Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: ARTEMYEV, A.V. ... et al. 2018. Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves. Journal of Plasma Physics, 84 (2), 905840206.

Additional Information:

- This article has been published in a revised form in Journal of Plasma Physics https://doi.org/10.1017/S0022377818000260. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © Cambridge University Press

Metadata Record: https://dspace.lboro.ac.uk/2134/32597

Version: Accepted for publication

Publisher: © Cambridge University Press (CUP)

Please cite the published version.
Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves.

ANTON V. ARTEMYEV¹,²†, ANATOLY I. NEISHTADT³,², ALEXEI A. VASILIEV² and DIDIER MOURENAS⁴

¹Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA,
²Space Research Institute, Moscow, Russia,
³Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom,
⁴CEA, DAM, DIF, Arpajon, France

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

Accurately modelling and forecasting the dynamics of the Earth's radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave-particle resonant interaction. Energetic electron acceleration or scattering into Earth's atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large amount of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave-particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes nonlocal transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation.

1. Introduction

Wave-particle resonant interaction plays an essential role for energy redistribution in a collisionless plasma, where this interaction is responsible for the relaxation of unstable particle distributions and the generation of high-energy particles. One important example of such systems is the Earth's radiation belts, where resonances between intense whistler mode waves and energetic electrons can result in electron precipitation into the Earth atmosphere (e.g., Thorne et al. 2010) and acceleration to ultra-relativistic energies (e.g., Thorne et al. 2013). Numerical modeling of this interaction is based on a kinetic equation for the electron distribution function. For low intensity waves, the resonant interaction results in particle diffusion in velocity space, and the kinetic equation can be rewritten in the form of a diffusion equation (e.g., Schulz & Lanzerotti 1974; Lyons & Williams 1984). The corresponding diffusion coefficients can be calculated within the quasi-linear theory.

† Email address for correspondence: ante0226@gmail.com
Figure 1. Scheme of particle energy γ change over a time T due to diffusion and due to nonlocal transport.

(Kennel & Engelmann 1966; Trakhtengerts 1966). This approach is widely applied for simulations of the radiation belts dynamics (e.g., Albert & Young 2005; Su et al. 2010; Glauert et al. 2014; Shprits et al. 2015). However, the diffusive approximation becomes inapplicable for sufficiently intense waves (Karpman 1974; Shapiro & Sagdeev 1997; Tao et al. 2012a) which can interact nonlinearly with electrons. The main property of such a nonlinear interaction is that it is prolonged and very efficient, i.e., trapped particles remain trapped into resonance for a relatively long time and their energy can be significantly modified during a single resonant interaction (e.g., Solovev & Shklyar 1986, and references therein). The final energy gain after such trapped acceleration depends on wave characteristics and background magnetic field configuration and has been investigated in various conditions (see, e.g., Demekhov et al. 2006; Omura et al. 2007; Summers & Omura 2007; Bortnik et al. 2008; Yoon et al. 2013). Spacecraft observations in the Earth radiation belts have demonstrated the presence of a large amount of intense whistler mode waves (Cattell et al. 2008; Cully et al. 2008; Wilson et al. 2011; Santolík et al. 2014; Agapitov et al. 2014) which can nonlinearly resonate with electrons and lead to their trapping-induced acceleration.

Theoretical models describing nonlinear electron interaction with whistler mode waves are well developed for test particle trajectories (Nunn 1971, 1974; Karpman et al. 1974). The inclusion of nonlinear effects into the kinetic equation for the electron distribution function can be performed using nonlocal operators acting on the distribution (Shklyar 1981; Artemyev et al. 2014; Omura et al. 2015). Such operators model the nonlocal relationships between different parts of the distribution in energy space: the particle distribution for a particular energy γ depends not only on its close surrounding, but also on the distribution at energy γ^* of trapped particles released from the resonance with energy γ (see scheme in Fig. 1). Although, there are several examples of these nonlocal operators derived numerically (Omura et al. 2015) or analytically (Artemyev et al. 2014), there is so far no unified approach for the derivation of a kinetic equation including all nonlinear effects. Recently, such an approach was proposed for simple 1D systems with electrostatic waves (Artemyev et al. 2017b) and we generalize it in the present paper to electromagnetic whistler mode waves propagating at an arbitrary angle relative to the background magnetic field.

The paper is organized as follows: Section 2.1 is devoted to general expressions of whistler mode wave electromagnetic fields through vector and scalar potentials; in Section 2.2 we derive the general form of the Hamiltonian describing electron motion in an inhomogeneous (dipole) magnetic field and wave fields; in Section 2.3 we expand this Hamiltonian around the wave-particle resonance and derive the resonant Hamiltonian describing resonant particle dynamics; in Section 2.4 we use this resonant Hamiltonian to derive the main characteristics of resonant particle motion (change of energy due to
trapping and due to scattering); Section 3 is devoted to the derivation of a generalized kinetic equation describing the evolution of the particle distribution due to nonlinear resonant interactions; in Sections 4, 5 we apply this equation to describe the evolution of the resonant electron distribution in a system with parallel propagating whistler mode wave (cyclotron resonance) and in a system with highly oblique whistler mode wave (Landau resonance); finally, we discuss in Section 6 the main results and possible generalization/modifications of the derived equations.

2. Main system characteristics

This section consists of three subsections: Section 2.1 describes the distribution of wave electromagnetic field and corresponding vector and scalar potentials, Section 2.2 provides a Hamiltonian description of electron motion, and Section 2.3 outlines the main characteristics of wave-particle resonant interaction.

2.1. Wave field

The cold plasma dispersion relation (Stix 1962) provides the relationship between electric and magnetic field components of whistler mode waves. Let \(B_y = B_{w0} R(e^{i\phi}) = B_{w0} \cos \phi \) where \(\phi \) is the wave phase, then

\[
\begin{align*}
\frac{B_x}{B_{w0}} &= -\frac{\varepsilon_2}{\varepsilon_3} \frac{N^2 \sin^2 \theta - \varepsilon_3}{\varepsilon_3 (\varepsilon_1 - N^2)} \sin \phi, \\
\frac{B_z}{B_{w0}} &= \frac{\varepsilon_1}{\varepsilon_3} \frac{N^2 \sin^2 \theta - \varepsilon_3}{\varepsilon_3 (\varepsilon_1 - N^2)} \sin \phi, \\
\frac{E_x}{B_{w0}} &= -\frac{N^2 \sin^2 \theta - \varepsilon_3}{\varepsilon_3 N \cos \theta} \cos \phi, \\
\frac{E_y}{B_{w0}} &= \frac{\varepsilon_2}{\varepsilon_1 - N^2} \frac{N^2 \sin^2 \theta - \varepsilon_3}{\varepsilon_3 N \cos \theta} \sin \phi, \\
\frac{E_z}{B_{w0}} &= -\frac{N \sin \theta}{\varepsilon_3} \cos \phi
\end{align*}
\]

(2.1)

Functions \(\varepsilon_1, \varepsilon_2, \) and \(\varepsilon_3 \) are components of the cold plasma dielectric tensor:

\[
\varepsilon_1 = 1 - \frac{\Omega_{pe}^2}{\omega^2 - \Omega_0^2}, \quad \varepsilon_2 = \frac{\Omega_0}{\omega} \frac{\Omega_{pe}^2}{\omega^2 - \Omega_0^2}, \quad \varepsilon_3 = 1 - \frac{\Omega_{pe}^2}{\omega^2}
\]

(2.2)

where \(\omega \) is the wave frequency, \(k_x \) and \(k_z \) are two components of the wave vector lying in the \((x, z) \) plane \((k_x = k \sin \theta, k_z = k \cos \theta) \), \(\Omega_0 > 0 \) is the electron gyrofrequency in the background magnetic field directed along the \(z \) axis, \(\Omega_{pe} \) the plasma frequency. Wave frequency and wavevector satisfy the wave dispersion relation \(N = N(\omega, \theta) \) where \(N = k c / \omega \) is the wave refractive index (Stix 1962). Equations (2.1) lead to the following expressions for the total wave magnetic and electric fields:

\[
\begin{align*}
B_w^2 &= \frac{1}{2\pi} \int_0^{2\pi} \left(B_x^2 + B_y^2 + B_z^2 \right) d\phi = \frac{1}{2} B_{w0}^2 (C_2 C_4 + 1) \\
E_w^2 &= \frac{1}{2\pi} \int_0^{2\pi} \left(E_x^2 + E_y^2 + E_z^2 \right) d\phi = \frac{1}{2} B_{w0}^2 \left(C_1 (1 + C_2) + (N^2 \varepsilon_3^{-1} \sin \theta)^2 \right) \\
C_1 &= \left(\frac{N^2 \varepsilon_3^{-1} \sin^2 \theta - 1}{\cos \theta} \right)^2, \quad C_2 = \left(\frac{\varepsilon_2}{\varepsilon_1 - N^2} \right)^2
\end{align*}
\]

(2.3)

For parallel propagating waves \((\theta = 0) \), we have \(C_1 = 1, N^2 = \varepsilon_1 - \varepsilon_2, C_2 = 1, \) and \(B_w = B_{w0}, E_w = B_{w0} / N \). Figure 2 shows the functions \(C_1, C_2 \) for different parameters, corresponding notably to parallel and very oblique waves in the radiation belts.

