Integrating theories of self-control and motivation to advance endurance performance

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is an Accepted Manuscript of an article published by Taylor & Francis in International Review of Sport and Exercise Psychology on 29 Jun 2018, available online: https://doi.org/10.1080/1750984X.2018.1480050

Metadata Record: https://dspace.lboro.ac.uk/2134/33270

Version: Accepted for publication

Publisher: © Taylor & Francis (Routledge)

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Integrating theories of self-control and motivation to advance endurance performance

Word count: 6424 excluding references
Abstract

Self-control is a burgeoning research topic within sport and motivational psychology. Following efforts to define and contextualize self-control, characteristics of self-control are considered that have important implications for sport performance. We describe and evaluate various theoretical perspectives on self-control, including limited resources, shifting priorities, and opportunity-costs. The research described includes sport-specific research but also studies that focus on general motivational principles that look beyond sport-specific phenomena. We propose that attentional, rather than limited resource, explanations of self-control have more value for athletic performance. Moreover, we integrate self-control ideas with descriptions of motivational phenomena to derive novel hypotheses concerning how self-control can be optimized during sport performance. We explain how minimizing desire-goal conflicts by fusing self-control processes and performance goals can delay aversive consequences of self-control that may impede performance. We also suggest that autonomous performance goals are an important motivational input that enhances the effectiveness of self-control processes by a) reducing the salience of the desire to reduce performance-related discomfort, b) increasing attentional resources towards optimal performance, and c) optimizing monitoring and modification of self-control processes. These extensions to knowledge help map out empirical agenda which may drive theoretical advances and deepen understanding of how to improve self-control during performance.

Keywords: ego-depletion, motivation, self-regulation, goal conflict, self-determination
Integrating theories of self-control and motivation to advance endurance performance

The ability to resist feelings of discomfort and the urge to quit are critical elements of successful sport performance, particularly for athletes who engage in prolonged physiological efforts at high intensity. Succumbing to the urge to relieve the distress, even by minuscule amounts, can be the difference between winning and losing. Indeed, the ability to override natural tendencies may be a key individual difference that separates elite performers from others (Martin et al., 2016; Tajet-Foxell & Rose, 1995). Despite the importance of this characteristic, it is not well understood; hence, the psychological processes involved have not been appropriately described. We propose that integrating models of self-control and motivation represent a potential solution to this shortcoming. This article begins by defining self-control, outlining the processes involved and contextualizing it within the broader self-regulation construct. We then evaluate whether self-control typically reduces over time and why this decline may occur. The strength model of self-control (Baumeister, Vohs, & Tice, 2007), which has also been termed the limited-resource model of self-control (Mead, Alquist, & Baumeister, 2010) is included in discussions. This particular model has been reviewed in sport and exercise psychology previously (Englert, 2016; Hagger, Wood, Stiff, & Chatzisarantis, 2010), hence, a broader perspective is adopted to shed light on alternative models that have evolved in recent years, including shifting priorities (Milyavskaya & Inzlicht, 2018), opportunity costs (Kurzban, Duckworth, Kable, & Meyers, 2013) and psychobiological models (Pageaux, Marcora, Rozand, & Lepers, 2015). These models are then reconciled with motivation-based theories, including structural (Kruglanski et al., in press) and self-determination (Ryan & Deci, 2017) perspectives. This integration allows us to derive new ideas on how to optimise endurance performance through adaptive self-control and motivation.
Defining self-control

Trait and state self-control have been associated with a wide range of adaptive behaviours across multiple life domains (e.g., Baumeister et al., 2007; de Ridder, Lensvelt-Mulders, Finkenauer, Stok, & Baumeister, 2012). Nonetheless, there are unique facets of trait and state self-control that make it difficult to draw broad conclusions befitting both levels of analysis, hence, the two concepts should not be used interchangeably (Allom, Panetta, Mullan, & Hagger, 2016). For instance, individuals reporting high trait self-control may be worse at using self-control on specific occasions because they are less practiced in avoiding temptation (Imhoff, Schmidt, & Gerstenberg, 2013). Moreover, reported trait self-control has no association with responses on two commonly employed situational measures of behavioural self-control (Saunders, Milyavskaya, Etz, Randles, & Inzlicht, 2018). In endurance activities, situational self-control is likely a more proximal influence on performance, compared to dispositional self-control. Hence, the sole focus of this text is situational self-control.

