Physical activity for primary dysmenorrhea: a systematic review and meta-analysis of randomized controlled trials

This item was submitted to Loughborough University's Institutional Repository by the/ an author.

Additional Information:

- This paper was accepted for publication in the journal American Journal of Obstetrics and Gynecology and the definitive published version is available at https://doi.org/10.1016/j.ajog.2018.04.001

Metadata Record: https://dspace.lboro.ac.uk/2134/33273

Version: Accepted for publication

Publisher: © Elsevier

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Physical activity for primary dysmenorrhea: a systematic review and meta-analysis of randomized controlled trials

Authors
Dr Gemma MATTHEWMAN MSc Birmingham, West Midlands, UK; University of Birmingham
Dr Alexandra LEE MB ChB Birmingham, West Midlands, UK; University of Birmingham
Ms Jaidev G KAUR MPharm Birmingham, West Midlands, UK; University of Birmingham
Dr Amanda J DALEY PhD Birmingham, West Midlands, UK; University of Birmingham

Structured abstract word count: 333

Main text word count: 3182
Corresponding author:

Dr Gemma Matthewman

Institute of Applied Health Research

University of Birmingham

Edgbaston

Birmingham

B15 2TT

gemmamathewman@doctors.org.uk

The authors report no conflict of interest

Condensation: A systematic review and meta-analysis of randomized controlled trials of the effectiveness of physical activity as a treatment for primary dysmenorrhea

Short version of title: Physical activity for primary dysmenorrhea
Implications and Contributions

A. To determine whether physical activity can reduce pain in primary dysmenorrhea.

B. Increased physical activity reduced pain intensity by almost 2 cm on the VAS scale and pain duration by almost four hours in primary dysmenorrhea.

C. This study provides improved and updated evidence that physical activity may be an effective treatment for primary dysmenorrhea.
Structured Abstract

Background: Primary dysmenorrhea is cramping abdominal pain associated with menstruation. It is prevalent, affects quality of life, and can cause absenteeism. Although evidence-based medical treatment options exist, women may not tolerate these or may prefer to use non-medical treatments. Physical activity has been recommended by clinicians for primary dysmenorrhea since the 1930s, but there is still no high-quality evidence on which to recommend exercise as treatment.

Objective: We sought to determine the effectiveness of physical activity for the treatment of primary dysmenorrhea.

Data sources: Systematic literature searches of Medline, Embase, Cochrane, Web of Science, CINAHL, PsycINFO, SPORTDiscus, PEDro, AMED, WHO ICTRP, Clinicaltrials.gov and OpenGrey were performed, from database inception to 24th May 2017. Google searches and citation searching of previous reviews was also conducted.

Study eligibility criteria: Studies were selected using the following PICOS criteria: Participants: non-athlete females experiencing primary dysmenorrhea; Intervention: Physical activity delivered for at least two menstrual cycles; Comparator: Any comparator; Outcomes: Pain intensity or pain duration; Study type: Randomized controlled trials.

Study appraisal and synthesis methods: Study quality was assessed using the Cochrane Risk of Bias Tool. Random effects meta-analyses for pain intensity and pain duration were conducted, with pre-specified subgroup analysis by type of physical activity intervention. Strength of the evidence was assessed using GRADE.
Results: Searches identified 15 eligible randomized controlled trials; totalling 1681 participants. Data from 11 studies was included in the meta-analyses. Pooled results demonstrated effect estimates for physical activity versus comparators for pain intensity (-1.89cm on Visual Analogue Scale, 95% CI -2.96 to -1.09) and pain duration (-3.92 hours, 95% CI -4.86 to -2.97). Heterogeneity for both these results was high and only partly mitigated by subgroup analysis. Primary studies were of low or moderate methodological quality but results for pain intensity remained stable during sensitivity analysis by study quality. GRADE assessment found moderate quality evidence for pain intensity and low quality evidence for pain duration.

Conclusion: Clinicians can inform women that physical activity may be an effective treatment for primary dysmenorrhea but there is a need for high quality trials before this can be confirmed.

Key words: Exercise, Menstrual Pain, Physical Activity, Primary Dysmenorrhea
Main text

Introduction

Primary dysmenorrhea is pain occurring with menses in the absence of underlying pathology, commonly referred to as period pains or menstrual cramps by the lay press and public. Women may consider primary dysmenorrhea to be a normal physiological state rather than a disorder. However, studies consistently find it to be the most common gynaecological condition of adolescence, also affecting 60 - 76% of adult menstruating women. Severe symptoms are reported by 13 – 33% of women with primary dysmenorrhea and absenteeism by 24 – 43%. Approximately one third of women with primary dysmenorrhea have seen a health professional because of this condition.

Standard, evidence based treatment is with non-steroidal anti-inflammatory medications (NSAIDs) or oral hormonal contraceptives. Other hormonal contraceptives may be helpful but the evidence for these is less robust. Some women may not be able to use medications, or may prefer to avoid them. No complementary therapies have any high quality evidence of effectiveness.

There are plausible mechanisms by which physical activity may reduce pain in primary dysmenorrhea. Pain during menstruation is thought to be mediated by uterine prostaglandins, which stimulate myometrial contractions. Pain sensitization, psychosocial and cultural factors may also play a role. Physical activity reduces stress and has anti-nociceptive properties, reduces levels of PGF2α (the prostaglandin subtype most closely linked with primary dysmenorrhea). Intense exercise has significant impacts on the menstrual cycle, with female athletes found to...
have fewer ovulatory cycles and lower oestrogen and progesterone levels. However, the effects of moderate exercise during the menstrual cycle are less well understood.

Physical activity has been recommended by clinicians for primary dysmenorrhea since the 1930s, and this advice is reiterated on popular sites and medical websites, as well as in patient information provided by the American College of Obstetrics and Gynecology. However, based on current evidence, the effectiveness of physical activity is uncertain, with even less known about which types of exercise might be beneficial or when these exercises should be performed. Four reviews of interventional studies of physical activity for primary dysmenorrhea have been published (two narrative reviews in 1998 and 2008 and two systematic reviews in 2010 and 2016). Results from these reviews were inconclusive due to lack of primary studies. The most recent systematic review published in 2016 deviates substantially from the Cochrane library guidelines and PRISMA reporting standards in a number of ways. The protocol was not registered, no inclusion criteria were reported for the types or length of intervention, no sample search strategy was provided, studies were excluded based on publication status and language, no information regarding excluded studies was reported, and no data regarding statistical heterogeneity was provided. Additionally, there appeared to be low return rates on the initial searches for potentially eligible studies and there are discrepancies in the methodological descriptions in different sections of the report. We performed scoping searches which identified a number of new trials since the searches of this previous review were performed. An updated review is therefore required.