We use Coulomb gauge to write field components through components of vector po-
We introduce a constant, large spatial scale of inhomogeneity. The same consideration is valid for arbitrary ambient magnetic field with a sufficiently strong field (see a more general consideration in Shklyar & Matsumoto 2009). Although we use Eqs. (2.4) and write $A_y = B_{w0}/k, A_x = \sqrt{C_3} C_1 \cos \phi$, $A_y = B_{w0}/k \cos \theta \sin \phi$, $A_z = -B_{w0}/k \sin \theta \sin \phi$, $\varphi = B_{w0}/kN \frac{(N^2 \varepsilon_3^{-1} - 1)}{N \cos \theta}$ tan $\theta \sin \phi$

We introduce $A_0 = B_{w0}/k, C = \sqrt{C_3} C_2$, $C_3 = (N^2 \varepsilon_3^{-1} - 1)/N \cos \theta$ and write $A_x = A_0 \cos \theta \sin \phi$, $A_y = A_0 C \cos \phi$, $A_z = -A_0 \sin \theta \sin \phi$, $\varphi = A_0 C_3 \sin \theta \sin \phi$ where $B_{w0} = B_w \sqrt{2/(C^2 + 1)}$. Figure 2 shows C and C_3 tan θ as functions of the magnetic latitude λ for a dipole model of the background magnetic field ($\Omega_0(\lambda) = \Omega_0(0) \sqrt{1 + 3 \sin^2 \lambda/\cos^6 \lambda}$). Highly oblique waves, with θ close to the resonance cone angle θ_r (Stix 1982), are characterised by a significant variation of vector and scalar potential amplitudes, whereas these amplitudes are almost constant for parallel propagating waves.

2.2. Electron dynamics

We start with the Hamiltonian of an electron (of charge $-e$ and mass m_e) moving in the background magnetic field (described by the y-component of the vector potential $A_y = -xB_0(z)$ (Bell 1984)) and the wave electromagnetic field (given by Eqs.(2.4)):

$$H = \sqrt{m_e^2 c^4 + c^2 \left(\mathbf{p} + \frac{e}{c} \mathbf{A}(x,z,t) + \frac{e}{c} A_y(x,z) \mathbf{e}_y \right)^2 - e \varphi(x,z,t)}$$

(2.5)

where \mathbf{p} is the particle generalized momentum. Note that (x,y,z) are Cartesian coordinates, i.e., we do not take into account the magnetic field line curvature of the dipole field (see a more general consideration in Shklyar & Matsumoto 2009). Although we use $B_0(z)$ function simulating the distribution of a dipole field along magnetic field line, the same consideration is valid for arbitrary ambient magnetic field with a sufficiently large spatial scale of inhomogeneity.

The Hamiltonian (2.5) does not depend on y and the conjugated momentum is constant, $p_y = \text{const}$. We consider particles motion around field-line with $x = 0$, and thus...
were p_y can be taken equal to zero. There are two important assumptions here. First, we assume that the spatial scale of $B_0(z)$ variation is much larger than the wavelength $\sim (\partial \phi / \partial x)^{-1}$, $\sim (\partial \phi / \partial z)^{-1}$. Therefore, the period of particle oscillations in the plane (z, p_z) is much longer than the wave period ϕ (wave frequency $-\partial \phi / \partial t$ is about electron gyro-frequency $cB_0/m_e c$ and much larger than an inverse time-scale of (z, p_z) oscillations). Second, we assume a small wave amplitude $eA_0/m_e c^2 \ll 1$ (for typical conditions in the Earth radiation belts this limits is satisfied since it means that the wave magnetic field amplitude must be much smaller than 10 nT) and expand the Hamiltonian (2.5) as:

$$H = H_0 + \frac{ce}{H_0} A \left(\frac{p}{c} + \frac{e A_0}{m_e} e_y \right) - e \varphi$$

(2.6)

where $\Omega_0 = cB_0(z)/m_e c$. Considering the unperturbed system $H = H_0$, we introduce the adiabatic invariant (magnetic moment):

$$I_x = \frac{1}{\gamma} \int p_x dx = \frac{H_0^2 - m_e^2 c^4 - e^2 c^2}{2m_e c^2 \Omega_0}$$

(2.7)

The corresponding coordinates (x, p_x) can be rewritten as: $p_x = -\sqrt{2I_x \Omega_0/m_e} \sin \psi$ and $x = \sqrt{2I_x/\Omega_0} m_e \cos \psi$ where I_x, ψ are conjugated variables (i.e., the transformation (x, p_x) to (ψ, I_x) is canonical (Landau & Lifshitz 1988)). To introduce these variables we use the generating function $G_0 = \int p_x dx + p_z, new z$ where

$$p_z, new = p_z - \frac{\partial G_0}{\partial z} = p_z - I_x \frac{1}{2} \frac{\partial \ln \Omega_0}{\partial z} \sin 2\psi$$

(2.8)

and z does not change. Therefore, the Hamiltonian (2.6) can be rewritten in new variables:

$$H = m_e c^2 \sqrt{1 + \frac{1}{m_e^2 c^2} \left(p_z, new + I_x \frac{1}{2} \frac{\partial \ln \Omega_0}{\partial z} \sin 2\psi \right)^2 + \frac{\rho^2 \Omega_0^2}{c^2} + H_1}$$

(2.9)

$$H_1 = \frac{1}{\gamma_0} \left(\rho \Omega_0 c \left(eA_y \cos \psi - eA_x \sin \psi \right) + \frac{eA_z}{m_e c} \left(p_z, new + I_x \frac{1}{2} \frac{\partial \ln \Omega_0}{\partial z} \sin 2\psi \right) \right) - e \varphi$$

where $\rho = \sqrt{2I_x/m_e \Omega_0}$. There is a fast oscillating term $\sim \sin 2\psi$. This term results in variation of adiabatic invariant I_x ($I_x = -\partial H/\partial \psi$). The amplitude of this term is $\sim \partial \ln \Omega_0/\partial z$, i.e. I_x is conserved with the accuracy $\sim \partial \ln \Omega_0/\partial z$. In absence of wave perturbations (i.e., in absence of external forces depending on wave phase ϕ) we always can introduce the improved adiabatic invariant I_z, which is conserved with the accuracy $\sim (\partial \ln \Omega_0/\partial z)^2$ (Arnold et al. 2006). In the system with wave depending on phase ϕ, the variation of I_x is determined by resonance of wave phase $n \psi + \phi$, $n = 0, \pm 1, \pm 2, \ldots$ (see below). For resonant particles with $d(n \psi + \phi)/dt \approx 0$ the phase 2ψ is a fast oscillating nonresonant phase, and, after expansion of γ_{new} over $\partial \ln \Omega_0/\partial z$, the corresponding term $\sim \sin 2\psi$ can be omitted as a fast oscillating term with mean zero value. Therefore, we can rewrite Hamiltonian (2.9) as

$$H = m_e c^2 \gamma + H_1, \quad \gamma = \sqrt{1 + \frac{p_z^2}{m_e^2 c^2} + \frac{\rho^2 \Omega_0^2}{c^2}}$$

(2.10)

$$H_1 = \frac{1}{\gamma} \left(\rho \Omega_0 c \left(eA_y \cos \psi - eA_x \sin \psi \right) + \frac{eA_z}{m_e c} p_z \right) - e \varphi$$

were $p_z, new \approx p_z$.

Nonlinear phase space transport
We then substitute Eqs. (2.4) into the H_1 expression to get:

$$H_1 = \frac{eA_0 \rho \Omega_0}{c} (C \cos \phi \cos \psi - \cos \theta \sin \phi \sin \psi) - eA_0 \left(\frac{p_z}{\gamma m_e c} + C_3 \right) \sin \theta \sin \phi \quad (2.11)$$

where wave phase ϕ can be written as

$$\phi = \phi_\parallel + k_x \rho \cos \psi, \quad \phi_\parallel = \int k_z(z) d\tilde{z} - \omega t \quad (2.12)$$

Using the Jacobi–Anger expansion, we rewrite Eq. (2.11) as

$$H_1 = eA_0 \sum_{n=-\infty}^{\infty} h^{(n)} (I_x, \rho, z) \sin \left(\phi_\parallel + n\frac{\pi}{2} - n\psi \right) \quad (2.13)$$

$$h^{(n)} = \frac{\rho \Omega_0}{2c\gamma} \left((C - \cos \theta) J_{n-1} (k_x \rho) - (C + \cos \theta) J_{n+1} (k_x \rho) \right) \left(\frac{p_z}{\gamma m_e c} + C_3 \right) \sin \theta J_n (k_x \rho)$$

where J_n is the Bessel function. We consider waves with insufficiently strong amplitudes to allow an overlap of resonances, i.e., such that each term in the sum of resonances can be considered independently (i.e., the resonance width $\sim \sqrt{|eA_0 h^{(n)}|/m_e}$ is much smaller than the smallest distance between two resonances $\sim \Omega_0/\Omega c \cos \theta$, see the corresponding discussion in Shklyar 1981). For one particular n, Eq. (2.10) takes the form

$$H^{(n)} = m_e c^2 \gamma + eA_0 h^{(n)} \sin \left(\phi_\parallel + n\frac{\pi}{2} - n\psi \right) \quad (2.14)$$

Numerically solving the Hamiltonian equations for $(z, p_z), (\psi, I_x)$ variables for the Hamiltonian (2.14) allows to describe the resonant interaction of charged particles with a whistler mode wave. In the next subsection, we investigate the Hamiltonian (2.14) to determine the main characteristics of this resonant interaction.