Self-control refers to ‘the capacity to resist a temptation that is in conflict with a desired, long-term goal, in order to protect this valued goal’ (Fishbach & Woolley, 2018, p167). Thus, self-control requires three components: a desire, a higher order goal and conflict between the two (i.e., desire-goal conflict; Kotabe & Hofmann, 2015). Individuals can experience conflict between two distal valued goals (e.g., a student-athlete deciding between an important training session and an exam revision tutorial) or two proximal desires (e.g., eat an unhealthy cake or consume an alcoholic drink after training), but it is only when a desire conflicts with a distal goal that the significant cognitive disruption associated with self-control occurs (Kotabe & Hofmann, 2015). Colloquial definitions of self-control also imply a conflict between a temptation and a distal goal, rather than goal-goal or desire-desire conflicts.
Evolutionary accounts describe how humans are necessarily motivated to avoid painful and effortful experiences (Kool, McGuire, Rosen, & Botvinick, 2010; Mees & Schmitt, 2008), therefore, this definition of self-control can be applied to sustained athletic performance, despite the empirical basis of this definition being rooted in mainstream psychology. The urge to relieve the multifaceted distress associated with endurance performance, such as respiratory discomfort (Smoliga, Mohseni, Berwager, & Hegedus, 2016), sensations associated with lactic acid accumulation (Rotto & Kaufman, 1988) or thermal discomfort (Schlader, Simmons, Stannard & Mündel, 2011), by lessening work effort represents an immediately satisfying proximal desire. The desire to exercise at intensities that lead to positive, rather than negative, affect is considerable (Ekkekakis, Backhouse, Gray, & Lind, 2008). In contrast, producing optimal athletic performance represents the valued distal goal.

Desire-goal conflict can be predicted by the relative strengths of the desire and the higher order goal, and the degree of incompatibility between the two (Kotabe & Hofmann, 2015). For example, relieving perceptions of discomfort associated with intense aerobic activity versus maintaining optimal performance are clearly incompatible. However, for most athletes, pursuing a gold medal in an Olympic final would be a stronger higher order goal compared to merely obtaining useful performance data in training. As such, the desire-goal conflict is likely to be lower in the former scenario than the latter. On the other hand, desire-goal conflict would increase as the perceived distress associated with performance effort increases. When the cost of maintaining performance is sufficiently great to override benefits of persisting, maximal exertion is abandoned (Botvinick & Braver, 2015). The size of this cost rises as the number and magnitude of the different systems recruited increases. Unfortunately for athletes, elite sport performance places more demands on the brain and associated systems than most other activities (Walsh, 2014). The costs associated with
maintenance of optimal performance are, therefore, enormous. In everyday life, the negative affect associated with the costs of resisting a temptation in favour of a valued goal would lead to negative reinforcement and motivation to avoid a similar state. Indeed, affective states during exercise are a significant influence on future engagement (Rhodes & Kates, 2015). However, during endurance performance it is necessary for athletes to repeatedly override this motivational response to succeed.

Although the example of overcoming performance-related discomfort in favour of optimal performance is used throughout this text, any athletic scenario in which an immediate temptation is contrasted with a distal goal can be applied. For example, athletes who are tempted to accept performance enhancing substances, to miss training for a party, or to contravene nutritional advice, will all require self-control to maintain pursuit of the distal goal of successful and legal athletic performance.

Reflecting broad cybernetic principles in which a disturbance from a reference state is identified and an output function is subsequently initiated (Carver & Scheier, 1982), two stages of successful self-control are proposed to exist (Fishbach & Converse, 2010; Fishbach & Woolley, 2018). The first involves the identification of a goal-desire conflict which activates the behavioural inhibition system to initiate a negative affective state (Kurzban et al., 2013). In endurance performance, this would be the realisation that the desire to relieve performance related discomfort is conflicting with optimal performance. Second, this experience galvanizes an individual to inhibit responses or modify behaviour to counteract the temptation, resolve the conflict, and use the experience to inform subsequent protective behaviour (Gray & McNaughton, 2000; Lazarus 1993; Tooby, Cosmides, Sell, Lieberman, & Sznycer, 2008). For example, endurance athletes use a variety of self-regulatory strategies during competition, such as relaxation, mindfulness, and disassociation to modify responses to exertion (Brick, MacIntyre, & Campbell, 2015). The two stages are distinct and are
regulated by different areas of the brain, namely the anterior cingulate cortex and dorsolateral prefrontal cortex, respectively (Botvinick, Braver, Barch, Carter, & Cohen, 2001; MacDonald, Cohen, Stenger, & Carter, 2007). Although there is some debate (Fujita, 2011), these self-control processes are generally understood to occur consciously, as opposed to broader definitions of self-regulation which include both automatic and conscious processes (Baumeister et al., 2007; Milyavskaya & Inzlicht, 2018).

Attempts to categorize different types of self-control have been undertaken, including a review of self-control measures which revealed four dimensions of self-control (Whiteside & Lynam, 2001). Urgency is the inability to resist strong impulses, lack of premeditation refers to acting before thinking, lack of perseverance reflects the inability to attend to uninteresting or difficult tasks, and sensation seeking is a tendency towards exhilarating and risky activities. Psychometric and neuro-scientific evidence points to considerable conceptual overlap among the first three dimensions and they align with the definition of self-control provided. The same evidence points to sensation seeking representing a distinct phenomenon and is not considered in this text (Duckworth & Kern, 2011; Steinberg, 2008).