Objective
We sought to systematically review the evidence from randomized controlled trials (RCTs) of the use of physical activity as treatment for primary dysmenorrhea. We sought to perform subgroup analyses based on type of intervention, type of comparator, and whether participants were adolescents or adults.47

Methods

This review was conducted in accordance with systematic review methodologies as per the Cochrane Handbook and has been reported in compliance with the PRISMA statement. It is based upon a prospectively registered protocol, available at: www.crd.york.ac.uk/PROSPERO/ (registration number 42017062202).47

The search strategy was developed building on search strategies from previous similar reviews.26-28,32,33,48,49 The following databases were used: Medline, Embase, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Science Citation Index, Social Sciences Citation Index, CINAHL, PsycINFO, SPORTDiscus, PEDro, AMED, Conference Proceedings Citation Index, Social Sciences Conference Proceedings Citation Index, WHO International Clinical Trials Registry Platform, Clinicaltrials.gov and OpenGrey. Google searches and citation searching of previous reviews were also conducted.

Indexing terms (where possible) and text words (title, abstract, key words and text search) were used for "physical activity" and "dysmenorrhea" terms. Language, date or publication type restrictions were not applied. “Humans” filters were used on some databases with large return rates (e.g. Medline) to enable easier handling of search results. Validated RCT filters were used where required,50-52 the inbuilt search filter was used for CINAHL. The Medline search strategy (see Appendix A) was piloted for sensitivity and specificity using studies found during the initial scoping searches.
No changes were required following piloting. Searches performed on other databases used the same text terms as the piloted Medline search, with index terms adapted for the specific database.

Eligibility criteria

Published and unpublished studies, in any language, were included where the following PICOS criteria were met:

- **Participants:** Non-athlete females with regular menstruation, experiencing primary dysmenorrhea (diagnosis as defined by report), not using hormonal contraception
- **Interventions:** Physical activity interventions delivered over two or more menstrual cycles; as a single intervention or as a co-intervention, in any setting and via any mode of delivery
- **Comparators:** Any comparator that did not involve physical activity, including active comparators and usual care or no treatment
- **Outcomes:** Pain intensity (most painful day or average pain intensity on days that pain was experienced) measured by a validated tool, or pain duration measured in hours
- **Study type:** RCTs

Athletes were excluded as those exercising at very high levels have different menstrual cycle characteristics to moderate or low level exercisers. Hormonal contraception also significantly alters menstrual cycle physiology. Those with irregular menstruation are likely to have an underlying gynecological disorder and therefore consideration to excluding these women should be made in the primary studies. An author defined diagnosis of primary dysmenorrhea was used as the diagnosis is
usually based on history and examination, with pelvic examination typically avoided in adolescents.53

Title and abstract screening was performed independently by two reviewers and any discrepancies were resolved by consensus between the two reviewers. Full text screening for inclusion of eligible studies was completed by two independent reviewers; discrepancies were resolved by consensus between these reviewers. Study authors were contacted for missing information with a reminder sent after three weeks if there had been no reply. In total, 20 study authors were contacted for further information regarding 17 studies but only five replied.

Data extraction

The data extraction form was adapted from the Cochrane Good Practice Data Extraction form54 and was piloted prior to use. Data from included studies was extracted for participants (setting, population, method of diagnosis, inclusion / exclusion criteria, sample size, age range), intervention (type of intervention, method, timing and frequency of delivery, duration), comparators (type of comparator, timing and duration), and outcomes (time point measured, measurement tool, mean, variance). Data extraction was completed by two independent reviewers using the full text copy and any supplementary information (protocols, correspondence from authors). The main publication was used as the reference and other sources were used to obtain any information that was not reported in the main study publication. Discrepancies were resolved by consensus between the two reviewers.

Assessment of risk of bias
The Cochrane Collaboration Risk of Bias Tool was used with one adaption: “blinding of participants / personnel” was changed to “blinding to study purpose / group” as physical activity interventions do not allow complete blinding. Studies could therefore still be rated to be of high methodological quality despite being at high risk of bias. The main biases considered in the “other bias” section were recall bias, interviewer bias, contamination, the Hawthorne effect and the effect of co-interventions. Studies were assessed for quality at the study level by two independent reviewers using the Cochrane guidance. Discrepancies were resolved by consensus. Quality assessment was used for descriptive purposes and sensitivity analysis only.

Data synthesis

Review Manager 5.3 (Revman) was used for statistical analyses. Meta-analyses of pain intensity and duration were performed as specified in the review protocol. Where trials compared two physical activity interventions against one comparator, they were considered as two separate trials; the number of participants in the comparator group was evenly divided between the trials to avoid double-counting of comparators. The variance was adjusted accordingly where required. The final participant number (n) was not provided for three studies; for these studies n was assumed to be the total randomized. Results for Ortiz 2015 were obtained from a graph; they did not specify the measure of variance so this was assumed to be standard deviation.

Results were combined using the weighted mean difference, as most studies reported pain intensity using a visual analogue scale (VAS) in centimetres and pain duration in hours. VAS is a 10cm, usually horizontal, line anchored by the phrases “no pain” and “worst pain imaginable” at each end. One study used the McGill questionnaire,
which cannot be converted to VAS, so data from this trial could not be included in
the meta-analysis. The remaining studies reported pain intensity using VAS in
millimetres63 and pain duration in days62,65 These results were converted to
centimetres and hours respectively before analysis. A correlation coefficient of 0.6 was
used to estimate the standard deviation of the mean difference where this was not
provided, based on the result obtained in an RCT of a physical activity intervention
in a similar population66 Inverse variance methods were used for weighting in the
meta-analyses. The random effects model was used as it was anticipated there may be
a high degree of heterogeneity. \(I^2 \) was used to assess heterogeneity; an \(I^2 \) value
greater than 50\% was considered to indicate substantial heterogeneity50 Funnel plots
were produced to look for publication bias.

Cluster RCTs could not be included in the meta-analyses as no intra-cluster
correlation coefficient was reported in the eligible trials. Separate pooling of cluster
RCTs was performed for pain duration but only one cluster randomized study
reported pain intensity in a format that could be used. Subgroup analysis was not
possible for comparator type as specified in the protocol due to insufficient primary
studies. Subgroup analysis by age, which was also specified in the protocol, was not
possible as most included studies did not provide enough detail on age ranges.

