated using the following equation:

$$\text{TOI} = \frac{[\text{HbO}_2]}{[\text{HbO}_2] + [\text{HHb}] \times 100}$$

Pulse wave velocity (PWV) and pulse wave analysis (PWA) were determined by using Arterial Tonometry (SphygmoCor CPV system, ScanMed Medical, UK). The aortic pulse waveform and augmentation index were derived at the radial artery and PWV was determined between carotid and femoral sites. A pencil-type probe was used for all measurements and was held at the base of the neck over the carotid artery and at the inguinal crease over the right femoral artery. Recordings were taken when a reproducible signal was obtained with a high amplitude excursion. The distance between carotid and femoral sites...
was measured and electrocardiogram gating permitted the time lapse between pulse waves at
the carotid and femoral sites to be calculated. Inter- and intra-trial % coefficient of variation
(CV) for this method was 3.3 and 3.1%, respectively.

During the exercise trials, a blood sample was collected from a fingertip into a capillary tube
at baseline, over the 20 s preceding the step transition in work rate, the 20 s preceding the
completion of 360 s of moderate- and severe-intensity cycling exercise, immediately
following the 60-s all-out sprint and immediately after exhaustion during the severe-intensity
constant-work-rate trial. These whole blood samples were analysed to determine blood
lactate (Biosen C-Line, EKF Diagnostic, Barleben, Germany). Intra-sample coefficient of
variation for this instrument was 1.8%.

Plasma [nitrate] and [nitrite] determination
All glassware, utensils, and surfaces were rinsed with deionized water to remove residual NO
intermediates prior to [NO₂⁻] and [NO₃⁻] analysis. Plasma samples were deproteinized using
zinc sulfate/sodium hydroxide precipitation prior to determination of [NO₃⁻]. Firstly, 500 μL
of 0.18 N NaOH was added to 100 μL of sample followed by 5 min incubation at room
temperature. Subsequently, samples were treated with 300 μL aqueous ZnSO₄ (5% w/v) and
vortexed for 30 s before undergoing an additional 10 min incubation period at room
temperature. Samples were then centrifuged at 4,000 rpm for 5 min, and the supernatant was
removed for subsequent analysis. The [NO₃⁻] of the deproteinized plasma sample was
determined by its reduction to NO in the presence of 0.8 % (w/v) VCl₃ in 1 M HCl within an
air-tight purging vessel. Plasma samples were introduced to the vessel via 50 μL injections
into the septum at the top of the vessel. The spectral emission of electronically excited
nitrogen dioxide, derived from the reaction of NO with ozone, was detected by a
thermoelectrically cooled, red-sensitive photomultiplier tube housed in a Sievers gas-phase
chemiluminescence nitric oxide analyzer (Sievers NOA 280i. Analytix Ltd, Durham, UK).
The [NO₃⁻] was determined by plotting signal (mV) area against a calibration plot of sodium
nitrate standards. The [NO₂⁻] of the undiluted (non-deproteinized) plasma was determined by
its reduction to NO in the presence of glacial acetic acid and aqueous NaI (4% w/v) from
sodium nitrite standards. 100 μL injections were used for plasma [NO₂⁻] determination.

Statistical Analysis
Statistical analysis was performed using PASW Statistics 21.0 for Windows (SPSS, Inc.,
Chicago, IL.). All group characteristics were reported as means ± standard deviations, unless
otherwise stated. A 2 (MC vs. PLA) × 2 (pre vs. post) repeated measures analysis of variance (ANOVA) was employed to assess between-intervention differences in \(\dot{V}O_2 \), NIRS–TOI, blood pressure, arterial stiffness and lactate. Mauchly’s Test of Sphericity was used to check homogeneity of variance for all ANOVA analyses and where necessary, violations of the assumption were corrected using the Greenhouse–Geisser adjustment. Significant main effects were followed up using LSD post hoc analysis. Exercise performance and NO\(_2^-\) and NO\(_3^-\) were analysed using a paired samples t-test. Statistical significance was accepted when \(P < 0.05 \).

Results

Eleven physically active males volunteered to take part in the study, but one participant voluntarily withdrew after the second study day (n=10).

Pulmonary \(\dot{V}O_2 \) kinetics

The pulmonary \(\dot{V}O_2 \) data for the moderate- and severe-intensity cycle tests are reported in Table 1. There were no significant between-supplement differences for the baseline and end-exercise \(\dot{V}O_2 \) during the moderate-intensity step exercise tests (\(P > 0.05 \)). Accordingly, the fundamental \(\dot{V}O_2 \) amplitude was not significantly different between the conditions (0.55 ± 0.09 and 0.60 ± 0.07 l/min with MC concentrate and PLA respectively, \(P > 0.05 \)).