Does self-control diminish over time?

There is an impressive weight of evidence to suggest that individuals do not reliably sustain self-control over time. This idea forms the basis of the strength model of self-control (Baumeister et al., 2007). The theory’s major postulate is that, after initial acts of self-control, an individual’s capacity to exert further self-control becomes diminished (Baumeister et al., 2007; Hagger et al., 2010). This attenuation of self-control resource has been termed ‘ego-depletion’ by advocates of the strength model (Baumeister, Bratslavsky, Muraven, & Tice, 1998) and replenishment of self-control occurs with rest (Tyler & Burns, 2008). Evidence for the ego-depletion effect has typically employed a sequential-task paradigm consisting of an initial experimental task in which self-control exertion is manipulated, followed by an
unrelated second task requiring self-control. A meta-analysis of 198 experiments reported that, in conditions where self-control is needed during the first task (compared to no or limited self-control required), self-control is diminished during the second task (Hagger et al., 2010). Overcoming the urge to quit or reduce effort during prolonged or intense exercise requires self-control; therefore, the sequential-task protocol has been employed in exercise settings. Following a cognitive task requiring self-control to override response tendencies, participants performed worse during indoor cycling and running tasks, compared to when they completed a cognitively simple congruent Stroop task (Englert & Wolff, 2015; MacMahon, Schücker, Hagemann, & Strauss, 2014; Pageaux, Lepers, Dietz, & Marcora, 2014). Reduced cycling performance has also been induced when participants first watched an upsetting video and were instructed to suppress their emotional responses (i.e., self-control condition), compared to when participants were given no guidance regarding emotion regulation (i.e., control condition; Wagstaff, 2014).

Despite popularity and support for this tenet of the strength model, it has encountered major challenges. A meta-analysis using different study inclusion criteria to those of Hagger and colleagues (2010) and additional statistical techniques to correct for small-study effects led to the conclusion that ‘self-control in general does not decrease as a function of previous use’ (Carter, Kofler, Forster, & McCullough, 2015, p18). A multi-lab replication also failed to evidence the hypothesized reduction in self-control (Hagger et al., 2016), which has led to a series of commentaries, analyses, and debates (e.g., Baumeister & Vohs, 2016; Dang, 2017; Hagger & Chatzisarantis, 2016; Sripada, Kessler, & Jonides, 2016;). A further re-analysis suggests that it may be too early to conclude whether the effect is an experimental or statistical artefact (Blázquez, Botella, & Suero, 2017).

In addition to the debate around the existence of self-control decline, numerous studies have identified simple ways to sustain self-control, including incentives (Mischel &
Patterson, 1976; Muraven & Slessareva, 2003), providing choice (Moller, Deci & Ryan, 2006), watching an enjoyable TV show (Derrick, 2012), and meditating (Friese, Messner & Schaffner, 2012). Individuals’ prior beliefs about self-control also attenuate self-control reductions (Clarkson, Hirt, Jia, & Alexander, 2010; Job, Dweck, & Walton, 2010) and ego-depletion effects may be culturally grounded (Savani & Job, 2017). It is this fragility which has made the ego-depletion effect so difficult to replicate, leading to the phenomenon unwittingly taking centre stage in conversations about the ‘replication crisis’ in psychology (Open Science Collaboration, 2015). It is, therefore, questionable whether any added value would be gained from exploring the existence of the ego-depletion effect further. Instead, embracing this instability and identifying the conditions leading to the ego-depletion phenomenon to express itself is empirically valuable (see Iso-Ahola, 2017). For example, a tipping-point of between four and six minutes of self-control exertion may be necessary for reductions in self-control on a subsequent muscular endurance task to occur (Brown & Bray; 2017). Further increases in initial self-control use did not lead to changes in magnitude of the depletion effect. Alternatively, it has been suggested that typical self-control tasks may not be prolonged enough to induce subjective feelings of mental fatigue (Pageaux, Marcora, & Lepers, 2013) and cognitive tasks lasting 30 minutes or longer have been suggested to induce more reliable performance decrements on endurance tasks (Van Custem, Marcora, De Pauw, Bailey, Meeusen, & Roelands, 2017).

The beginning of this article outlined the importance of effective self-control for successful performance. However, self-control decline and the considerable cognitive costs associated with self-control attempts counterintuitively imply that athletes who rely on it for successful performance will likely fail. During self-control, increasing cognitive demand is a signal that the value of the alternative temptation (e.g., relieving performance distress) is beginning to outweigh the goal-oriented task (Kool et al., 2010). The more time spent
exerting self-control, the greater the aversive experience (Kool & Botvinick, 2014). Despite evolutionary benefits (see Kurzban et al., 2013) this consequence does not help athletes maintain maximal performance effort. Hence, we contend that forestalling self-control processes can enhance endurance performance. In our example, the athlete is fighting the urge to reduce painful experiences (e.g., dyspnoea, afferent signals from lactic acid accumulation). However, psychophysiological sensations of pain may not necessarily coincide with a negative affective state (Price, 2000). Only when the sensations associated with increasing aerobic effort conflict with the goal of successful performance (i.e., a desire-goal conflict exists) will negative affect occur and self-control be initiated.