\textit{Strength of the evidence}

The strength of the evidence was assessed by GRADE at the outcome level for pain
intensity and pain duration using GRADE Pro / GDT. Two independent reviewers
performed GRADE assessment with discrepancies resolved by consensus. A starting
rating of high quality evidence was downgraded by one level for serious concerns (or
by two levels for very serious concerns) for risk of bias, inconsistency, indirectness, imprecision and publication bias.

Results

Searches were performed on 24th May 2017, resulting in 582 returns once duplicates were removed. The returns for individual databases are given in Appendix B. The PRISMA flow diagram, representing the flow of studies through the selection process, is shown in Figure 1. 69 articles were assessed at the full text stage, with 54 excluded at this stage. A list of studies excluded at this point can be found, with reasons for exclusion, in Appendix C.

Nine studies were only found in Persian or Mandarin. These papers were assessed with the assistance of native Persian and Mandarin speakers. Where the full text could not be located the study authors were contacted where possible. Two theses and one conference abstract could not be located by any method and were thus excluded at the full text stage.

Study characteristics

Fifteen RCTs, all published since 2011, met the review inclusion and exclusion criteria. This resulted in a total of 1681 participants across all included studies. Details of these studies are presented in Table 1. Included studies were small or medium sized single-centre trials from a range of countries but primarily Iran or India. Most studies recruited university students. Diagnosis of primary dysmenorrhea was usually based on clinical history, four studies performed a clinical examination for all participants, and three used ultrasound to exclude secondary causes. A range of physical activity interventions were used. These could
be categorised into: aerobic exercise, stretching exercises, yoga or Kegels exercises. Ortiz 2015 used a mixed intervention. The majority of studies asked participants to perform exercises throughout the menstrual cycle, but not during menstruation. Reyhani 2013 asked participants to exercise by brisk walking for the first three days of menstruation. Rakhshaee 2011 asked participants to perform yoga in the luteal phase of the menstrual cycle.

Synthesis of results

Meta-analysis of pain intensity (Figure 3) produced a pooled effect estimate of -1.89 cm (95% CI -2.96 to -1.09), representing a statistically significant reduction in pain intensity for those in the intervention (physical activity) group relative to comparators. Heterogeneity was high ($I^2 = 95\%$).

Subgroup analysis by intervention demonstrated effect sizes of -1.29 cm (95% CI -2.38 to -0.21, $I^2 = 83\%$) for aerobic exercise interventions; -1.67 cm (95% CI -2.70 to -0.63, $I^2 = 94\%$) for stretching exercise interventions; -1.81 cm (95% CI -2.37 to -1.61, $I^2 = 0\%$) for yoga interventions; -1.68 cm (95% CI -2.43 to -0.93, $I^2 = 0\%$) for Kegels exercise interventions and -4.70 cm (95% CI -5.15 to -4.25) for the single mixed intervention trial. Studies that could not be included in the meta-analysis demonstrated the same direction of treatment effect.

Meta-analysis of pain duration (Figure 4) produced a pooled estimate of effect of -3.92 hours (95% CI -4.86 to -2.97), representing a reduction in pain duration for those in the intervention (physical activity) group relative to comparators. Heterogeneity was high ($I^2 = 78\%$). Data from two cluster RCTs was combined with a similar pooled effect size of -3.34 hours (95% CI -4.15 to -2.53).
Subgroup analysis by intervention demonstrated effect sizes of -15.64 hours (95% CI -26.96 to -4.32, I^2 49%) for aerobic exercise interventions; -3.53 hours (95% CI -4.25 to -2.81, I^2 82%) for stretching exercise interventions; -6.74 hours (95% CI -13.4 to -0.03, I^2 32%) for yoga exercise interventions; and -21.00 hours (95% CI -38.70 to -3.30) for the single Kegels exercise intervention.

Four studies could not be included in the meta-analysis (WHY? and six further studies did not report on both pain intensity and pain duration in a way that could be utilised for pooled effect estimates (see Appendix E for reasons for exclusion from the meta-analysis).

Sensitivity analysis was performed for type of comparator and timing of intervention (not specified in protocol), with no significant change in the combined estimate of treatment effect. Funnel plot asymmetry was seen for both outcomes. Pain intensity did not demonstrate the classical funnel shape, possibly due to the heterogeneity of primary studies. The funnel plot for pain duration suggested publication bias. This is potentially due to selective outcome reporting as five studies included in the pain intensity meta-analysis did not publish data on pain duration, and most studies were found to be at a high risk of selective outcome reporting. However, results remained statistically significant when the smaller studies contributing to this asymmetry were removed.

Analysis of absenteeism was planned but this was only reported in one study with no measure of variance given.62

Risk of bias of included studies
Most included studies were at high risk of bias in multiple areas of study design, or did not report sufficiently in order for a conclusion to be made about the risk of bias (see Figure 2). The randomization process was not fully described for most studies and allocation concealment was only performed in two studies. No studies reported blinding participants to study purpose or group and only one study reported blinding outcome assessors. Most studies did not report how or when they measured pain intensity. Registered protocols were found for three studies, of which two proposed outcomes that were not reported in the final study. Selective outcome reporting is also suggested by the range of outcomes reported across studies. Results were sometimes reported incompletely; for example, Aboushady 2016 did not report post-intervention pain intensity in the control group. Most studies reported no loss to follow up. Those studies that did report loss to follow up did not use intention to treat analysis. The remaining studies did not report how many participants completed the intervention and follow up.

Most biases would be expected to affect the results such that they increased the magnitude of the treatment effect. However, when low quality studies were removed (Score < 3 on risk of bias assessment in Figure 2), there was an increase in the pooled estimate of treatment effect for pain intensity (from -1.89cm (95% CI -2.96 to -1.09) to -2.87cm (95% CI -5.10 to -0.63)). Only one study of moderate quality assessed pain duration with a non-significant estimate of treatment effect of -2.64 hours (95% CI -11.58 to 6.30) suggesting that the evidence for the effect of physical activity on pain duration is less reliable.

Comment
Main findings

This systematic review and meta-analysis suggests that physical activity may be an effective intervention for primary dysmenorrhea. However, these results should be interpreted with caution, as heterogeneity was high and only partially mitigated by sub group analysis. Studies were of low or moderate quality, mainly due to performance bias and potential selective outcome reporting. Nevertheless, results for pain intensity remained stable when low quality studies were removed providing some reassurance of the treatment effect observed. All studies demonstrated an improvement in pain (intensity and/or duration) with intervention, including those that could not be included in the meta-analysis. The overall assessment of the strength of evidence using GRADE showed moderate quality evidence for pain intensity and low quality evidence for pain duration (see Figure 5).