The baseline and end-exercise \(\dot{V}O_2 \) during severe-intensity exercise were not significantly impacted by the dietary interventions employed in this investigation (\(P > 0.05 \) for all comparisons). The \(\dot{V}O_2 \) at exhaustion was not significantly different between experimental conditions and was also not significantly different from the \(\dot{V}O_2^{peak} \) attained in the ramp incremental test (\(P > 0.05 \)). No significant differences were reported between MC and PLA in \(\dot{V}O_2 \) amplitudes from baseline to 120 s of exercise. No differences in \(\dot{V}O_2 \) slow component were observed across the experimental conditions (Table 1). There were no differences in \(\dot{V}CO_2 \) between the conditions during moderate- or severe-intensity cycle exercise (\(P > 0.05 \) for all comparisons).

> Table 1

Exercise performance

The time to exhaustion during the severe-intensity constant-work-rate cycle trials (the exercise tolerance test) are presented in Fig 1; while the power profiles for the two
The tissue oxygenation index data during moderate- and severe-intensity cycle exercise with PLA and MC supplementation are reported in Table 2. There were no significant differences between the experimental conditions during the moderate or severe-intensity exercise (P > 0.05).

There was a significant interaction effect for supplement on SBP (P < 0.05), with follow-up analyses showing that SBP was lower 1.5 h post MC supplementation, with reductions of 5 ± 2 mmHg compared to the placebo trial. No other vascular variables (DBP, mean arterial pressure (MAP), PWV, augmentation index (AIX) and AIX corrected for HR at 75 bpm) were altered after consumption of the MC concentrate compared to the placebo treatment. The absolute values for all variables are presented in Table 3.
Plasma $\text{[NO}_2^-\text{]}$ and $\text{[NO}_3^-\text{]}$

Due to sampling error, blood was analysed in 8 participants. The plasma $\text{[NO}_2^-\text{]}$ and $\text{[NO}_3^-\text{]}$ for the MC and PLA conditions are reported in Table 4. There were no changes for NO_2^- or NO_3^- in the MC supplemented trial when compared to the placebo ($P > 0.05$).

Lactate

There was no treatment or treatment × time interaction effect observed in blood [lactate], however there was a significant time effect identified during both the exercise performance and tolerance test ($P < 0.001$). No other differences were reported. Absolute values are presented in Table 5.
Discussion

The principal novel findings from this study are that, compared with an energy-matched placebo, acute MC supplementation enhanced end-sprint performance following a 6 min severe-intensity preload in trained cyclists without changing VO$_2$, plasma [NO$_2$] or muscle oxygenation variables. In addition, SBP was lower 1.5 h post MC consumption but not with PLA.

Influence of MC supplementation on performance

In the current study, peak power output and total work done during a 60-s sprint increased by 9.5 and 10%, following MC relative to the PLA supplementation. While tart cherry supplementation has been shown to improve exercise recovery and decrease markers of inflammation and oxidative stress, studies investigating the effects of tart cherries on exercise performance are limited and equivocal. Of the two studies investigating the influence of MC supplementation on exercise performance to date, one reported improved performance in males completing a half marathon (21.1km) run, as evidenced by a faster overall race pace compared to the PLA group. However, as previously mentioned, there were some limitations to the study design and therefore these results should be interpreted with a degree of caution. While Levers et al. designed an experiment to assess the influence of ingesting 480 mg of powdered tart cherries for 10-days, including supplementation on race day up to 48-hr post-run, we investigated the effects of a single dose (60 ml) of MC concentrate on exercise performance using a cross over study design. Despite the differences in dosing strategies, both studies reported improvements in performance. Therefore, our findings suggest that acute as well as chronic supplementation with MC concentrate has the potential to improve performance, specifically end-sprint performance. Conversely, an earlier study by Clifford and colleagues reported no difference in time trial performance in moderately-trained individuals following the ingestion of 200 mg of powdered tart cherries for 3-days. These conflicting findings might be due to the differences in dosing procedures (480mg versus 200mg) and exercise tests performed (20 km cycling time trial versus half marathon). The current investigation used a MC concentrate as opposed to the powdered capsules used in both previous studies. The MC concentrate was found to contain 73.50 ±0.20 mg cyanidin-3-glucoside /L and 178.75 ± 0.87 mean gallic acid equiv/L. The exercise protocol used in the current study also differed to the two previous studies.
There were no differences observed for time to exhaustion between the MC and the PLA trial in the current study. Trinity and colleagues also reported that polyphenol supplementation did not improve performance during prolonged exhaustive exercise (one hour of exercise including a 10 min time trial) or during shorter duration high intensity exercise (time to fatigue at VO$_{2\text{max}}$). There remains a debate surrounding the applicability and repeatability of the time to exhaustion test as there is a larger day to day variability when compared to a time-trial. However, a recent addition to the literature concluded that a time to exhaustion test is regarded as a more useful measure of cycling performance compared to a time trial.