To provide greater clarity, consider two endurance athletes. The first athlete values successful performance but experiences trepidation of the amount of effort required and pain to overcome. In this example, there is a desire (to avoid the pain), which conflicts with a goal (successful performance). This desire-goal conflict initiates the self-control process, and the costly and aversive experience of self-control begins to accumulate. A second athlete values successful performance equally well, however, this athlete considers the performance-related discomfort as an important and necessary element of goal pursuit. By fusing the activity of overcoming discomfort with the goal of successful performance, the discomfort becomes instrumental to the goal, not in conflict with it (c.f., Kruglanski et al., in press). Consequently, initiation of self-control can be delayed, leading to decreased negative affect and cognitive load, and subsequent enhanced endurance performance. Outside of sport, greater persistence on a reading task occurred when the goal of a bonus payment was fused to the task, rather than a distinct bonus and task or no payment control condition (Woolley & Fishbach, 2016). This implies that, although exerting self-control to overcome performance-related discomfort will be necessary at some point for successful performance, delaying self-control exertion by reducing the discomfort-performance conflict will enhance performance. In practical terms,
perceiving the need to overcome performance-related discomfort as part of successful
performance, rather than as an obstruction to it, should achieve this delay.

Even with a highly integrated process and goal, at some point, the desire to remove
performance-related discomfort will conflict with successful performance and self-control
will be required. During these assumed latter stages of endurance performance, we suggest
that the focus should be on embracing this conflict, rather than supressing it. The degree to
which the affective distress signal of a desire-goal conflict recruits self-control is moderated
by the individual’s acceptance of the distress (Inzlicht & Legault, 2014; Kashdan &
Rottenberg, 2010). Without this aversive experience, goal conflicts would go unidentified and
resolution could not take place (Inzlicht & Legault, 2014). In sport, emotion is often viewed
as counterproductive to performance (Lee Sinden, 2010, 2012). In contrast, self-control
theorists propose that affective consequences of self-control are aversive, yet adaptive and
necessary element of successful task performance (Inzlicht & Legault, 2014). This response
is the signal that things could go awry and there is a need to initiate self-control. Only by
accepting the negative affect can one make appropriate decisions regarding behavioural,
emotional or cognitive corrections. A lack of acceptance will lead to immediately gratifying
defensive responses to the distress, which in the context of endurance performance is
expected to be a reduction of effort. Moreover, the aversive state related to goal conflict
releases nor-epinephrine, which is associated with heightened attention (Aston-Jones &
Cohen, 2005). The aversive state may, therefore, have some positive implications for
performance contexts where psycho-physiological arousal is beneficial.

This hypothesis has applicability to sport psychology research, where a psychological
skills training perspective advocates suppression of, rather than acceptance of, negative
internal states (Gardner & Moore, 2007). Doing so will lead to an inability to use affective
information to motivate subsequent action (Inzlicht & Legault, 2014). Instead, a mindful
awareness and non-judgmental acceptance can amplify conflict-related affect and effectively mobilise self-control (Elkins-Brown, Teper, & Inzlicht, 2017). Professional ballet dancers reported greater awareness of pain during a cold pressor test, compared to age matched controls, but were more effective in exerting self-control (Tajet-Foxell & Rose, 1995).

To achieve this performance state, it is necessary to devise strategies for the latter stages of endurance performance. Inzlicht and colleagues (2014) recommend focusing on monitoring, attending to, and acceptance of goal conflict through mindfulness training and implementation intention strategies. Mindfulness training empowers individuals to non-judgementally attend to the present moment (Kabat-Zinn, 2003) and has gathered some momentum within sport psychology (e.g., Gardner & Moore, 2012). This technique may be effective by nurturing acknowledgement and acceptance of the experiential affect that signals the need for self-control (Teper & Inzlicht, 2013; Teper, Segal, & Inzlicht, 2013). In addition, mindful individuals have a greater sensitivity to the need for self-control and can monitor goal conflict and self-control processes effectively (Elkins-Brown et al., 2017).

Implementation intention strategies are behavioural or cognitive plans in response to anticipated situations (Gollwitzer & Oettingen, 2011). These plans likely improve self-control by reducing the discrepancy between behaviour and distal goal. Mindfulness interventions have shown promise in impacting upon athletic performance, but self-control has not been considered as a mechanism for these effects, and the research lacks methodological rigor (Sappington & Longshore, 2015). Implementation intentions have not been studied in endurance performance contexts.

Why does self-control fade?