2.3. Wave-particle resonance

First, we would like to consider a conservative system with conserved energy, whereas the Hamiltonian (2.14) depends on time through phase ϕ_\parallel. To exclude this temporal dependence, we introduce new conjugated variables (ζ_\parallel, I) and (z, P_z) with $\zeta_\parallel = \phi_\parallel - n\psi + n\pi/2$. This variable change excludes phase ψ from the Hamiltonian and, thus, the new momentum I_x is constant — i.e., instead of two pairs of conjugated variables $(z, p_z), (\psi, I_x)$ we introduce $(z, P_z), (\zeta_\parallel, I)$. To this aim, we use the generating function $G_1 = (\phi_\parallel + n\psi + n\pi/2) I + z P_z + \psi I_x$ corresponding to:

$$\zeta_\parallel = \phi_\parallel + n\frac{\pi}{2} - n\psi, \quad p_z = k_z I + P_z, \quad I_x = -nI + \tilde{I}_x \quad (2.15)$$

Therefore, the new Hamiltonian $F = H^{(n)} + \partial G_1/\partial t$ takes the form

$$F = -\omega I + m_e c^2 \gamma + eA_0 h^{(n)} \sin \zeta_\parallel \quad (2.16)$$

$$\gamma = \sqrt{1 + \left(\frac{k_z I + P_z}{m_e c^2} \right)^2 + \frac{2\Omega_0}{m_e c^2} \left(\tilde{I}_x - nI \right)}$$

where $h^{(n)} = h^{(n)}(\tilde{I}_x - nI, k_z I + P_z, z)$. The resonance condition $\dot{\zeta}_\parallel = 0$ can be written through Hamiltonian equations:

$$\dot{\zeta}_\parallel = \frac{\partial F}{\partial I} = -\omega + \frac{k_z (k_z I + P_z) - m_e \Omega_0 n}{m_e \gamma} = 0 \quad (2.17)$$
where we omit perturbations $\sim eA_0 \ll m_e c^2$. The solution of Eq. (2.17) provides the resonant value I_R of momentum I:

$$\frac{k_z I_R}{m_e c} = - \frac{P_z}{m_e c} - \frac{\omega_n}{N_\parallel} + \frac{1}{\sqrt{N_\parallel^2 - 1}} \sqrt{1 + \beta_\perp^2 - \frac{\omega_n^2}{N_\parallel^2} - 2 \frac{\omega_n}{N_\parallel} \frac{P_z}{m_e c}}$$

(2.18)

where $N_\parallel = k z c / \omega$, $\omega_n = - n \Omega_0 / \omega$, and $\beta_\perp = 2 I_z \Omega_0 / m_e c^2$. Particles with $I = I_R$ are in resonance with the wave. Therefore, to consider such resonant particles we expand Hamiltonian (2.4) around I_R:

$$F = \Lambda + \frac{1}{2} m_e c^2 g (I - I_R)^2 + e A_0 h_{R}^{(n)}(s,p) \sin \zeta_n$$

$$\Lambda = - \omega I_R + m_e c^2 \gamma_R = \frac{m_e c^2}{N_\parallel^2} \left(N_\parallel \frac{P_z}{m_e c} + \omega_n + \left(N_\parallel^2 - 1 \right) \gamma_R \right)$$

$$\gamma_R = \frac{N_\parallel}{\sqrt{N_\parallel^2 - 1}} \sqrt{1 + \beta_\perp^2 - \frac{\omega_n^2}{N_\parallel^2} - 2 \frac{\omega_n}{N_\parallel} \frac{P_z}{m_e c}}$$

$$g = \left. \frac{\partial^2 \gamma}{\partial P^2} \right|_{I = I_R} = \left(N_\parallel^2 - 1 \right) \frac{\omega^2}{m^2 c^4 \gamma_R}$$

(2.19)

where $h_{R}^{(n)} = h^{(n)}(n I_R + I_z, k_z R + P_z, z)$. We introduce variables $K = I - I_R$, p, s, through the generating function $G_2 = (I - I_R) \zeta_n + P_z s$ (we keep the old notation for ζ_n, because this transformation does not change the phase):

$$K = I - I_R, \quad p = P_z - \frac{\partial I_R}{\partial z} \zeta_n, \quad s = z + \frac{\partial I_R}{\partial P_z} \zeta_n$$

(2.20)

The new Hamiltonian $W = \Lambda(s,p) + m_e c^2 g(s,p) K^2 / 2 + e A_0 h_{R}^{(n)}(s,p) \sin \zeta_n$ contains the Λ function depending on (s,p). Terms $\sim \partial I_R / \partial z$, $\partial I_R / \partial P_z$ in Eq. (2.20) are much smaller than (z, P_z) terms due to the condition $\partial / \partial z \ll k_z$. Therefore, we can expand the function Λ:

$$\Lambda(z,P_z) = \Lambda \left(s - \frac{\partial I_R}{\partial P_z} \zeta_n, p + \frac{\partial I_R}{\partial z} \zeta_n \right) = \Lambda(s,p) + \left(\frac{\partial I_R}{\partial P_z} \frac{\partial \Lambda}{\partial z} - \frac{\partial I_R}{\partial z} \frac{\partial \Lambda}{\partial P_z} \right) \zeta_n = \Lambda - r \zeta_n$$

(2.21)

where $r = \{ \Lambda, I_R \}_z, p \approx \{ \Lambda, I_R \}_s, p$. Therefore, the new Hamiltonian W can be split into two Hamiltonians $W = W_{\text{slow}} + \tilde{\zeta}$, where $W_{\text{slow}} = \Lambda(s,p) \sim m_e c^2$ describes the slow evolution of (s,p) variables, while $\tilde{\zeta} \sim e A_0 \ll m_e c^2$ depends on these variables as on parameters and describes the fast variations of ζ_n:

$$\tilde{\zeta} = \frac{1}{2} \frac{N_\parallel^2 - 1}{\gamma_R} \frac{\omega^2}{m^2 c^4} K^2 - r \zeta_n + e A_0 h_{R}^{(n)}(s,p) \sin \zeta_n$$

$$r = \frac{m_e c^2 D N_\parallel^2}{N_\parallel^2 - 1} \frac{1}{\gamma_R} \left(\frac{\gamma_R - \omega_n}{N_\parallel^2} \frac{\partial \ln N_\parallel}{\partial \ln \Omega_0} + \frac{\omega_n}{N_\parallel^2} \frac{P_z}{m_e c} + 2 \frac{\beta_\perp^2}{N_\parallel^2} \right)$$

(2.22)

where $D = e (\partial \ln \Omega_0 / \partial s) / N_\parallel \omega \ll 1$ is a dimensionless factor determining the scale ratio of the inhomogeneity scale $\sim (\partial / \partial z)^{-1}$ and wavelength scale $\sim 1/k_z$.
2.4. Characteristics of resonant interaction

Using the resonant Hamiltonian (2.22), we can derive the main characteristics of the corresponding resonant wave-particle interaction. We start with the determination of values \((s, p)\) where the particle reaches resonance with the wave. Each particle trajectory is characterized by two constants: the generalized energy \(\gamma - \omega I/m_e c^2 = \text{const}\) (i.e., the normalized value of \(F\) from Eq. (2.16) omitting small terms) and \(\dot{I}_x\). Momenta \(\dot{I}_x\) and \(I\) are linearly related to each other \((\dot{I}_x = n I + \dot{I}_x)\) and we define constant \(\dot{I}_x\) to be equal to the initial \(I_x\). Thus, the initial value of \(I\) equals zero and \(\gamma_{\text{init}} = -\omega I_R/m_e c^2 + \gamma_R\), where \(\gamma_{\text{init}}\) is the initial value of the energy. We substitute this equation into Eq. (2.18) and solve the obtained equation relative to resonant momentum \(p_R \approx P_x\):

\[
\frac{p_R}{m_e c} = N_\parallel \gamma_{\text{init}} - N_\parallel \omega_n \pm \sqrt{N_\parallel^2 - 1 \sqrt{1 + \varepsilon + \omega_n^2}}
\]

where we introduce a new function \(\varepsilon = \beta z - 2 \gamma_{\text{init}} \omega_n\). For every \(\gamma_{\text{init}}\), Eq. (2.23) defines the resonant curve \(p_R = p_R(s)\). The particles trapped into the resonance move along such curves, and thus particle energy \(\gamma = \gamma_R\) and all coefficients of Eq. (2.22) can be rewritten as functions of \(s\) only (i.e., \(\omega_n(s), N_\parallel(s)\)):

\[
\gamma = \omega_n - \frac{N_\parallel}{\sqrt{N_\parallel^2 - 1}} \sqrt{1 + \varepsilon + \omega_n^2}
\]

\[
\frac{p_R}{m_e c} = N_\parallel \gamma_{\text{init}} - N_\parallel \omega_n \pm \sqrt{N_\parallel^2 - 1 \sqrt{1 + \varepsilon + \omega_n^2}}
\]

\[
r = \frac{1}{2} m_e c^2 D N_\parallel^2 \frac{1}{\gamma} \left(1 - \gamma^2 + 2 \frac{(\gamma - \omega_n)^2}{N_\parallel^2} \frac{\partial \ln N_\parallel}{\partial \ln \Omega} + \frac{\gamma^2 - \omega_n^2}{N_\parallel^2} \right)
\]

The resonant coordinate \(s_R(\gamma)\) is defined from the first equation of Eqs. (2.24). Substituting \(s_R(\gamma)\) to Eq. (2.22) and fixing \(\dot{I}_x\), we obtain \(r = r(\gamma)\).