There were no changes in VO$_2$, blood [lactate] or muscle oxygenation in the current study suggesting that the ergogenic effects of MC supplementation were not linked to improved metabolic responses or better matching of muscle O$_2$ supply to O$_2$ demand. Furthermore, plasma [NO$_2$] was not different between the two trials and since plasma [NO$_2$] is a sensitive biomarker of eNOS activity, the performance improvements with MC supplementation appear to be independent of NO-mediated signalling. It is more likely that the enhanced performance might be mediated through the AOX and vasodilatory properties of polyphenol-rich MC. When undertaking high intensity exercise, ROS are produced causing cellular damage and oxidative stress. AOX have the ability to prevent or reduce the extent of oxidative damage to other molecules. It is therefore possible that the AOX effects of MC concentrate were only significant when skeletal muscle contractions were most likely to be compromised by increased oxidative stress. In agreement, an investigation by MacRae and Mefferd reported that the addition of a flavonoid quercetin to a liquid AOX supplement significantly enhanced the AOX effect of the supplement and resulted in a 3.1% performance improvement during a 30 km cycle time trial. Hence, it is possible that a combination of AOX compounds may induce larger effects on exercise performance. It is also possible that this increase in AOX defence from the MC concentrate relative to the PLA may have been amplified by the lowering of dietary sources high in AOX’s i.e. dietary restrictions imposed on participants. Previous literature has reported that the baseline antioxidant profile of an individual is an important determinant of the ergogenic effectiveness of an antioxidant treatment.

Given that MC concentrate has been shown to possess numerous AOX and polyphenolic compounds, it seems reasonable that the improvement in exercise performance in the current study might be as a result of these AOX compounds. It is worth noting that MC
supplementation could have prolonged the duration for which the participants were in the optimal cellular redox state for force production such that when they were required to produce an all-out sprint, they produced a higher peak power and completed more work. In addition, muscle blood flow is considered an important limiting factor during high intensity exercise, and it is possible that the improvement in exercise performance might be linked, in part, to an increase in blood flow. Previous research has demonstrated the vasodilatory effects associated with anthocyanin intake and more recently, MC supplementation has been shown to alter vascular function and behaviour.

Influence of MC supplementation on plasma $\left[\text{NO}_2^-\right]$

Nitric oxide is a key regulator of vascular integrity. This multifaceted physiological signalling molecule can be synthesized endogenously through NOS with plasma $\left[\text{NO}_2^-\right]$ reflecting NOS activity. No significant difference in plasma $\left[\text{NO}_2^-\right]$ was reported between the MC and PLA trials in the current study. This is somewhat in agreement with the findings from Keane and colleagues, where no main effect for plasma NO_3^- or NO_2^- was observed following 60 mL MC supplementation using an ELISA kit. Importantly, the lack of a change in plasma $\left[\text{NO}_2^-\right]$ in the current study extends our previous findings by using a more sensitive method to detect plasma $\left[\text{NO}_2^-\right]$ in the nM range and this better reflects NOS activity than plasma $\left[\text{NO}_3^-\right]$. Since trained endurance cyclists were recruited in the current study, and since endurance training increase NOS expression, it is likely that eNOS-derived NO production was already optimal in this cohort and therefore no changes were observed after MC supplementation. It is also noteworthy that the resting plasma $\left[\text{NO}_2^-\right]$ was relatively low in the current study when compared with previous literature. This could be as a result of the dietary restrictions imposed on the participants on the day preceding the trial and/or a low intake of nitrate-rich foods in the period leading into the trials.

Influence of MC supplementation on blood pressure

A primary outcome of enhanced NO synthesis is a reduction in blood pressure owing to NO-induced smooth muscle relaxation. The current study reported a significant reduction in SBP 1.5 h post MC ingestion relative to placebo, however this augmented modulation occurred in the absence of changes in NO biomarkers. These results are consistent with a recent study demonstrating that supplementation with the NOS substrate, L-Citrulline, lowered blood pressure in the absence of a change in plasma $\left[\text{NO}_2^-\right]$. Mechanistically, it would appear that the lowering of BP with acute MC supplementation in the current study is
largely NO-independent and is more likely to be a function of the increase in circulating phenolic metabolites post MC ingestion \(^{11}\). There was no change in arterial stiffness observed in the current study. This observation is in line with previous studies reporting improved SBP following MC consumption in males with early hypertension \(^{11}\) and middle aged adults \(^{10}\), with no improvement in arterial stiffness. It has previously been reported that concurrent improvements in all measures of vascular function are not always observed \(^{11}\). Further research is required to investigate the mechanisms by which MC supplementation might positively affect vascular and other physiological responses.