The strength model of self-control describes how self-control draws energy from an internal resource that is consumable but limited (Baumeister et al., 1998). Congruent with this limited resource perspective, an argument exists that individuals are motivated to conserve
self-control if future need is anticipated, which may be reflected in poorer self-control prior
to the anticipated future use (Muraven, Shmueli, & Burkley, 2006). However, the
identification of the resource that is depleted remains elusive. Glucose has been suggested as
a candidate resource and initial studies revealed that engaging in self-control reduced blood
glucose, which in turn was associated with impaired performance on subsequent measures of
self-control (Gailliot et al., 2007). In addition, imbibing a glucose-based drink has been
shown to attenuate the ego-depletion effect (DeWall, Baumeister, Gailliot, & Maner, 2008;
Gailliot et al., 2007). However, both these effects have been inconsistently observed (Lange
& Eggert, 2014; Lange, Seer, Rapior, Rose, & Eggert, 2014; Molden et al., 2012). In sport
research, reductions in endurance performance following mentally fatiguing tasks have been
shown to occur without reductions in blood glucose (Marcora, Staiano, & Manning, 2009).
Critically, there is an assumption that equilibrium exists between glucose in the blood and the
brain (Lund-Anderson, 1979). However, changes in blood glucose resulting from cognitive
effort are unlikely to be caused by increased brain glucose uptake (Messier, 2004) and brain
activation consumes little additional glucose compared to enduring basal requirements
(Raichle & Gusnard, 2002). Kurzban (2010) expands on these arguments to conclude that it is
highly unlikely that glucose is the resource on which self-control is based on.
Despite these metabolically-based refutations, glucose may still be associated with
self-control processes in other ways. Mouth rinsing then spitting glucose-based drinks can
ameliorate self-control reductions without any enhanced blood glucose availability (Hagger
& Chatzisarantis, 2013; Molden et al., 2012; Sanders, Shirk, Burgin, & Martin, 2013).
Indeed, the perceptual effects of self-control use and glucose ingestion may be similar given
that oral exposure to glucose activates similar areas of the brain (e.g., anterior cingulate
cortex; Chambers, Bridge, & Jones, 2009; Rolls, 2007) as the initiation of self-control
(MacDonald et al., 2007). This idea may explain why self-control exertion via an incongruent
Stroop task, ingestion of glucose, or a combination of both experimental manipulations led to similar performance trends during 16 kilometre cycling time trials (Boat, Taylor, & Hulston, 2017).

In sum, it is unlikely that glucose is the central resource behind self-control processes. But ruling out one candidate resource does not preclude the existence of another. Certainly, a global element to self-control exists given that the two tasks comprising the sequential-task paradigm are often unrelated, thus demonstrating cross-contextual effects. This global characteristic is most easily observed in sport performance research where the first task is a cognitive function (e.g., resisting a natural response tendency) and the second is physical (e.g., endurance performance task). Nonetheless, the search for a biological foundation of self-control continues. Some theories acknowledge capacity-based explanations for self-control failure, but usually these refer to the non-motivational cognitive resources (e.g., executive function) that help resist temptation in the pursuit of the distal goal (Kotabe & Hoffmann, 2015), rather than any biological resource.

In contrast to the limited resource argument, several theories of self-control, effort, and attention can be reconciled under the core hypothesis that reductions in self-control performance can be accounted for by a shift in attentional and perceptual foci. The shifting priorities model of self-control (Inzlicht & Schmeichel, 2016; Milyavskaya & Inzlicht, 2018) describes how attentional processes resolve the self-control dilemma by shifting the salience of the immediate temptation or the valued distal goal. In other words, initial self-control use leads to a shift in focus towards the temptation, hence reduced self-control in a subsequent task. Similarly, modifications in perception of effort have been proposed to be the central mechanism explaining how mental fatigue reduces endurance performance (Pageaux et al., 2015). From a psychobiological perspective, mental fatigue stemming from prolonged exertion of self-control induces neurochemical changes in the brain (e.g., adenosine
accumulation in the anterior cingulate cortex) that result in an incremental shift in perception of effort required and, therefore, premature exhaustion during subsequent endurance performance (Marcora, 2008). Self-control depletion and mental fatigue similarly require consistent conscious effort that may stimulate negative feelings (Hagger et al., 2010), and both may lead to an unwillingness to employ further effort and performance decrements (Inzlicht & Schmiechel, 2012). Self-control and cognitive fatigue experiments typically vary in the tasks that are utilised; mental fatigue tasks usually last considerably longer than the tasks that are employed in self-control depletion research. For example, 90 minute tasks have been used to induce cognitive fatigue (Marcora et al., 2009) whereas, tasks as short as four minutes have been employed to induce self-control exertion (Boat et al., 2017). It is important to note, however, that this distinction is based on the method to induce mental fatigue or self-control, not on the construct itself. Overall, reduced self-control and mental fatigue share much communality.