Defining resonant \(p_R = p_R(\gamma, s_R)\) and \(s_R = s_R(\gamma)\) (see Eqs. (2.23, 2.24), we can provide a quantitative description of the particle resonant interaction. Let us start with the time scale between two successive resonance crossings, \(T\). We assume that there is one resonant interaction per period of slow \((z, p_z)\) motion, i.e., the wave propagates from \(z = 0\) to positive \(z\) and there is no wave at negative \(z\). This assumption also means that waves generated at \(z = 0\) and propagating to high \(z\) are not reflected at high \(z\) and do not return back to \(z = 0\). Spacecraft observations (e.g., Agapitov et al. 2013) and chorus wave modeling including Landau damping effect (e.g., Bortnik et al. 2006; Breuillard et al. 2013; Chen et al. 2013) suggest that in Earth radiation belt strong damping at high \(z\) and spreading of wave power result in a very small intensity of waves propagating back from high \(z\) toward \(z = 0\) plane. Thus, \(T\) can be calculated from the unperturbed Hamiltonian (2.14):

\[
T(\gamma, \dot{I}_x) = \int \frac{dz}{\partial H/\partial p_z} = \frac{\gamma}{\gamma^2 - 1} \int \left(1 - \frac{\varepsilon + 2 \omega_n \gamma}{\gamma^2 - 1}\right)^{-1/2} dz/c
\]

where we rewrite \(\dot{I}_x = -n I + \dot{I}_x\) through \(\dot{I}_x = \text{const}, -\omega I/m_e c^2 + \gamma = \gamma_{\text{init}}\), and \(\varepsilon = \Omega_0 \dot{I}_x/m_e c^2 - 2 \gamma_{\text{init}} \omega_n\). The period (2.25) depends only on energy \(\gamma\). The assumption that there is a single resonance during one bounce period does not follow from the system properties; it is used to simplify the derived equations. In more realistic systems, charged particles can resonate with the same wave several times along the bounce trajectory, and such multi-resonances can significantly influence charged particle motion (e.g., Shklyar...
To include the effects of several resonances within one bounce period, we would need to describe the time scale between two successive resonances depending on wave characteristics. This generalisation of the derived equations will be considered in a future study.

Over one period T, particle scattering results in a change of momentum I, and a corresponding change of energy γ: $\omega \Delta I/m_e c^2 = \Delta \gamma$. This change can be written as

$$
\Delta \gamma = \frac{\omega \Delta I}{m_e c^2} = -\frac{\omega}{m_e c^2} \int \frac{\partial F}{\partial \zeta_n} dt = -\frac{2eA_0 h_R^{(n)}}{m_e c^2} \omega \int_{-\infty}^{\zeta_n^*} \cos \zeta_n d\zeta_n
$$

where the integration is performed along trajectory of particles approaching the resonance from infinity, interacting with waves with the resonance value of phase ζ_n^*, and escaping from the resonance toward infinity. Note that integral (2.26) is written for negative r (ζ_n changes from $-\infty$ to ζ_n^*), whereas for positive r the integration should be performed for $\zeta_n \in [\zeta_n^*, -\infty]$. The parameter $a = eA_0 h_R^{(n)} / r$ and other parameters should be evaluated at (p_R, s_R), i.e. all these parameters depend only on γ. We further introduce the new variable ξ through the particle energy evaluated at ζ_n^*: $2\pi \xi = a \sin \zeta_n^* - \zeta_n^*$. The function $f(\zeta_n^*, a) = f(\xi, a)$ is a periodical function of ξ, whereas ξ depends on the initial value of ζ_n and on the initial particle gyrophase (see, e.g., Karpman et al. 1975). We do not include any information about particle gyrophase into our present description. Thus, we calculate here the average value of f over ξ. The distribution of ξ is assumed to be uniform $\xi \in [0, 1]$ (see corresponding numerical tests in Itin et al. 2000). An interesting and crucial property of the function $f(\xi, a)$ is that $\langle \Delta I \rangle_\xi = -S_{sep}/2\pi$ (Karpman et al. 1975; Neishtadt 1999; Dolgopyat 2012) where S_{sep} is defined as:

$$
S_{sep} = \int K d\zeta_n = 2^{3/2} \sqrt{\frac{\gamma r^2}{N_\parallel(N_\parallel^2 - 1)}} \int_{\zeta_{min}}^{\zeta_{max}} \sqrt{\zeta_n - \zeta_{max} + a (\sin \zeta_{max} - \sin \zeta_n)} d\zeta_n
$$

and ζ_{min} is defined by equation $a \cos \zeta_{min} = 1$ and ζ_{max} is defined by equation $\zeta_{min} - a \sin \zeta_{min} = \zeta_{max} - a \sin \zeta_{max}$. Therefore, we can introduce

$$
\langle \Delta \gamma \rangle = \left[\frac{2eA_0 h_R^{(n)}}{m_e c^2 (N_\parallel^2 - 1)} \right] f_S(a)
$$

$$
f_S(a) = \frac{1}{\pi \sqrt{a}} \int_{\zeta_{min}}^{\zeta_{max}} \sqrt{\zeta_n - \zeta_{max} + a (\sin \zeta_{max} - \sin \zeta_n)} d\zeta_n
$$

For $|a| < 1$ we have $f_S = 0$, and for $|a| \gg 1$ we have $f_S = \sqrt{2}/\pi$. The change $\langle \Delta \gamma \rangle$ depends only on γ.

In addition to scattering, one must also consider particle trapping (e.g., Omura et al. 1981). To include the effects of several resonances within one bounce period, we would need to describe the time scale between two successive resonances depending on wave characteristics. This generalisation of the derived equations will be considered in a future study.
A particle trapped by a wave starts moving with the resonant velocity (i.e., with a resonant momentum given by Eq. (2.23)). During such motion, the particle’s γ varies like γ_R, i.e., the particle remains a long time in resonance with the wave. Trapped particles fill an area in the (ζ, K) plane equal to S_{res}, i.e., the phase volume of trapped particles is given by the same expression as the one determining the energy change of scattered particles (e.g., Karpman et al. 1975; Shklyar 2011). Trapping of new particles into this volume requires that the area S_{sep} evaluated along trapped trajectory grows with time: $dS_{sep}/dt = \{S_{sep}, \Lambda\}_{(s,p)} > 0$. This condition is satisfied either for the wave amplitude $eA_0h^{(n)}$ growing along the resonant trajectory or for a decreasing $|r|$ (e.g., a reduction of the inhomogeneity factor D, see Eq. (2.22)). The condition $dS_{sep}/dt > 0$ determines a certain range of γ values. Trapped particles escape from the resonance when $dS_{sep}/dt < 0$ and $\gamma = \gamma^*$, where γ^* is a solution of equation $S_{sep}(\gamma^*) = S_{sep}(\gamma_{trap})$, where γ_{trap} is the γ value at the moment of trapping (e.g., Neishtadt et al. 1989; Itin et al. 2000; Vasiliev et al. 2011). We consider S_{sep} dependence on γ and define two ranges of γ (see scheme in Fig. 3):

$$\frac{dS_{sep}}{dt} < 0 \quad \text{for} \quad \gamma \in Z_{esc}, \quad \text{and} \quad \frac{dS_{sep}}{dt} > 0 \quad \text{for} \quad \gamma \in Z_{trap} \quad (2.29)$$

Therefore, trapping transports particles toward position in Z_{esc} from position in Z_{trap}. In this study, we assume that wave intensity maximizes at intermediate z and drops to zero at both $z = 0$ and large z. Therefore, trapping into resonance and escape from the resonance occur within the same hemisphere ($z > 0$). We do not consider the more complicated situation when wave with trapped particles can cross $z = 0$ plane several times. Therefore, particle transport in energy space is limited by time-scale of trapped particle motion in the resonance (about a quarter of particle bounce period). This transport is described by the map $\gamma = Y(\gamma^*)$ where $\gamma \in Z_{esc}$ and $\gamma^* \in Z_{trap}$. The function $Y(\gamma^*)$ is defined by equation $S_{sep}(\gamma^*) = S_{sep}(\gamma)$. As shown in (Artemyev et al. 2016), to write the generalized Fokker-Plank equation, we need to determine only the relation $\langle \Delta \gamma \rangle = \langle \Delta \gamma \rangle(\gamma)$ and the map $\gamma = Y(\gamma^*)$.