As well as considering the statistical significance and methodological quality of the results it is important to place these within a clinical context. No minimal clinically important difference (MCID) is available in the literature for pain intensity measured by VAS in primary dysmenorrhea, but the MCID in endometriosis is 1cm. This suggests that the pooled estimate, at almost 2cm, is clinically significant. There are no reported values for the MCID for pain duration in primary dysmenorrhea or similar conditions.

Strengths and limitations

This review was conducted in accordance with systematic review methodologies as described in the Cochrane Handbook and has been reported in compliance with the PRISMA statement. A prospective protocol was registered on PROSPERO, ensuring methods were specified a priori, unlike previous reviews. Substantially more RCTs
were found in this review than all previous reviews. Searches used in this review were also more comprehensive than previous reviews; covering more databases, and identifying grey literature, such as theses and conference proceedings that were not identified in previous reviews. All eligible studies that were not published in English were translated so that they could be considered for inclusion. In compliance with current best practice guidelines for systematic reviews, eligibility screening, data extraction, quality assessment and strength of evidence assessment were all performed by two independent reviewers. The meta-analyses for this review contain the largest number of RCTs to date, and assess both pain intensity and pain duration (only the former has been previously assessed by meta-analysis). Our review is also the first to include subgroup analysis by type of physical activity. Interrogation of the data using sensitivity analysis and Funnel plots was performed, which was not the case in previous reviews. This review is also the first to report on strength of the evidence using GRADE. This review is therefore the most complete, up to date and methodologically rigorous review of the effectiveness of physical activity interventions for primary dysmenorrhea.

Despite this the findings remain limited by the number of primary studies, trial sample size and the quality of included studies. No high quality trials were identified, and reporting of trial methodology was not always clear. Publication bias was suggested for pain duration. The results of this review are subject to high levels of heterogeneity, introducing some uncertainty about the effectiveness of physical activity. Heterogeneity appeared to occur because studies evaluated a wide range of physical activity interventions. Attempts to resolve this by conducting subgroup analysis were somewhat limited because of insufficient primary studies. Insufficient data from primary studies also prevented reporting of one of the pre-specified outcomes.
(absenteeism) and two of the pre-specified subgroup analyses (adolescents and adults, comparator type).

Comparison with existing literature

Increased physical activity was identified as a small protective factor against experiencing dysmenorrhea in a 2006 systematic review of observational studies (odds ratio (OR) of 0.89, 95% CI 0.80 to 0.99). A non-systematic review of controlled trials published in 1998 also found a beneficial effect, but noted there was a paucity of methodologically robust studies to confirm this. Interestingly, the review authors considered three trials to be randomized despite not being reported as such, and not being considered as such in other reviews. A non-systematic review in 2009 and a Cochrane library systematic review in 2010 (including both primary and secondary dysmenorrhea) identified just one small RCT which demonstrated a beneficial effect of treadmill running. This single trial had some methodological limitations and therefore the previous reviews concluded that there was insufficient evidence to recommend the intervention. The most recent systematic review found a beneficial effect of physical activity but similarly reported that included trials contained methodological flaws limiting the strength of their conclusions.

Conclusions and Implications

This review provides moderate quality evidence that physical activity may reduce pain intensity and low quality evidence that it may reduce pain duration in primary dysmenorrhea. Whilst physical activity is currently recommended in clinical guidelines for primary dysmenorrhea, more high quality studies are needed before this can be confirmed. Future trials should adhere to international reporting guidelines, and seek
to minimise sources of bias. Trials that evaluate the optimum type and timing of physical activity interventions are also required.
Acknowledgements:

Sue Bayliss (University of Birmingham) for assistance with building the search strategy, Sayeed Haque (University of Birmingham) for assistance with statistical analysis, Natalie-Tyldesley-Marshall (University of Birmingham) for assistance with reviewing articles, Manadana Zanganeh (University of Birmingham) for assistance with translating and reviewing articles published in Persian, Zhaonan Wang (University of Birmingham) for assistance with translating and reviewing articles published in Mandarin.
References

60. Siahpour T, Nikbakht M, Rahimi E, Rabiee MA. The effect of 8 weeks aerobic exercise and yoga on primary dismenorrhea. Armaghan-Danesh, Yasuj University of Medical Sciences Journal 2013:483.