The attentional and perceptual shifts described above have a greater body of supportive evidence from sport research, compared to the limited resource argument. For instance, participants reported greater perceptions of pain and reduced persistence during a postural endurance task following self-control exertion, compared to when they did not initially exert self-control (Boat & Taylor, 2017). The idea that increased awareness of somatic sensations can act as a motivational input eventually leading to the cessation of effort has considerable overlap with Tenenbaum’s (2001) social cognitive model of attentional focus in sport. During high intensity exercise, athletes’ attention is dominated by perceptions of physiological effort and the ability to switch away from this experience is severely diminished (Hutchinson & Tenenbaum, 2007). Visual and aural attention also shifts following self-control exertion, leading to reduced performance in dart throwing and basketball free throws, especially in high pressure situations (Englert, Bertrams, Furley, &
Oudejans, 2015; Englert, Zwemmer, Bertrams, & Oudejans, 2015). However, this attentional shift was not replicated during a hypothetical basketball decision-making task (Furley, Bertrams, Englert, & Delphia, 2013).

Evidence founded on psychobiological models draws similar conclusions. Cognitive fatigue tasks, including a 90 minute AX-Continuous Performance Task (Carter, Braver, Barch, Botvinick, Noll, & Cohen, 1998) and a 30 minute Stroop task, have been employed to demonstrate that mental fatigue enhances perceptions of effort, which facilitates disengagement during time-to-exhaustion endurance performance tasks (Pageaux et al., 2014; Marcora et al., 2009). In these studies, there were negligible or no difference in heart rate across conditions, suggesting that mental fatigue does not limit exercise tolerance through cardiorespiratory mechanisms (Marcora et al., 2009; Van Custem et al., 2017). Overall, there is strong theoretical and empirical evidence to suggest that shifting attentional focus is the most plausible explanation for self-control reductions in sport contexts. Hence, it is necessary to identify how attention can be shifted towards factors conducive to, rather than obstructive of, self-control processes during endurance performance. In the following section, we argue that a focus on motivation will help us achieve this goal.

Many theories of self-control describe motivational mechanisms to explain self-control processes, including the shifting priorities model of self-control (Milyavskaya & Inzlicht, 2018) and the opportunity-costs model (Kurzban et al., 2013). The strength model of self-control somewhat differs in this respect by proposing a non-motivational mechanism explaining self-control failure, but even this theory suggests motivation can moderate reductions in self-control (Baumeister, 2016; Baumeister & Vohs, 2007). According to motivational theories, the motivational basis behind the conflicting desire and goal influences the attentional processes described above. In turn, attention can guide a subjective valuation process in which distal and proximal choices are constantly evaluated (Berkman, Livingston,
Kahn, & Inzlicht, 2015) and individuals decide appropriate levels of task engagement based on the prioritization of these choices (Kurzban et al., 2013). Motivational intensity theory (Brehm & Self, 1989; Gendolla & Richter, 2010), the guiding framework shaping psychobiological explanations of endurance performance (Marcora, 2008), also highlights the conscious evaluation of required effort and task difficulty as a central decision in task engagement (Wright et al., 2007; Wright, Stewart, & Barnett, 2008). In other words, an endurance athlete will continually evaluate the pros and cons of reducing or sustaining effort to achieve success. For example, the increasing pain sensations during sustained, high-intensity performance can lead an athlete to progressively focus on relieving the pain (attentional priorities shift; Hutchinson & Tenenbaum, 2007), eventually weighing this goal more heavily than the importance of winning. The dynamics between valued goals and immediate gratification would have been adaptive for primordial ancestors (Beedie & Lane, 2012; Kurzban et al., 2013). In particular, the opportunity-cost model has strong roots in evolutionary psychology of foraging organisms. Put simply, an organism is required to constantly evaluate the opportunity costs of foraging in the same patch versus changing location (Gallistel, 1990). Recent literature from shifting-priority theorists is consistent with this evolutionary account. When individuals exploit known rewards only, it prevents exploration and potential identification of larger and more efficiently obtained rewards (Inzlicht, Schmeichel, & McRae, 2014).

There are myriad motivational inputs that can influence attention and decisional processes, for example, most proximal temptations are instantly enjoyable or satisfying and offer more certainty, relative to distal goals (Kahneman & Tversky, 1979). The relationship between motivation and effective self-regulation has been scrutinised for several decades. Tenets of self-determination theory (Ryan & Deci, 2017), a prevalent theory in sport and exercise psychology research (see Taylor, 2015), offers several avenues for theoretical
integration. This amalgamation can assist in deriving several mechanistic hypotheses explaining how motivation can enhance endurance performance. Broadly speaking, we contend that internalizing and integrating successful performance will facilitate self-control in several ways. According to self-determination theory, humans are fundamentally inclined towards growth, which partly expresses itself as a tendency to internalise extrinsically driven behaviour so that it becomes integrated with one’s true sense of self (Ryan & Deci, 2017). Internalised goals and motives are autonomous, freely chosen, of personal meaning, and concordant with one’s true sense of self. In contrast, motives and goals that have not been internalised are deemed to be controlling, extrinsic in nature and point towards receiving rewards or avoiding punishment (Kasser & Ryan, 1996; Ryan & Deci, 2017).