![Figure 3. Normalized area $S_{sep}(\gamma)$ given by Eq. (2.27).](image-url)
3. Generalized Fokker-Planck equation

Resonant wave-particle interactions lead to particle scattering, which can be defined via two physical quantities: a diffusion coefficient \(D_{\gamma \gamma} = \langle (\Delta \gamma)^2 \rangle / T(\gamma) \) and a drift velocity \(V_\gamma = \langle \Delta \gamma \rangle / T(\gamma) \). (note, we consider unidirectional wave propagation, and thus there is a \(\Delta \gamma \) finite). These two characteristics describe respectively particle diffusion and particle drift in \(\gamma \)-space (for fixed \(\tilde{L}_z = \text{const} \)). The corresponding evolution of the particle distribution function can be written in terms of two operators

\[
\hat{L}_D \Psi = \frac{\partial}{\partial \gamma} \left(D_{\gamma \gamma} \frac{\partial \Psi}{\partial \gamma} \right) \\
\hat{L}_V \Psi = -\frac{\partial V_\gamma \Psi}{\partial \gamma}
\]

(3.1)

The third effect is particle trapping and fast transport. This effect can be described by probabilistic operators (Solovev & Shklyar 1986; Artemyev et al. 2014; Omura et al. 2015). This kind of operator depends on the probability of trapping \(\Pi = -d(\Delta I)/dI \) (Artemyev et al. 2016, 2017a) and can be written as

\[
\hat{L}_T^\ast \Psi = -\frac{\Pi^\ast}{T^\ast} \Psi + \frac{\Psi d \langle \Delta \gamma \rangle}{T^\ast d\gamma}, \quad \gamma \in Z_{\text{esc}}
\]

(3.2)

\[
\hat{L}_T^- \Psi = -\frac{\Pi^-}{T^-} \Psi + \frac{\Psi d \langle \Delta \gamma \rangle}{T^- d\gamma}, \quad \gamma \in Z_{\text{trap}}
\]

where \(\Pi^\ast = \Pi(\gamma^\ast) \), \(\Psi^\ast = \Psi(\gamma) \), and \(\gamma^\ast \) is a solution of equation \(\gamma = Y(\gamma^\ast) \). Note that in Eqs. (3.2) we use the linear relation between \(I \) and \(\gamma \). Combining Eq. (3.1) and Eq. (3.2), and using \(\langle \Delta \gamma \rangle = T(\gamma)V_\gamma \), we obtain the final form of the equation for \(\Psi \) (\(\partial \Psi / \partial t = \hat{L}_D \Psi + \hat{L}_V \Psi + \hat{L}_T \Psi \)):

\[
\frac{\partial \Psi}{\partial t} = -V_\gamma \frac{\partial \Psi}{\partial \gamma} + \frac{1}{T} \frac{d T}{d \gamma} V_\gamma + \frac{\partial}{\partial \gamma} \left(D_{\gamma \gamma} \frac{\partial \Psi}{\partial \gamma} \right), \quad \gamma \in Z_{\text{trap}}
\]

\[
\frac{\partial \Psi}{\partial t} = -V_\gamma \frac{\partial \Psi}{\partial \gamma} - \frac{\partial V_\gamma}{\partial \gamma} \left(\Psi - T \frac{T}{T^\ast} \Psi^\ast \right) + \frac{1}{T^\ast} \frac{d T^\ast}{d \gamma} V_\gamma \Psi^\ast + \frac{\partial}{\partial \gamma} \left(D_{\gamma \gamma} \frac{\partial \Psi}{\partial \gamma} \right), \quad \gamma \in Z_{\text{esc}}
\]

(3.3)

We introduce the action of the averaged system \(J \) as \(dJ/d\gamma = T(\gamma)/2\pi \) and rewrite Eq. (3.3) for \(J \) using the function \(\Psi_J = 2\pi \Psi/T \), \(V_J = V_\gamma T/2\pi \), \(D_{JJ} = D_{\gamma \gamma} T^2/4\pi^2 \) (Artemyev et al. 2017a):

\[
\frac{\partial \Psi_J}{\partial t} = -V_J \frac{\partial \Psi_J}{\partial J} + \frac{\partial}{\partial J} \left(D_{JJ} \frac{\partial \Psi_J}{\partial J} \right) - \frac{\partial V_J}{\partial J} (\Psi_J - \Psi_J^\ast) \Theta + \frac{\partial}{\partial J} (\delta V_J \Psi_J^\ast) + C_J
\]

(3.4)

where \(\delta V_J = D_{JJ} \partial \ln T/\partial J \), the function \(\Theta \) is equal to one when \(\gamma \in Z_{\text{esc}} \) (or \(dV_J/dJ > 0 \)) and \(\Theta \) is zero when \(\gamma \in Z_{\text{trap}} \) (or \(dV_J/dJ < 0 \); see Eq. (2.29). An additive factor \(C_J \) includes small terms proportional to \(\sim \partial \ln T / \partial J \) and we omit this factor for further calculations. There are two drift terms in Eq. (3.4): \(\sim V_J \) and \(\sim \delta V_J \sim D_{JJ} \). Equation (2.26) shows that \(V_J \sim \Delta \gamma \sim \sqrt{eA_0/m_e c^2} \), whereas \(\delta V_J \sim (\Delta \gamma)^2 \sim eA_0/m_e c^2 \ll V_J \). Thus, we keep only one drift term \(\sim V_J \) in Eq. (3.4). Moreover, we should note that to write Eq. (3.1), we omit terms smaller than \(\sim O(eA_0/m_e c) \). Equation (3.4) describes the evolution of the \(\Psi_J(J) \) distribution, which can be transformed back to the \(\Psi(\gamma) \) distribution using \(dJ/d\gamma = T(\gamma)/2\pi \). This evolution includes many resonant interactions (many trapping and scattering), but each interaction is localized in time (trapping lasts...
for a time interval smaller than the bounce period). Thus, Eq. (3.4) describes long-term evolution of particle distribution function averaged over bounce period.

4. Parallel propagating waves: cyclotron resonance

In this section, we consider nonlinear resonant electron interaction with parallel propagating whistler mode waves (i.e., with \(k_x = 0 \) and \(C_1 = C_2 = C = 1 \) in Eq. (2.13)). Therefore, \(n = -1 \) and the Hamiltonian \(H_1 \) takes the form

\[
H_1 = -\varepsilon_0 A_0 \frac{\rho_I_0}{c^2} \sin (\varphi_{\parallel} + \psi - \pi/2)
\]

and there are no other resonances (the corresponding Bessel functions in Eq. (2.13) are equal to zero). We consider a magnetic field model with \(\Omega_0(s/R) \), where \(R \) is the spatial scale of the field gradient. We also use the dipole magnetic latitude \(\lambda \) instead of \(s \): \(ds/d\lambda = R \sqrt{1 + 3 \sin^2 \lambda \cos \lambda} \) and \(\Omega_0 = \Omega_0(0) \sqrt{1 + 3 \sin^2 \lambda / \cos \lambda} \). Introducing the dimensionless frequency \(\varpi = \omega_{-1} = \Omega_0(s)/\omega \) and using the simplified dispersion relation valid for parallel propagating waves (Stix 1962), we write:

\[
N_{\parallel} = \frac{\Omega_{pe}}{\omega} (\varpi - 1)^{-1/2}, \quad \frac{\partial \ln N_{\parallel}}{\partial \ln \omega} = -\frac{1}{2} \frac{\varpi}{(\varpi - 1)^{-1}}
\]

where \(\Omega_{pe} = \text{const} \) is the plasma frequency. Note that \(N_{\parallel} \) is the refractive index \(N \) of parallel propagating waves. Using \(\omega_n = -n\Omega_0/\omega = \varpi \), we rewrite \(\varepsilon = (\beta_\perp^2 - 2\gamma_{init}\omega_n) \) as:

\[
\varepsilon = \beta_\perp^2 - 2\gamma_{init}\omega_n = \frac{\Omega_0}{\omega} \left(2\omega I_\perp/m_c e^2 - 2\gamma_{init} \right) = \varpi \varepsilon_0
\]

where \(\varepsilon_0 \) is a constant. Equations (4.2, 4.3) allow us to simplify Eqs. (2.24, 2.27, 2.28) as:

\[
\gamma = \left| \varpi - \frac{N_{\parallel}}{N_{\parallel}^2 - 1} \sqrt{1 + \varepsilon_0 \varpi + \varpi^2} \right|
\]

\[
T = \frac{\gamma}{\sqrt{\gamma^2 - 1}} \frac{1}{\varpi} \left(1 - \frac{\varepsilon_0 + 2\gamma}{\gamma^2 - 1} \varpi(s) \right)^{-1/2} \frac{ds}{c}
\]

\[
\tilde{v} = \frac{1}{2} \frac{N_{\parallel}}{N_{\parallel}^2 - 1} \left(\frac{\partial \ln \Omega_0}{\partial s/R} \right) \left(1 - \gamma^2 + \gamma^2 \frac{\varpi}{N_{\parallel}} \frac{\varpi(\gamma - \varpi)^2}{N_{\parallel}^2 (1 - \varpi)} - \frac{\varpi^2}{N_{\parallel}^2} \right)
\]

\[
(\Delta \gamma) = \frac{a_{\tilde{v}}}{\sqrt{\eta (N_{\parallel}^2 - 1)}} f_S(a), \quad a = \frac{2eA_0 \eta}{m_c e^2} \sqrt{(\varepsilon_0 + 2\gamma) \varpi} / \tilde{v}
\]

where \(\eta = \omega R/c \).

