These shoes were made by warping

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a leaflet for TRIP two textile research in process: an exhibition by the Textiles Research Group, School of the Arts, Loughborough University in collaboration with the Estonian Academy of Arts. Tallinn, Estonia, 10-15 August 2015. Jenny Pinski's work appears under her maiden name Jenny Gordon.

Metadata Record: https://dspace.lboro.ac.uk/2134/32770

Version: Published

Publisher: Loughborough University

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
An exhibition by the Textiles Research Group
School of the Arts Loughborough University
in Collaboration with the Estonian Academy of Arts
Design and Architecture Gallery, Tallinn, Estonia
10th – 15th August 2015
Mon – Sat 12.00-18.00
www.lboro.ac.uk/departments/aed/
staff-research/research-groups/textiles/
Janette Matthews
Janette Matthews' work demonstrates how the principles of origami can be created through the combination of laser processing and textile techniques such as plotting. Fabric produced from natural fibres such as silk is transformed through traditional textile techniques such as dying and with lasers. Inspiration for designs is drawn from textile design and making process is research for textile design.

Laura Morgan
Laura Morgan designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Faith Kane
Faith Kane's research focuses on the use of new and industrial technologies and sustainability inform her current practice. Recent concerns around the use of alternative materials, and on the other hand, artistic concerns, have led to a focus on how the meaning is interpreted through the use of alternative materials. This is a series of four art pieces, and on the other hand, artistic concerns have transferable application in diverse disciplines including textile structures with shape-memory properties. These textiles have transferable application in design disciplines including apparel, interior, architecture, interior and product design. Through this approach, opportunities are created through other media enabling new textural experiences. This research explores the use of textiles. The ability to create a creative tool for novel textile colouration and surface patterning.

Náthiikul Nimkulrat
Náthiikul Nimkulrat explores alternative textile coloration methods using CO2 laser technology, with an interest in the problem of colouration. The research examines the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Yemi Awosile
Yemi Awosile’s practice involves the exploration of questions surrounding the use of alternative materials. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Kerry Walton
Kerry Walton’s practice involves the exploration of questions surrounding the use of alternative materials. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Jan Shenton
Jan Shenton's work explores the use of new technologies, largely due to their elimination of adverse effects on the environment. Her research examines the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Chetna Prapapati
The search for more efficient and environmentally friendly alternatives for the processing of textile fibers has given an impetus to the use of CO2 laser technology. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Rachel Philpott
The research explores the use of new technologies, largely due to their elimination of adverse effects on the environment. Her research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Lauren Moriarty
Lauren Moriarty designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Kerry Walton
Kerry Walton’s practice involves the exploration of questions surrounding the use of alternative materials. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Lauren Moriarty
Lauren Moriarty designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Tina Frank
Tina Frank’s work explores alternative textile coloration methods using CO2 laser technology, with an interest in the problem of colouration. The research examines the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Laura Morgan
Laura Morgan designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Kerry Walton
Kerry Walton’s practice involves the exploration of questions surrounding the use of alternative materials. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Chetna Prapapati
The search for more efficient and environmentally friendly alternatives for the processing of textile fibers has given an impetus to the use of CO2 laser technology. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Rachel Philpott
The research explores the use of new technologies, largely due to their elimination of adverse effects on the environment. Her research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Lauren Moriarty
Lauren Moriarty designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Tina Frank
Tina Frank’s work explores alternative textile coloration methods using CO2 laser technology, with an interest in the problem of colouration. The research examines the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Laura Morgan
Laura Morgan designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Kerry Walton
Kerry Walton’s practice involves the exploration of questions surrounding the use of alternative materials. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Chetna Prapapati
The search for more efficient and environmentally friendly alternatives for the processing of textile fibers has given an impetus to the use of CO2 laser technology. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Rachel Philpott
The research explores the use of new technologies, largely due to their elimination of adverse effects on the environment. Her research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Lauren Moriarty
Lauren Moriarty designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.

Tina Frank
Tina Frank’s work explores alternative textile coloration methods using CO2 laser technology, with an interest in the problem of colouration. The research examines the potential of CO2 laser technology as a creative tool for textile design education and surface patterning. The research explores the potential of CO2 laser technology as a creative tool for textile design education and surface patterning.

Laura Morgan
Laura Morgan designs and manufactures products which exploit the potential of pattern, scale and 3-dimensional textiles. She works with textiles produced from naturally grown cottons, and fabric is combined with laser cutting, die cutting and 3D modelling to produce for use. Laser cutting allows an exploration into textile structures, rearranging woven structures, lace and some water-soluble threads and embroidered surfaces. The collections form a study of fabric structures, referencing textile weaving and embroidery techniques.