Conflict-based self-control failures typically occur if the temptation or desire becomes too strong (Kotabe & Hoffman, 2015) but this failure can be avoided if successful endurance performance is internalised and autonomously driven. In a series of studies, autonomous motivation was associated with decreased attraction to proximal temptations (Milyavskaya, Inzlicht, Hope, & Koestner, 2015). This finding explains why autonomous goals are easier to pursue (Werner, Milyavskaya, Foxen-Craft, & Koestner, 2016) and are less fatiguing (Moller et al., 2006; Muraven, 2008), relative to controlling goals. In other words, autonomously motivated individuals do not rely on greater self-control to resist temptations; they perceive temptations as less prominent, which make goal progress smoother. This hypothesis implies that autonomously motivated athletes will see performance-related discomfort as a less salient barrier to successful performance, relative to athletes energized by controlling motivations. Over time, this process is more likely to become habit in autonomously motivated individuals (Radel, Pelletier, Pjevac, & Cheval, 2017).

In addition to reducing the prominence of temptations, autonomous motivation acts as a motivational input to increase the salient of the long-term goal (i.e., enhanced endurance performance).
performance) preventing a shift in priority to the proximal temptation (Berkman et al., 2015).

Goals that are central to one’s self-description are more chronically and easily activated when
the context requires it, relative to goals held distant from the self (Higgins, 1996; Markus,
1977). This ease of activation holds considerable influence over attentional and evaluative
processes (Ferguson & Bargh, 2004; Milyavskaya et al., 2015) and, therefore, can protect the
goal from competing temptations (Fishbach & Shah, 2006). As such, autonomously
motivated athletes who wholly identify with successful performance should not only perceive
the temptation to reduce effort as less salient, but also psychologically approach and dedicate
appropriate cognitive resources towards the valued goal of successful performance
(Ntoumanis et al., 2014).

The third explanation concerning why autonomous motivation can enhance endurance
performance reflects the tendency to recover from an error or setback. The constant effort
required to override aversive feelings associated with endurance performance means
occasional slips in self-regulation are unavoidable. Trait and situational autonomy leads to
greater sensitivity and responsiveness to these errors, which, in turn leads to superior self-
regulatory performance (Legault, & Inzlicht, 2013). In addition, appraisal of self-regulatory
strategies can occur following performances. Autonomously motivated individuals embrace
information that is relevant to the self and can acknowledge and accept personal deficiencies,
in comparison to individuals driven by controlling motives who perceive a greater threat
response (Hodgins, 2008; Hodgins & Knee, 2002; Weinstein, Deci, & Ryan, 2011). By
reflecting on barriers to optimal performance, autonomously motivated individuals can plan
strategies and responses that promote distal goal accomplishment. Specifically, autonomously
oriented individuals create if–then plans that specify when, where, and how people will
instigate responses if the goal is threatened (Carraro & Gaudreau, 2011). To this end,
autonomously motivated athletes should be able to identify, accept and rectify self-regulatory
errors, such as momentary lapses in optimal effort within a single performance context. Moreover, autonomously motivated athletes are likely to reflect on self-regulation following performances and create effective plans to override the temptation of relieving performance-related discomfort when it occurs in the future. Both intra- and inter-performance processes should yield better endurance performance.

Overall, this integration of self-determination theory and models of self-control suggests that when performance is integrated with one’s true sense of self (i.e., an autonomous goal) the greater likelihood of optimal performance because a) the temptation to reduce effort is less salient, b) the goal of optimal performance is attended to more effectively, and c) self-regulatory errors are embraced and rectified more efficiently. It is worth noting that this list of explanations may not be complete and there may be other reasons why motivation influences self-control and subsequent athletic performance. For example, controlled motivation, relative to autonomous motivation might lead to a greater physiological stress response (Reeve & Tseng, 2011). This stress response may lead to decreased self-regulatory performance due to decreased executive function (Starcke, Wiesen, Trotzke, & Brand, 2016). Alternatively, enhanced cortisol response may initiate more effective metabolic responses to exercise demands (Coker & Kjaer, 2005).

Summary and final thoughts

By reviewing several prominent ideas behind self-control, we have attempted to widen the theoretical scope of this important research topic. Collective consideration of the various models will allow a broader depth of knowledge to develop in the race to improve athletic performance. This is not to dismiss the idea of singular theoretical explanations, but to shed light on complementary hypotheses, establish greater theoretical depth, and encourage sport researchers to be at the forefront of research progress. One of the strongest elements of the self-control literature is that it is almost entirely based on experimental
designs with random samples that point strongly to causal effects. Moreover, the dependent variables are almost always behavioural (e.g., giving up on a task, responding slower to a stimulus), as opposed to self-report variables common in sport psychology work. As such, evidence contained within the self-control literature would almost entirely be categorised as high quality.