The system (4.1,4.4) is characterized by the following parameters: scale \(R \), plasma density (defining the plasma frequency \(\Omega_{pe} \)), dimensionless wave amplitude \(2eA_c/m_c e^2 \), wave frequency \(\omega \), and \(\varepsilon_0 \). For all following calculations, we use Earth’s dipole model with \(R = R_E L \) (\(R_E \approx 6380 \text{ km} \) is the Earth radius), a plasma density model (Sheeley et al. 2001) valid outside the plasmasphere in the inner magnetosphere providing \(\Omega_{pe}(L) \), and consider \(L = 4.5 \) (the typical region of intense whistler mode chorus wave observations, see, e.g., Li et al. 2011a; Agapitov et al. 2013), \(\omega = 0.35\Omega_0(0) \), for the chosen parameters \(\eta \approx 2000, 2eA_c/m_c e^2 = 2a_0(\lambda)/\eta \) (the corresponding wave magnetic field amplitude...
Nonlinear phase space transport

Figure 4. Left panel: Refractive index $N_{||}$, derivative $\partial \ln \Omega_0 / \partial s/R$, and field-aligned coordinate s are shown as functions of λ. Central panel: system parameter ε_0 as a function of initial energy and pitch-angle. Right panel: periods $T(\gamma)$ and resonant latitudes are shown for three values of ε_0 in the case of parallel whistler mode waves.

$\sim 500 \text{ pT}$ is typical for intense whistler mode chorus waves, e.g. Santolík 	extit{et al.} 2014) and function $\varepsilon_0 = \exp(- (\lambda - \lambda_0)^2/\delta \lambda^2)$ with $\lambda_0 = 25^\circ$, $\delta \lambda_0 = 12.5^\circ$ imitates a distribution of the wave intensity along magnetic field lines (e.g., Agapitov 	extit{et al.} 2013). For the above parameters, the main functions $N_{||}$, $\partial \ln \Omega_0 / \partial s/R$, and s/R are displayed in Fig. 4(left panel) as a function of magnetic latitude λ.

The parameter ε_0 defines the range of energies and I_x values considered for a particular solution. It is convenient to introduce the particle pitch-angle α_{eq} (defined at $s = 0$) and to rewrite ε_0 through initial energy and pitch-angle. Using the definition of I_x, we can write $2I_x = m_e c^2 (\gamma_{init}^2 - 1) \sin^2 \alpha_{eq}$, and thus $\varepsilon_0 = (\gamma_{init}^2 - 1) \sin^2 \alpha_{eq} / \omega(0) - 2 \gamma_{init}$. The function $\varepsilon_0(\gamma_{init}, \alpha_{eq}) = const$ corresponds to a certain relation between resonant particle energy and pitch-angle, and this relation remains unchanged during the resonant interaction, i.e., ε_0 can be considered as an integral of particle motion. This integral represents a combination of the particle energy in the wave reference frame and the resonant condition (see analogies of this integral in, e.g., Shklyar 1981; Summers 	extit{et al.} 1998). Figure 4(center panel) shows $\varepsilon_0(\gamma_{init}, \alpha_{eq})$. Choosing a particular ε_0, we can describe the evolution of a particle ensemble with initial energies and pitch-angles defined by $\varepsilon_0(\gamma_{init}, \alpha_{eq})$. The definition of the period T (see Eqs. (4.4)) determines the range of energies that must be considered for a given ε_0: $(2 \varepsilon_0 + 2 \gamma) \omega(0) < \gamma^2 - 1$. Figure 4(right panel) shows particle periods $T(\gamma)$ and resonant latitudes λ_R (defined from the first equation of system (4.4)) for three different ε_0 values.

To construct Eq. (3.4) for the system (4.1, 4.4), we need first to define $\langle \Delta \gamma \rangle$, $J(\gamma) = \int T(\gamma) d\gamma / 2\pi$ (we use the renormalized Jc/R) and $J = Y_f(\gamma^*)$ projection. Equation (4.4) shows that $\langle \Delta \gamma \rangle$ depends on $\hat{r}(\gamma)$ presented in Figure 5(left panel). Using this dependence, we calculate $\langle \Delta \gamma \rangle$ functions (see Figure 5(central panel)) and define $V_\gamma = \langle \Delta \gamma \rangle / T(\gamma)$ and $V_f = V_c T / 2\pi$. The nonlocal (trapping term) of Eq. (3.4) is determined by the function $\gamma = Y(\gamma^*)$ shown in Fig. 6. A quite limited range of initial γ^* is mapped to a wide range of final γ as a result of the nonlinear interaction. The function $J(\gamma)$ shown in Fig. 5(right panel) allows us to transform the γ-dependence into a J-dependence and to solve Eq. (3.4).

Combining functions $J(\gamma)$, $\langle \Delta \gamma \rangle$, $\gamma = Y(\gamma^*)$ and calculating the diffusion coefficient $D_{\gamma \gamma} = \langle (\Delta \gamma)^2 \rangle / 2T(\gamma)$ (see, e.g., Artemyev 	extit{et al.} 2016, 2017b), we solve the kinetic equation for the $\Psi_f(J)$ distribution. Figure 7 (right panels) shows the $\Psi(\gamma) = \Psi_f(J)T / 2\pi$
distributions obtained for three different ε_0 values (the initial distribution $\Psi(\gamma) \sim \gamma^{-5}$ is shown by grey color). Each ε_0 corresponds to some range of γ, α_{eq} (see Fig. 4(central panel)), and for different ε_0 the evolution of $\Psi(\gamma)$ reflects the dominance of particle trapping (γ increase) or drift (γ decrease). We use boundary conditions $\partial \Psi / \partial J = 0$ at the right-hand-side (large J; large γ) and left-hand side (small J; small γ) boundaries. This condition allows a variation of boundary Ψ values, but guarantees the absence of particle flux outside the J range of the simulation. For all ε_0, the nonlinear wave-particle interaction results in the generation of a high-energy population due to trapping, which transports particles to higher γ. This population gradually drifts toward smaller energies, but this drift is weaker than the effect of trapping, i.e., the phase space density of high-energy particles grows. In all three cases, the distribution evolves toward a more uniform profile $\Psi(J)$ and we expect that after a sufficiently long time interval the final distribution will be $\Psi(J) \approx \text{const}$, i.e. Ψ will evolve toward the stationary solution of Eq. (3.4). The evolution of the entire particle distribution consists in $\Psi(\gamma)$ evolutions for a wide range of ε_0 values and, as a result, particle acceleration can be compensated by the deceleration of other particles, in such a way that the total energy variation of the entire particle ensemble can remain small (Shklyar 2011, 2017).
Figure 7. The case of parallel whistler mode waves. Left panels show the distributions of $\eta^{-1/2} V_J(J)$, $-\eta^{-1/2} dV_J/dJ$, and $J^*(J)$ (inverse $Y_J(J^*)$ function). Right panels show the distributions $\Psi_J(J)$ (dashed) and $\Psi(\gamma)$ (solid) at three different times t_c/R. The data are plotted for three different ε_0 values.
5. Strongly Oblique waves: Landau resonance

In this section, we consider electrons in Landau resonance \(n = 0 \) with strongly oblique whistler mode waves propagating with \(\theta \) within one degree from the resonant cone angle \(\theta_r = \arccos(\omega/\Omega_0) \) (Stix 1962). Therefore, the Hamiltonian \(H_1 \) from Eq. (2.13) takes the form

\[
H_1 = -e A_0 h^{(0)} \sin \phi \quad \text{(5.1)}
\]

\[
h^{(0)} = -\frac{\rho \Omega_0}{\epsilon \gamma} C J_1(k_x \rho) - \left(\frac{p_x}{\gamma m_e c} + C_3 \right) \sin \theta J_0(k_x \rho)
\]

where \(p_x = k_z I_R + p_R = \gamma/N_||. \) As in the previous section, we consider a magnetic field model with \(\Omega = \Omega(0) \sqrt{1 + 3 \sin^2 \lambda/\cos^6 \lambda} \) and \(ds/d\lambda = R \sqrt{1 + 3 \sin^2 \lambda \cos \lambda} \), where \(R \) is the spatial scale of magnetic field inhomogeneity. Using \(\omega = \Omega_0(s)/\omega \) and a simplified dispersion relation valid for obliquely propagating waves (Stix 1962), we write:

\[
N_|| = \frac{\Omega_{pe} \cos \theta}{\omega \sqrt{\varpi \cos \theta - 1}}, \quad \frac{\partial \ln N_||}{\partial \ln \Omega_0} = -\frac{1}{2} \frac{\varpi \cos \theta - 1}{\varpi \cos \theta - 1} \quad \text{(5.2)}
\]

where \(\Omega_{pe} = \text{const} \) is the plasma frequency. Using \(\omega_n = 0 \), we rewrite \(\varepsilon = \beta_\perp^2 - 2 \gamma_{\text{init}} \omega_n \) as:

\[
\varepsilon = \frac{\Omega_0}{\omega} \frac{2 \omega I_x}{\omega m_e e^2} = \varpi \varepsilon_0 \quad \text{(5.3)}
\]

where \(\varepsilon_0 \) is a constant. Equations (5.2, 5.3) allow us to simplify Eqs. (2.24, 2.24, 2.28):

\[
\gamma = \frac{N_||}{\sqrt{N_||^2 - 1}} \sqrt{1 + \varepsilon_0 \varpi}, \quad T = \frac{\gamma}{\sqrt{\varpi^2 - 1}} \int \left(1 - \frac{\varepsilon_0 \varpi(s)}{\gamma^2 - 1} \right)^{-1/2} ds/c
\]

\[
f = \frac{1}{2} \frac{N_||}{\sqrt{N_||^2 - 1}} \left(\frac{\partial \ln \Omega_0}{ds/R} \right) \left(1 - \frac{\varpi^2}{N_||} \frac{1}{\varpi \cos \theta - 1} \right) \quad \text{(5.4)}
\]

\[
\langle \Delta \gamma \rangle = \sqrt{\frac{\alpha r}{\eta \gamma N_||^2 - 1}} J_0(a), \quad a = \frac{2\varepsilon A_0 \sqrt{\varepsilon_0 \varpi} h^{(0)}}{m_e e^2}, \quad k_x \rho = \sqrt{\varepsilon_0 \varpi \frac{N_||}{\varpi} \sin \theta \cos \theta}
\]

\[
h^{(0)} = -\frac{\varepsilon_0 \varpi}{\gamma} C J_1(k_x \rho) - (N_|| + C_3) \sin \theta J_0(k_x \rho)
\]

where \(\eta = \omega R/c \). Similarly to Eqs. (4.1, 4.4), Eqs. (5.4) include several parameters: we use the same scale \(R, \omega, \) and plasma density \(\Omega_{pe} \) as for parallel propagating wave (and, thus \(\eta \approx 2000 \)), whereas the dimensionless wave amplitude is taken as \(2e A_e/m_e c^2 = 1.5 a_0(\lambda)/\eta \) (the corresponding wave magnetic field amplitude \(\sim 150 \) pT) is typical of intense highly oblique whistler mode chorus waves, e.g. Cully et al. 2008; Wilson et al. 2011; Agapitov et al. 2014). Figure 8(left panel) shows the parallel refractive index \(N_|| \) and \(\cos \theta \) along the magnetic latitude \(\lambda \). As latitude increases, \(\theta \) increases too, whereas \(\cos \theta \) decreases to zero.

Equation (5.3) shows that the parameter \(\varepsilon_0 = (\gamma^2_{\text{init}} - 1) \sin^2 \alpha_{eq}/\omega(0) \) is positive and equal to the initial \(I_x/\omega(0) \) value (i.e., for Landau resonance the \(\varepsilon_0 \) conservation means the conservation of the magnetic moment \(I_x \)). For Landau resonance \(n = 0 \), the wave phase does not depend on the phase conjugated to \(I_x \), and thus \(I_x \) is conserved for all particles (see Hamiltonian 2.14). It is convenient to introduce the particle pitch-angle \(\alpha_{eq} \) (defined at \(s = 0 \)) and to rewrite \(\varepsilon_0 \) as a function of initial energy and pitch-angle. Figure 8(center panel) shows \(\varepsilon_0(\gamma_{\text{init}}, \alpha_{eq}) \). For calculations within this section, we use...
Nonlinear phase space transport

Figure 8. The case of very oblique whistler mode waves. Left panel: Refractive index N_0 and $\cos \theta$ are shown as functions of λ. Central panel: system parameter ε_0 as a function of initial energy and pitch-angle. Right panel: periods $T(\gamma)$ and resonant latitudes for three values of ε_0.

Figure 9. Functions $\bar{r}(\gamma)$ (left panel), $\langle \Delta \gamma \rangle(\gamma)$ (central panel), $J(\gamma)$ (right panel) for three different values of ε_0 in the case of very oblique whistler mode waves.

three ε values: 0.5, 1, and 2. Using these ε_0, we plot in Figure 4(right panel) the particle periods $T(\gamma)$ and resonant latitudes λ_R (defined from the first equation of system (5.4)).

Using Eqs. (5.4), we define the function $\bar{r}(\gamma)$ and $J(\gamma) = \int Td\gamma/2\pi$ (we use the renormalized $J = Jc/R$) and plot them in Fig. 9. These functions have similar profiles as in the case of cyclotron resonance with parallel propagating waves (see Fig. 5). Unlike $\bar{r}(\gamma)$, $J(\gamma)$, however, the function $\langle \Delta \gamma \rangle$ has a much more complicated profile for Landau resonance (compare central panels of Figs. 9 and 5). The effective wave amplitude given by Eq. (5.4) depends on a combination of Bessel functions J_0, J_1, and thus this amplitude oscillates along the resonant particle trajectory (with γ). Such oscillations result in several maxima/minima of $\langle \Delta \gamma \rangle$, i.e., the particles can get trapped in many regions (with trapping condition $dS_{sep}/d\gamma = d(\Delta \gamma)/d\gamma > 0$, see Eq. (2.29)) separated in γ-space by regions where particle escape from trapping (where $dS_{sep}/d\gamma = d(\Delta \gamma)/d\gamma < 0$).

Figure 10 demonstrates that the $Y(\gamma^*)$ function contains several regions with very sharp gradients (several almost vertical lines). Thus, all particles trapped within a wide energy γ^* range (within a region with $d(\Delta \gamma)/d\gamma > 0$) will escape at the next (after the trapping region) decrease of $\langle \Delta \gamma \rangle$ with almost the same energy $\gamma = Y(\gamma^*)$. Using the functions shown in Figs. 9, 10, we can calculate all coefficients of Eq. (3.4).

Next, using functions from Figs. 9, 10 we solve the kinetic equation for the $\Psi_J(J)$
distribution and then recalculate from this distribution the \(\Psi(\gamma) = \Psi_J(J)/2\pi \) distribution. Figure 11 (right panels) shows the \(\Psi(\gamma) \), \(\Psi_J(J) \) distributions obtained for three \(\varepsilon_0 \) values (the initial distribution \(\Psi(\gamma) \sim \gamma^{-5} \) is shown by grey color). For all \(\varepsilon_0 \) values, the evolution of \(\Psi(\gamma) \) has rather similar characteristics. There are several regions where particles trapped with a smaller energy are released from the resonance with the energy increase. This transport results in the formation of local enchantments of \(\Psi(\gamma) \) (the location of these enchantments is different for different \(\varepsilon_0 \)). After their formation, these local enchantments of \(\Psi(\gamma) \) evolve in time: the drift toward smaller energy evacuates particles and forms a shoulder on the left side of each initial distribution enchantment. Such a competition between particle evacuation due to trapping and particle drift to smaller energies due to scattering should finally results in the formation of uniform distributions within energy ranges bounded by values corresponding to \(dV/dJ \) peaks. (note that singular-like peaks at the boundaries of each evolution regions are due to the absence of diffusion in these locations (\(\partial D_{JJ}/\partial J \) is much weaker than \(V_J \); these peaks would quickly get smoothed in a more realistic system with non-monochromatic waves). Moreover, when considering the global particle distribution, consisting in \(\Psi(\gamma) \) with a large range of \(\varepsilon_0 \) values, the different effects should mingle and these individual peaks should get smoothed and simply form a high-energy tail to the particle population. At the right-hand side of each peak in \(\Psi(\gamma) \), a local minimum is formed. This minimum is due to trapped particle transport to higher energy: the efficiency of trapping \(\sim dV_J/dJ \sim dV/d\gamma \) has a large maximum around these minima due to the rapid growth of \(\langle \Delta\gamma \rangle \) there (see Fig. 10, central panel).