A limitation of the current study is the lack of polyphenol analysis and oxidative stress biomarkers. Conceivably, there are a number of mechanisms that could contribute to the physiological effects exerted by MC, and further research is needed to address the underlying mechanisms for these observations. In addition, participants in the current study were asked to adhere to strict dietary guidelines in the days preceding the trials and future work should attempt to investigate the potential synergetic effects of MC supplementation within habitual dietary practices.

In conclusion, this study has shown that acute supplementation with MC juice can lower blood pressure and improve exercise performance, specifically end-sprint performance, in trained endurance cyclists. There were no changes in plasma \([\text{NO}_2^-]\), pulmonary \(\dot{\text{V}}\text{O}_2\), or muscle oxygenation after ingesting tart cherry juice so the improvements in blood pressure and exercise performance in this study might be mediated through the potent antioxidant properties of MC juice. The results of this study suggest that supplementation with MC concentrate might represent, a practical, non-pharmacological, dietary intervention to reduce blood pressure and enhance end-sprint performance in trained individuals.

Perspectives

The improvement in end-sprint performance in the current study could prove advantageous in sporting situations where very little separates opponents. After completing exercise that was deemed metabolically strenuous, participants performed better over a 60-s sprint when supplemented with MC compared to placebo. Consequently, MC supplementation might be of interest to athletes, coaches and applied sport scientists. Also, the marked reduction in systolic blood pressure we observed with MC supports previous studies \(^{10,11}\) and underlines the potential importance of MC as an adjunct to the management of hypertension.
The Cherry Research Committee of the Cherry Marketing Institute (Lansing, MI, USA), a not
for profit organisation, provided support for a PhD studentship associated with this work. All
other elements of the study were funded by Northumbria University. The funders had no role
in the study design, data collection and analysis, decision to publish, or preparation of the
manuscript. The authors declare no conflict of interest.

References

AOX and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin,
2. Seeram, NP, Momin, RA, Nair, MG, Bourquin, LD. Cyclooxygenase inhibitory and
AOX cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8(5); 362–369.
doi:10.1078/0944-7113-00053
3. Bell, PG, Gaze, DC, Davison, GW, George, TW, Scotter, MJ, Howatson, G.
Montmorency tart cherry (Prunus Cerasus L.) concentrate lowers uric acid,
independent of plasma cyanidin-3-O-glucosiderutinoside. J Funct Foods 2014, 11; 82-90
4. Kim, DO, Heo, HJ, Kim, YJ Yang, HS, Lee, CY. Sweet and sour cherry phenolics
5. Kirakosyan, A, Seymour, EM, Llanes, DEU, Kaufman, PB, Bolling, SF. Chemical
profile and AOX capacities of tart cherry products. Food Chemistry, 2009, 115(1);
20–25. doi:10.1016/j. foodchem.2008.11.042
6. Zhu, Y, Ling, W, Guo, H, Song, F, Ye, Q, Zou, T, Li, D, Zhang, Y, Li, G, Xiao, Y,
Liu, F, Li, Z, Shi, Z, Yang, Y. Anti-inflammatory effect of purified dietary
anthocyanin in adults with hypercholesterolemia: a randomized controlled trial. Nutr
Metab Cardiovas 2013, 23; 843–849
7. De La Cruz, AA, Hilbert, G, Mengin, V, Rivière, C, Ollat, N, Vitrac, C, Bordenave, L,
Decroocq, S, Delaunay, JC, Mérillon, JM, Monti, JP, Gomès, E, Richard, T.
Anthocyanin phytochemical profiles and anti-oxidant activities of Vitis candaics and
Vitis doaniana. Phytochemical Analysis 2013, 24; 446–452.
8. Tangney, C, Rasmussen, HE. Polyphenols, Inflammation, and Cardiovascular
uptake following human consumption of Montmorency tart cherry (L. Prunus Cerasus)
and influence of phenolic acids on vascular smooth muscle cells in vitro. Eur J Nutr
cherries (Prunus Cerasus L.) modulate vascular function acutely, in the absence of

35. MacRae, HSH, Mefferd, KM. Dietary antioxidant supplementation combined with quercetin improves cycling time trial performance. Int J Sport Nutr Exerc Metab 2006, 16:405–419.