Within the article we propose several extensions to current knowledge. These proposals are based on the integration of self-control and motivational theory. First, we integrate self-control definitions and structural motivational perspectives (Kruglanski et al., in press) to hypothesise that a fusion of the process of overcoming performance-related discomfort and performance goals will reduce the desire-goal conflict required for initiation of self-control. This fusion will delay aversive and costly consequences that may impede performance. This idea is followed by the suggestion that attentional processes, rather than limited resources explain why self-control reduces over time, yet we also highlight that glucose remains an interesting construct to study in self-control research, but not as a resource that self-control is based upon. The final section is based on a mutual consideration of several self-control theories that place motivation as a central mechanism and self-determination theory. By focusing on autonomous goals and motivation as a key motivational input in the self-control process, we can speculate on three mechanistic explanations of how to improve self-control. Autonomous regulation during endurance performance can a) reduce the salience of the desire to reduce performance-related discomfort, b) increase the attentional resources dedicated to optimal performance goals, and c) help monitor and modify self-control more effectively during performance and over time.

Examination of the ideas proposed can provide greater understanding of the psychological processes before and during athletic performance, as well as greater theoretical insight into the conditions required for self-control maintenance. It is a simple suggestion that
self-control and motivation research might dovetail well and provide new insight. However, realizing these types of investigation requires collaboration across scientific fields as the theories are couched in different scientific philosophies. The opportunity-cost model, for example, embeds motivation within information-processing paradigms representing fundamental computational decisions (e.g., Kurzban et al., 2013). In contrast, sport psychologists with knowledge of self-determination theory generally conceptualize motivation within broader phenomenological perspectives focusing on the sense of self (Ryan & Deci, 2006).

Despite a history of self-regulation training within sport psychology (e.g., Hardy & Nelson, 1988), there are surprisingly few field interventions or basic experiments that have attempted to improve self-control in sport, particularly those that focus on behavioural measures, rather than self-report. As alluded to at the beginning of this article, this distinction is important because self-report and behavioural measures evaluate discrete facets of self-control that should not be viewed as equivalent (Allom et al., 2016; Imhoff, Schmidt, & Gerstenberg, 2013). Self-control training protocols have been examined extensively in non-sport literature and shown to be somewhat effective but poorly understood (e.g., Friese, Frankenbach, Job, & Loschelder, 2017). Many of these training protocols, such as repeatedly squeezing a handgrip or using one’s non-dominant hand for everyday tasks over several weeks, seem to lack the ecological validity necessary to transfer into sport training contexts. On the one hand this gap represents a worrying lack of knowledge, but on the other, it represents a ripe opportunity for exploration and advancement.

We have deliberately placed this article at the interface of mainstream psychology and sport performance research. For instance, considerable evidence has accumulated from sport researchers demonstrating attentional (e.g., Boat & Taylor, 2017; Englert et al., 2015) and perceptual shifts (Pageaux et al., 2014; Marcora et al., 2009) following self-control exertion,
as well as the self-control control fade more generally (MacMahon et al., 2014; Wagstaff, 2014). In contrast, little sport research has established moderators and boundary conditions of self-control reductions or the affective costs associated with self-control. Some of the hypotheses we have put forward are also based on mainstream psychology, rather than sport-specific research. For example, the idea that fusing processes and performance goals will delay the desire-goal conflict and improve endurance performance has not been empirically tested, nor has the mechanisms explaining why autonomous motivation enhances self-control during endurance performance. We acknowledge and embrace this fact, and in doing so, we align with arguments put forward by scholarly bodies to progress motivation science (see open letter from the Society for the Science of Motivation here http://www.thessm.org/MotivationalManifesto.pdf). In brief, we aim to progress from establishing sport-specific motivational phenomena addressing specific applied problems, to general motivational rules or principles that that lie beyond surface expressions in sport.


Inzlicht, M., & Schmeichel, B. J. (2016). Beyond limited resources: Self-control failure as


Kurzban, R. (2010). Does the brain consume additional glucose during self-control tasks? *Evolutionary Psychology,* 2, 244-259.


the mouth with glucose enhances self-control. *Psychological Science, 23*, 1470-1472.
doi: 10.1177/0956797612450034

Sappington, R., & Longshore, K. (2015). Systematically reviewing the efficacy of
mindfulness-based interventions for enhanced athletic performance. *Journal of

Reported self-control is not meaningfully associated with inhibition-related executive
function: A Bayesian analysis. Retrieved from psyarxiv.com/bxfsu

subsequent performance in Indian cultural contexts. *Journal of Personality and Social

of temperature and thermal perception in the control of human thermoregulatory

dyspnoea in athletes: A practical approach for diagnosis and management. *Breathe, 12*, e22-e37. doi: 10.1183/20734735.006416


doi:https://doi.org/10.3389/fpsyg.2016.00461

Steinberg, L. (2008). A social neuroscience perspective on adolescent risk-