6. Discussions and conclusion

Our description of nonlinear resonant interactions of electrons with whistler mode waves relies on the full kinetic equation (3.4) derived for coherent whistler waves (such as observed in the radiation belts, see, e.g., Li et al. 2011b; Agapitov et al. 2015). The applicability of the quasi-linear theory in the case of coherent narrow band waves with isolated resonances can be justified by the background magnetic field inhomogeneity (in the absence of a broad wave spectrum the resonance width is defined by the wave spatial dispersion, see, e.g., Karman 1974; Le Queau & Roux 1987; Demekhov et al. 2000). The applicability of either the quasi-linear theory or nonlinear wave-particle interaction models is determined by the wave amplitude level (see quasi-linear diffusion coefficient
Figure 11. Left panels show distributions of $\eta^{-1/2}V(J), -\eta^{-1/2}dV/dJ$, and $J^*(J)$ (inverse $Y_J(J^*)$ function). Right panels show the distributions $\Psi_J(J)$ (dashed) and $\Psi(\gamma)$ (solid) at three different times t_c/R. Data are plotted for three ε_0 in the case of highly oblique whistler mode waves.
calculations for coherent narrow band waves in an inhomogeneous plasma in, e.g., Albert 2010). Thus, we can compare the respective time scales of evolution of the electron distribution due to quasi-linear scattering versus due to the nonlinear interaction described by equation (3.4). In addition to the diffusion term \(\partial(\mathcal{D}_{IJ} \partial \Psi/\partial J)/\partial J \), this kinetic equation contains a drift term \(\mathcal{V}_J \partial \Psi/\partial J \) and a nonlocal transport term \(\langle \partial \mathcal{V}_J/\partial J \rangle (\Psi - \Psi^*) \). These two terms are proportional to \(\mathcal{V}_J \sim \langle \Delta \gamma \rangle \sim \sqrt{eA_0/m_ec^2} \) (see Eq. (2.28)). The diffusion term \(\mathcal{D}_{IJ} \) is of the order of \(eA_0/m_ec^2 \) in the nonlinear regime (\(\langle \Delta \gamma \rangle \neq 0 \)) and it is about \((eA_0/m_ec^2)^2 \) in the quasi-linear regime (Kennel & Engelmann 1966; Karpan 1974; Albert 2010). The ratio \(eA_0/m_ec^2 \ll 1 \) is a small parameter in this system, and nonlinear terms \(\sqrt{eA_0/m_ec^2} \) are much larger than the diffusion term in the kinetic equation (3.4). Thus, in the nonlinear regime (when \(\langle \Delta \gamma \rangle \neq 0 \) or \(a > 1 \) in Eq. (2.28)), the particle dynamics is mostly defined by the competition between trapping transport (energy increase) and drift (energy decrease). Both processes are essentially nondiffusive, and the \(\Psi \) evolution can consist of the formation of localized (in energy space) structures and their following drifts (see examples in Figs. 7, 11 and (Leoncini et al. 2017)). This allows to apply Eq. (3.4) for the description of many coherent phenomena in the Earth's radiation belts as well as in other space plasma systems where wave amplitude is sufficiently high: the formation of intense electron precipitation bursts into the atmosphere (e.g., Albert & Bortnik 2009; Omura & Zhao 2012, 2013), rapid electron acceleration (Agapitov et al. 2015; Mozer et al. 2016; Foster et al. 2017), rapid isotropisation of electron distributions (Mourenas et al. 2016; Agapitov et al. 2016), and other applications (see discussion in Artemyev et al. 2017b). At the present time, the effects related to nonlinear wave-particle interactions are basically described using a test-particle approach (Bortnik et al. 2008; Yoon et al. 2013; Nunn & Omura 2015) or an analog to Eq. (3.4) with coefficients derived from test-particle simulations (Omura et al. 2015; Hsieh & Omura 2017). Therefore, the approach proposed here has a very wide range of potential applications, although great care should be exerted when attempting to generalize or modify Eq. (3.4) for particular applications to real plasma systems.

In contrast to the quasi-linear theory, which provides a diffusion equation with diffusion rates depending only on the wave average intensity (Vedenov et al. 1962; Drummond & Pines 1962), the nonlinear kinetic equation (3.4) requires detailed information about different characteristics of intense waves: the distribution of wave amplitudes instead of the average intensity, their spectrum properties (e.g., the wave sweep rate \(\partial \omega_2/\partial t \), see Demekhov et al. 2009; Hsieh & Omura 2017), the wave coherency (see Tao et al. 2012b; Artemyev et al. 2012), as well as information on the presence or not of resonant and nonresonant electromagnetic noise and satellite waves destroying resonant interaction (Brinca 1980; Nunn 1986; Artemyev et al. 2015). All these requirements significantly complicate the practical use of Eq. (3.4) for massive long-term calculations of the electron distribution, which rely today only on quasi-linear diffusion models (e.g., see Glauer et al. 2014; Drozdov et al. 2015; Ma et al. 2016). Therefore, we suggest that Eq. (3.4) can be useful for the determination of the role played by nonlinear wave-particle interaction in short-term events (but including many resonant intercations), but that this equation should be further modified (simplified) to be included into global codes. Let us discuss such possible approaches.

Firstly, any modulation of the wave (e.g., loss of wave coherency, see Tsurutani et al. 2011; Santolik et al. 2014; Agapitov et al. 2017; Turner et al. 2017) significantly reduces the efficiency of trapped particle acceleration (see Artemyev et al. 2012; Tao et al. 2012b, 2013). This can result in smaller individual acceleration jumps, potentially allowing to simplify considerably the nonlocal transport term. The corresponding simplified kinetic equation might be more easily evaluated for a broad range of wave characteristics (e.g.,
Albert 2002; Shklyar & Matsumoto 2009; Artemyev et al. 2013). The effect of wave modulation (presence of short wave packets instead of infinite plane waves) should significantly constrain the applicability of nonlinear wave-particle interaction models. Waves with highly modulated amplitudes should resonate with particles in a regime closer to quasi-linear scattering. Thus, there is a transition between nonlinear interaction with coherent waves and the almost stochastic diffusion supported by noncoherent (deeply modulated) wave-packets. Although both limiting regimes of nonlinear interaction and quasi-linear diffusion have been well investigated, the transient regime where particles interact with intense short wave-packets requires further consideration.

Secondly, Eq. (3.4) describes the Ψ evolution for a particular ε_0 which depends on the wave frequency, i.e., this equation is written for only one wave. Dealing with several intense waves (but still without resonance overlapping, see Shapiro & Sagdeev 1997; Shklyar & Matsumoto 2009), we need to use several copies of Eq. (3.4) with different ε_0, but the same distribution Ψ. Such a modification significantly complicates the evaluation of nonlocal terms. A possible solution of this problem is to rewrite $\Psi - \Psi^*$ in an integral form where wave-characteristics are included into an integral operator (see, e.g., Artemyev et al. 2016). Then, the averaging over the wave parameter (e.g., frequency) distribution function can be performed for this integral operator which does not depend on Ψ. Thus, instead of Ψ^*, Eq. (3.4) will contain a $\int K(J, J^*) \Psi(J) \, dJ$ term where the integral kernel K equals the Dirac delta function $\delta(J - J^*)$ for a single wave, but is more complicated for a wave ensemble.

Both discussed modifications (expansion of nonlocal term in Eq. (3.4) or rewriting of this term in an integral form) can potentially help to generalize the nonlocal kinetic equation (3.4) to meet requirements for practical modelling of realistic plasma systems.

Nonlinear wave-particle interaction in the presence of strong wave amplitude modulation and resonance destruction, can still lead to an evolution of the particle velocity distribution similar as in the quasi-linear diffusive regime. Spatial variations of the wave intensity (partially due to the multiplication factor depending on Bessel functions for oblique waves, see Eq. (5.4)) results in a mixing of trapped and scattered particles during time interval of the order of one bounce period (one period of (z, p_z) oscillations). The fine balance between energy changes of scattered particles and the phase space filled by trapped particles (both these quantities are about S_{res}) guarantees that trapping and non-linear scattering will eventually compensate each other over very long time intervals (e.g., Solovev & Shklyar 1986). Then, the second order effect of particle diffusion will eventually control the evolution of the particle distribution function. However, the time scale for the eventual establishment of such a quasi-diffusion regime is not so small, i.e., there is a quite prolonged time interval when different particle populations, separated in phase space, experience trapping and scattering. Thus, there is a time interval (containing many resonances) when trapping and nonlinear scattering effects are not totally in balance, allowing significant nonlinear modifications of the particle distribution. The equations derived in the present study describe the evolution of the particle distribution during this time interval. Moreover, in realistic situations where there is a particle sink in some region of phase space (the loss-cone for radiation belt electrons) such that particles get very quickly lost from the system when they reach this region, or when the wave parameters (frequency, amplitude) vary sufficiently fast (over minutes, i.e. over $10^2 - 10^3$ bounce periods) in such a way that nonlinear interactions only exist over a relatively limited time period, then there can be a non-null net effect of nonlinear wave-particle interaction, very different from the effects of diffusion. The nonlinear transport of particles into a region of space phase where the probability of nonlinear interaction is very small (much smaller than before) can further help to get a net nonlinear effect.
In conclusion, we have derived the nonlocal kinetic equation describing nonlinear resonant interactions of charged particles with intense whistler mode waves propagating with an arbitrary wave normal angle. This equation generalizes a simpler form of nonlocal kinetic equation initially derived for electrostatic parallel propagating waves in (Artemyev et al. 2017b). Using the derived equation, we describe the evolution of the electron distribution function $\Psi(\gamma)$ in a system with either an intense parallel propagating whistler model wave or a highly oblique whistler mode wave. This evolution consists in a competition between two nonlinear resonant processes: trapped particle transport and scattered particle drift in energy space. We have demonstrated how the wave properties influence the principal character of the nonlinear interaction, leading to either formation of high-energy electron populations or an effective deceleration of high-energy electrons. The proposed approach can be applied to describe a wide range of resonant interactions in space plasma systems.

Work of Anton Artemyev, Anatoly Neishtadt, and Alexei Vasiliev was supported by Russian Scientific Fund (project # 14-12-00824).

REFERENCES

Albert, J. M. 2010 Diffusion by one wave and by many waves. J. Geophys. Res. 115, 0.

Nonlinear phase space transport

Lyons, L. R. & Williams, D. J. 1984 Quantitative aspects of magnetospheric physics.

Omura, Y., Furuya, N. & Summers, D. 2007 Relativistic turning acceleration of resonant
Nonlinear phase space transport