Table 1 – Description of included studies

“Cycles” refers to menstrual cycles

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Participants</th>
<th>Intervention(s)</th>
<th>Comparator(s)</th>
<th>Outcome(s)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboushady 2016</td>
<td>8</td>
<td>School/college students, Saudi Arabia (16–21yrs)</td>
<td>Instructional sessions (Menstrual care, stretches); exercises at home, 20-30mins, 2x/day, 3d/w for 8wks</td>
<td>Menstrual care instructional session only</td>
<td>Pain duration</td>
<td>Statistically significant difference in pain duration; Pain intensity only reported as pre/post-test</td>
</tr>
<tr>
<td>Behbahani 2016</td>
<td>1</td>
<td>Non-medical students, Iran (18–25yrs)</td>
<td>4wks educational classes (physiology, nutrition, exercises), “isometric exercises” at home for 4wks</td>
<td>Acupressure during pain</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity in exercise / acupressure groups compared to ibuprofen</td>
</tr>
<tr>
<td>Kaur 2013a</td>
<td>2</td>
<td>Hostel at Post-Graduate Institute, India (19–25yrs)</td>
<td>Slow Kegels group: Hot pack, 90x Kegel exercises alt days, 5–10s hold; for 8wks Fast Kegels group as above, no hold</td>
<td>Hot pack over lower abdomen for 10mins</td>
<td>Pain intensity via VAS</td>
<td>No statistically significant difference in pain intensity between slow Kegels and control</td>
</tr>
<tr>
<td>Kaur 2013b</td>
<td>4</td>
<td>Hostel at Post-Graduate Institute, India (19–25yrs)</td>
<td>Medical students, Iran (Age range not reported) 15mins abdominal / pelvic stretching exercises, taught initially, 3x/wk; for 2 cycles</td>
<td>Mefenamic acid 250mg 3x/day</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity in fast Kegels compared to control</td>
</tr>
<tr>
<td>Motahari-Taheri 2017</td>
<td>1</td>
<td>Medical students, Iran (Age range not reported)</td>
<td>Aerobic group: 45mins observed “aerobic exercise”, 3x/wk; for 8wks Kegel group: 15 mins Kegel exercises; 6s hold, 3x/day</td>
<td>Usual care - “no exercise”, advised no salty / fatty foods, no medications</td>
<td>Pain intensity via VAS</td>
<td>No statistically significant difference in pain intensity or pain duration</td>
</tr>
<tr>
<td>Nasri 2016a</td>
<td>4</td>
<td>High school pupils, Iran (“Teenagers”)</td>
<td>Stretches (inc Billig / Kegel), jogging, relaxation led / monitored by instructors; 50mins, 3x/wk; for 3 cycles</td>
<td>Kept in courtyard; “walking, talking and standing”</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity due to exercise groups</td>
</tr>
<tr>
<td>Nasri 2016b</td>
<td>5</td>
<td>High school pupils, Iran (“Teenagers”)</td>
<td>Students, India (17–25yrs) 6 stretches; 2x/day, 3x/wk for 8wks</td>
<td>Usual care</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity due to exercise groups</td>
</tr>
<tr>
<td>Ortiz 2015</td>
<td>1</td>
<td>Uni students, Mexico (18–22yrs)</td>
<td>Students, India (17–25yrs) 6 stretches; 2x/day, 3x/wk for 8wks</td>
<td>Usual care</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity due to exercise groups</td>
</tr>
<tr>
<td>Study</td>
<td>n</td>
<td>Participants</td>
<td>Intervention(s)</td>
<td>Comparator(s)</td>
<td>Outcome(s)</td>
<td>Results</td>
</tr>
<tr>
<td>---------------------</td>
<td>----</td>
<td>---</td>
<td>--</td>
<td>---------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Rakhshaee 2011</td>
<td>1</td>
<td>Uni students, Iran (17–23yrs)</td>
<td>• 3 yoga poses / breathing techniques taught by booklet, for 20mins/day, luteal phase (14d) of 2 cycles</td>
<td>Usual care</td>
<td>Pain intensity via 0–3 scale Pain duration</td>
<td>Statistically significant reduction in pain intensity and pain duration</td>
</tr>
<tr>
<td>Reyhani 2013</td>
<td>9</td>
<td>Nursing/midwifery students, Iran (Age range not reported)</td>
<td>• 30mins brisk walking (one training session), 1st 3d of menstruation; for 3 cycles</td>
<td>Usual care</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity</td>
</tr>
<tr>
<td>Saleh 2016a 96</td>
<td>1</td>
<td>Women from outpatient clinic, Egypt (Age range not reported)</td>
<td>Stretching group: • 4 stretches, 10mins, 3x/d, 3x/wk; for 8wks Core strengthening group: • 4 core strengthening exercises, 20mins, 4x/wk</td>
<td>Usual care</td>
<td>Pain intensity via VAS Pain duration</td>
<td>Statistically significant reduction in pain intensity / pain duration in both intervention groups when compared to control</td>
</tr>
<tr>
<td>Saleh 2016b</td>
<td>1</td>
<td>High school pupils, Iran (15-17yrs)</td>
<td>• 6 stretches taught initially, 10mins, 2x/d, 3x/wk; for 8wk</td>
<td>Usual care - exercises taught to controls after study</td>
<td>Pain intensity via VAS Pain duration</td>
<td>Statistically significant reduction in pain intensity and pain duration</td>
</tr>
<tr>
<td>Shahr-Jerdy 2012</td>
<td>1</td>
<td>Uni students, Iran (20–25yrs)</td>
<td>Aerobic group: • Aerobic dance for 60 mins, 3x/wk; for 8wks Yoga group: • 60 mins yoga, 3x/wk; “trained”</td>
<td>Usual care</td>
<td>Pain intensity via VAS Pain duration</td>
<td>Statistically significant reduction in pain intensity / pain duration between aerobic and yoga groups compared to control</td>
</tr>
<tr>
<td>Siahpour 2013a</td>
<td>6</td>
<td>Medical students, India (18–22yrs)</td>
<td>• Aerobic dance for 45mins, 3x/wk, for 8wks</td>
<td>Usual care</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity</td>
</tr>
<tr>
<td>Siahpour 2013b</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sutar 2016</td>
<td>1</td>
<td>Nursing students, S Korea (20–23yrs)</td>
<td>• 60mins guided yoga, 1x/wk (poses, sun salutations, relaxation); for 12wks</td>
<td>Usual care - told not to do yoga</td>
<td>Pain intensity via VAS Pain duration</td>
<td>Statistically significant reduction in pain intensity No statistically significant reduction in pain duration</td>
</tr>
<tr>
<td>Yang 2016b</td>
<td>1</td>
<td>Uni students, Thailand (18–22yrs)</td>
<td>• 30mins yoga taught by booklet, 2x/wk; for 12wks Diary / weekly phone calls to check adherence</td>
<td>Usual care</td>
<td>Pain intensity via VAS</td>
<td>Statistically significant reduction in pain intensity</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1 – PRISMA flow diagram.

PRISMA flow diagram demonstrating flow of studies through identification process and eligibility screening *See Appendix C for further details*

Figure 2 – Risk of Bias Summary

Summary of Risk of Bias of included studies

Figure 3 – Pain intensity meta-analysis

Random effects meta-analysis of pain intensity via VAS in cm

Figure 4 – Pain duration meta-analysis

Random effects meta-analysis of pain duration in hours

Figure 5 - GRADE evidence profile

Evidence profile for pain intensity and pain duration
Appendix A – Search strategies

Medline / Medline in Process searched 05/24/17:

1 exp Dysmenorrhea/ 3600
2 dysmenorrh*.ti,ab. 4950
3 (menstrua* adj2 pain).ti,ab. 720
4 (menstrua* adj2 cramp).ti,ab. 7
5 (period* adj2 pain*).ti,ab. 1372
6 1 or 2 or 3 or 4 or 5 7684
7 exp Exercise/ or exp Exercise Therapy/ 184201
8 exp Physical Exertion/ or exp Physical Fitness/ 79696
9 exp running/ or exp swimming/ or exp walking/ 81381
10 exp tai ji/ or exp yoga/ 2941
11 exp dancing/ or exp gardening/ or exp sports/ 162811
12 exercis*.ti,ab. 245761
13 "physical activit*".ti,ab. 82503
14 sport*.ti,ab. 57350
15 stretch*.ti,ab. 62854
16 fitness.ti,ab. 55378
17 jog*.ti,ab. 2026
18 running.ti,ab. 49262
19 swim*.ti,ab. 32178
20 (cycl* adj2 train*).ti,ab. 2065
21 walk*.ti,ab. 93124
22 yoga.ti,ab. 3190
23 "tai ji".ti,ab. 25
24 "tai chi".ti,ab. 1249
25 pilates.ti,ab. 304
26 "physical training".ti,ab. 5245
27 "resistance training".ti,ab. 5278
28 (athlete* adj2 train*).ti,ab. 4489
29 "weight training".ti,ab. 914
30 isometric*.ti,ab. 30361
31 danc*.ti,ab. 5670
32 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 731463
33 6 and 32 312
34 randomized controlled trial.pt. 462560
35 controlled clinical trial.pt. 94063
36 randomized controlled trial.sh. 462560
37 random allocation.sh. 92576
38 double blind method.sh. 147085
single-blind method.sh. 24526
34 or 35 or 36 or 37 or 38 or 39 645852
(animals not human).sh. 6109803
40 not 41 571840
clinical trial.pt. 521341
exp clinical trial/ 803438
(clin$ adj25 trial$).ti,ab. 368228
((singl$ or doubl$ or trebl$ or tripl$) adj25 (blind$ or mask$)).ti,ab. 161643
placebos.sh. 34931
placebo$.ti,ab. 192528
research design.sh. 96076
43 or 44 or 45 or 46 or 47 or 48 or 491211208
50 not 41 1110374
51 not 42 562047
case control study.sh.1809971
exp evaluation studies/ 232296
follow up studies.sh. 586124
prospective studies.sh. 456986
(control$ or 31athlete3131ve$ or volunteer$).ti,ab. 3751440
52 or 53 or 54 or 55 or 56 or 57 5717430
58 not 41 4252943
59 not (42 or 52) 3578680
60 or 52 or 60 4712567
33 and 61 136

EMBASE searched 05/24/17:
1 exp Dysmenorrhea/ 9975
dysmenorrh*.ti,ab. 6530
3 (menstrua* adj2 pain).ti,ab. 993
4 (menstrua* adj2 cramp).ti,ab. 11
5 (period* adj2 pain*).ti,ab. 2026
1 or 2 or 3 or 4 or 5 13542
7 exp Exercise/ or exp Physical Activity/ 539709
8 exp Sport/ or exp Fitness/ 159023
9 exp dynamic exercise/ or exp isometric exercise/ or exp anaerobic exercise/ or
exp static exercise/ or exp aerobic exercise/ or exp isokinetic exercise/ 16049
10 exp stretching exercise/ or exp aquatic exercise/ or exp isometric exercise/ 5696
11 exp stretching/ or exp muscle stretching/ or exp muscle training/ or exp
resistance training/ or exp pelvic floor muscle training/ 29219
12 exp swimming/ or exp walking/ 123921
13 exp jogging/ or exp pilates/ 2023
exp tai ji/ or exp yoga/ 7329
exp dancing/ or exp gardening/ or exp sports/ 133605
exercis*.ti,ab. 316216
"physical activit*".ti,ab. 108960
sport*.ti,ab. 75241
stretch*.ti,ab. 66632
fitness.ti,ab. 61859
jog*.ti,ab. 2419
running.ti,ab. 59265
swim*.ti,ab. 38714
(cycl* adj2 train*).ti,ab. 2321
walk*.ti,ab. 124213
yoga.ti,ab. 4466
"tai ji".ti,ab. 49
"tai chi".ti,ab. 1729
pilates.ti,ab. 449
"physical training".ti,ab. 6938
"resistance training".ti,ab. 6242
(32thlete* adj2 train*).ti,ab. 5243
"weight training".ti,ab. 997
isometric*.ti,ab. 34963
danc*.ti,ab. 7125
exp health care quality/ 2478747
random:.tw. 1190652
clinical trial:.mp. 1442523
7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 1005054
36 or 37 or 38 4188607
6 and 39 and 40 243

PsycINFO searched 05/24/17:
1 exp Dysmenorrhea/ 190
dysmenorr*.ti,ab. 304
(menstrua* adj2 pain).ti,ab. 122
(menstrua* adj2 cramp).ti,ab. 1
(period* adj2 pain*).ti,ab. 229
1 or 2 or 3 or 4 or 5 617
exp Exercise/ or exp Aerobic Exercise/ 22140
exp Physical Fitness/ or exp Physical activity/ 35122
exp running/ or exp swimming/ or exp walking/ 7599
exp yoga/ 1407
<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp dancing/ or exp dance therapy/</td>
<td>938</td>
</tr>
<tr>
<td>exp sports/ or exp athletic training/</td>
<td>22874</td>
</tr>
<tr>
<td>exercis*.ti,ab.</td>
<td>52521</td>
</tr>
<tr>
<td>"physical activit*".ti,ab.</td>
<td>26010</td>
</tr>
<tr>
<td>sport*.ti,ab.</td>
<td>27171</td>
</tr>
<tr>
<td>stretch*.ti,ab.</td>
<td>4142</td>
</tr>
<tr>
<td>fitness.ti,ab.</td>
<td>12800</td>
</tr>
<tr>
<td>jog*.ti,ab.</td>
<td>417</td>
</tr>
<tr>
<td>running.ti,ab.</td>
<td>12473</td>
</tr>
<tr>
<td>swim*.ti,ab.</td>
<td>8017</td>
</tr>
<tr>
<td>(cycl* adj2 train*).ti,ab.</td>
<td>217</td>
</tr>
<tr>
<td>walk.ti,ab.</td>
<td>6195</td>
</tr>
<tr>
<td>yoga.ti,ab.</td>
<td>2052</td>
</tr>
<tr>
<td>"tai ji".ti,ab.</td>
<td>5</td>
</tr>
<tr>
<td>"tai chi".ti,ab.</td>
<td>443</td>
</tr>
<tr>
<td>pilates.ti,ab.</td>
<td>55</td>
</tr>
<tr>
<td>"physical training".ti,ab.</td>
<td>520</td>
</tr>
<tr>
<td>"resistance training".ti,ab.</td>
<td>484</td>
</tr>
<tr>
<td>(33thlete* adj2 train*).ti,ab.</td>
<td>797</td>
</tr>
<tr>
<td>"weight training".ti,ab.</td>
<td>178</td>
</tr>
<tr>
<td>isometric*.ti,ab.</td>
<td>1865</td>
</tr>
<tr>
<td>dance*.ti,ab.</td>
<td>6309</td>
</tr>
<tr>
<td>(control: or random*.tw. or exp treatment/</td>
<td>1218890</td>
</tr>
<tr>
<td>7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32</td>
<td>150179</td>
</tr>
<tr>
<td>6 and 33 and 34</td>
<td>23</td>
</tr>
</tbody>
</table>

CINAHL searched 05/24/17:

1 MH exercise OR MH exercise therapy OR MH physical exertion OR MH physical fitness OR MH locomotion OR MH exercise movement techniques OR MH recreation 48,339S14
2 AB dysmenorr* OR AB “menstrual cramp*” OR AB “menstrual pain” OR AB “period pain” OR AB “painful periods” OR AB “painful menstrua*” 858
3 TI dysmenorr* OR TI “menstrual cramp*” OR TI “menstrual pain” OR TI “period pain” OR TI “painful periods” OR TI “painful menstrua*” 573
4 KW dysmenorr* OR KW “menstrual cramp*” OR KW “menstrual pain” OR KW “period pain” OR KW “painful periods” OR KW “painful menstrua*” 15,172
5 2 OR 3 OR 4 1,147
6 AB “physical activit*” OR AB 33thlete33* OR AB (stretch* or isometric) OR AB (fitness or sport*) OR AB “physical training” OR AB “weight training”
OR AB “resistance training” OR AB (jog* or running or swim* or walk* or danc*) OR AB (yoga or “tai ji” or “tai chi” or pilates) 131,871
7 TI “physical activity” OR TI 34athlete34* OR TI (stretch* or isometric) OR TI (fitness or sport*) OR TI “physical training” OR TI “weight training” OR TI “resistance training” OR TI (jog* or running or swim* or walk* or danc*) OR TI (yoga or “tai ji” or “tai chi” or pilates) 97,173
8 KW “physical activity” OR KW exercise 35
9 6 OR 7 OR 8 182,705
10 1 OR 9 202,476
11 MH dysmenorrhea 1,025
12 5 OR 11 1,566
13 10 AND 12 95
14 Limiters – Clinical Queries: Therapy – High Sensitivity 46

SPORTDiscus searched 05/24/17:
1 AB dysmenorr* OR AB “menstrual cramp*” OR AB “menstrual pain” OR AB “period pain” OR AB “painful periods” OR AB “painful menstrua*” 157
2 TI dysmenorr* OR TI “menstrual cramp*” OR TI “menstrual pain” OR TI “period pain” OR TI “painful periods” OR TI “painful menstrua*” 60
3 KW dysmenorrhea OR KW dysmenorrhoea 35
4 1 OR 2 OR 3 190
5 AB “physical activity” OR AB 34athlete34* OR AB (stretch* or isometric) OR AB (fitness or sport*) OR AB “physical training” OR AB “weight training” OR AB “resistance training” OR AB (jog* or running or swim* or walk* or danc*) OR AB (yoga or “tai ji” or “tai chi” or pilates) 420,655
6 TI “physical activity” OR TI 34athlete34* OR TI (stretch* or isometric) OR TI (fitness or sport*) OR TI “physical training” OR TI “weight training” OR TI “resistance training” OR TI (jog* or running or swim* or walk* or danc*) OR TI (yoga or “tai ji” or “tai chi” or pilates) 272,594
7 KW “physical activity” OR KW exercise 20,595
8 5 OR 6 OR 7 556,573
9 4 AND 8 53

AMED searched 05/24/17:
1 AB dysmenorr* OR AB “menstrual cramp*” OR AB “menstrual pain” OR AB “period pain” OR AB “painful periods” OR AB “painful menstrua*” 120
2 TI dysmenorr* OR TI “menstrual cramp*” OR TI “menstrual pain” OR TI “period pain” OR TI “painful periods” OR TI “painful menstrua*” 130
3 KW dysmenorrhea OR KW dysmenorrhoea 116
4 1 OR 2 OR 3 195
AB "physical activit*" OR AB 35thlete35* OR AB (stretch* or isometric) OR AB (fitness or sport*) OR AB “physical training” OR AB “weight training” OR AB “resistance training” OR AB (jog* or running or swim* or walk* or dance*) OR AB (yoga or “tai ji” or “tai chi” or pilates) 24,404

TI “physical activit*” OR TI 35thlete35* OR TI (stretch* or isometric) OR TI (fitness or sport*) OR TI “physical training” OR TI “weight training” OR TI “resistance training” OR TI (jog* or running or swim* or walk* or dance*) OR TI (yoga or “tai ji” or “tai chi” or pilates) 19,137

KW “physical activity” OR KW exercise 15,600

5 OR 6 OR 7 36,091

4 AND 8 7

Cochrane searched 05/24/17:

“dysmenorrhea”:ti,ab,kw (Word variations have been searched) 1188

MeSH descriptor: [Dysmenorrhea] explode all trees 465

3 "menstrual cramps”:ti,ab,kw 27

4 "period pains”:ti,ab,kw 4

5 “painful menstruation”:ti,ab,kw 17

6 “menstrual pain”:ti,ab,kw 174

7 1 or 2 or 3 or 4 or 5 or 6 1235

8 MeSH descriptor: [Exercise] explode all trees 18710

9 MeSH descriptor: [Exercise Therapy] explode all trees 10374

10 MeSH descriptor: [Physical Exertion] explode all trees 3389

11 MeSH descriptor: [Physical Fitness] explode all trees 2648

12 MeSH descriptor: [Running] explode all trees 1599

13 MeSH descriptor: [Swimming] explode all trees 407

14 MeSH descriptor: [Walking] explode all trees 3482

15 MeSH descriptor: [Sports] explode all trees 12907

16 MeSH descriptor: [Yoga] explode all trees 513

17 MeSH descriptor: [Tai Ji] explode all trees 343

18 MeSH descriptor: [Dancing] explode all trees 128

19 "35thlete35*”:ti,ab,kw 57524

20 “physical activit*”:ti,ab,kw 13568

21 sport*:ti,ab,kw 4824

22 stretch*:ti,ab,kw 2968

23 fitness:ti,ab,kw 6049

24 jog*:ti,ab,kw 318

25 running:ti,ab,kw 3623

26 swim*:ti,ab,kw 813

27 “cyc1* train*”:ti,ab,kw 129

28 walk*:ti,ab,kw 14632

29 yoga:ti,ab,kw 1449

30 “tai chi”:ti,ab,kw 666
Web of Science searched 05/24/17:

1. TS=(dysmenorr*) 3,781
2. TS=("menstrual cramp") 72
3. TS=(menstru* NEAR/1 pain*) 634
4. TS=(period$ NEAR/1 pain*) 811
5. 4 OR 3 OR 2 OR 1 4,861
6. TS=("physical activit") 120,487
7. TS=(36thlete36*) 346,079
8. TS=(sport*) 103,132
9. TS=(stretch*) 145,828
10. TS=(fitness) 104,942
11. TS=(jog*) 3,483
12. TS=(running) 408,116
13. TS=(swim*) 52,369
14. TS=(cycl* NEAR/2 train*) 3,333
15. TS=(walk*) 171,784
16. TS=(yoga) 3,304
17. TS="(tai ji)" 61
18. TS="(tai chi)" 1,945
19. TS=(pilates) 341
20. TS="(physical training)" 5,087
21. TS="(resistance training)" 6,810
22. TS=(36thlete* NEAR/2 train*) 5,548
23. TS="(weight training)" 1,330
24. TS=(isometric*) 35,686
25. TS=(danc*) 15,569
26. 25 OR 24 OR 23 OR 22 OR 21 OR 20 OR 19 OR 18 OR 17 OR 16 OR 15 OR 14 OR 13 OR 12 OR 11 OR 10 OR 9 OR 8 OR 7 OR 6 1,340,672
27. 26 AND 5 231

PEDro searched 05/24/17:
1 dysmenorrh* AND exercise* 17
2 dysmenorrh* AND physical activit* 3
3 dysmenorrh* AND yoga 6
4 dysmenorrh* AND stretch* 28

Clinicaltrials.gov searched 05/24/17:
Condition: dysmenorrhoa OR “menstrual cramps” OR “menstrual pain” OR “period pain” OR “painful periods” OR “painful menstruation”
Intervention: “physical activity” OR exercise OR sport OR stretch OR fitness OR “physical training” OR “resistance training” OR “weight training” OR jogging OR running OR walking OR swimming OR yoga OR “tai chi” OR pilates (searches both tai ji and tai chi)
13

WHO ICTRP searched 05/24/17:
Condition: dysmenorrhea OR dysmenorrhoa OR menstrual cramps OR menstrual pain OR period pain OR painful periods OR painful menstruation
Intervention: physical activity OR exercise OR sport OR stretch OR fitness OR physical training OR resistance training OR weight training OR jogging OR running OR walking OR swimming OR yoga OR tai chi OR pilates
11

OpenGrey searched 05/24/17:
Dysmenorrhea 1
Dysmenorrhoa 6
Menstrual + exercise 11
Menstrual + sport 3
Menstrual + yoga 0
Menstrual + physical activity 0

Google searched 05/24/17:
Google was searched using the terms “dysmenorrhea” and “exercise”; all returns up to page 15 were reviewed at which point no new returns were being identified. This was repeated with the alternative spelling “dysmenorrhoa”.
The Menstruation Research website was also searched in greater detail (menstruationresearch.org)
Appendix B - Database search returns

<table>
<thead>
<tr>
<th>Database</th>
<th>Interface</th>
<th>Dates</th>
<th>Returns</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEDLINE and MEDLINE In Process</td>
<td>Ovid</td>
<td>1946 – 05/24/17</td>
<td>136</td>
</tr>
<tr>
<td>EMBASE</td>
<td>Ovid</td>
<td>1974 – 05/24/17</td>
<td>243</td>
</tr>
<tr>
<td>PsycINFO</td>
<td>Ovid</td>
<td>1806 – 05/24/17</td>
<td>23</td>
</tr>
<tr>
<td>Cochrane Database of Systematic Reviews (CDSR)</td>
<td>Cochrane Library</td>
<td>N/A</td>
<td>40 total*</td>
</tr>
<tr>
<td>Cochrane Central Register of Controlled Trials (CENTRAL)</td>
<td>Cochrane Library</td>
<td>1966 – 05/24/17</td>
<td></td>
</tr>
<tr>
<td>CINAHL</td>
<td>EBSCO</td>
<td>1937 – 05/24/17</td>
<td>46</td>
</tr>
<tr>
<td>SPORTDiscus</td>
<td>EBSCO</td>
<td>1980 – 05/24/17</td>
<td>53</td>
</tr>
<tr>
<td>AMED (Allied and Complimentary Medicine Database)</td>
<td>EBSCO</td>
<td>1995 – 05/24/17</td>
<td>7</td>
</tr>
<tr>
<td>PEDro</td>
<td>NeuRA</td>
<td>1929 – 05/14/17</td>
<td>41</td>
</tr>
<tr>
<td>Science Citation Index</td>
<td>Web of Science</td>
<td>1964– 05/24/17</td>
<td>231 total*</td>
</tr>
<tr>
<td>Conference Proceedings Citation Index</td>
<td>Web of Science</td>
<td>1990 – 05/24/17</td>
<td></td>
</tr>
<tr>
<td>Social Sciences Citation Index</td>
<td>Web of Science</td>
<td>1900 – 05/24/17</td>
<td></td>
</tr>
<tr>
<td>Conference Proceedings Citation Index – Social Sciences and Humanities</td>
<td>Web of Science</td>
<td>1990 – 05/24/17</td>
<td></td>
</tr>
<tr>
<td>Clinicaltrials.gov</td>
<td>National Institute of Health</td>
<td>To 05/24/17</td>
<td>13</td>
</tr>
<tr>
<td>WHO ICTRP</td>
<td>WHO</td>
<td>To 05/24/17</td>
<td>11</td>
</tr>
<tr>
<td>OpenGrey</td>
<td>SIGLE</td>
<td>1993 – 05/24/17</td>
<td>21</td>
</tr>
<tr>
<td>Google</td>
<td>Google</td>
<td>N/A</td>
<td>42 new</td>
</tr>
<tr>
<td>Citation searching</td>
<td>N/A</td>
<td>N/A</td>
<td>1 new</td>
</tr>
</tbody>
</table>

SCI/CPCI/SSCI/SS-CPCI and CDSR/CENTRAL were searched simultaneously; there is therefore no individual return numbers for these databases.
Appendix C – Excluded studies with reasons for exclusion

A reference list of excluded studies can be obtained from the study authors

<table>
<thead>
<tr>
<th>Study</th>
<th>Reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbaspour 2006</td>
<td>No inclusion / exclusion criteria reported, no reply from authors</td>
</tr>
<tr>
<td>ACTRN12613001195741</td>
<td>Registered trial and feasibility study, contacted authors who have completed trial and are in process of publishing, however unwilling to share any of data</td>
</tr>
<tr>
<td>Anonymous 1945</td>
<td>Letter</td>
</tr>
<tr>
<td>Anonymous 1960</td>
<td>Letter</td>
</tr>
<tr>
<td>Anonymous 1993</td>
<td>Review</td>
</tr>
<tr>
<td>Arora 2014</td>
<td>No inclusion / exclusion criteria reported, no reply from authors</td>
</tr>
<tr>
<td>Azima 2015a</td>
<td>Two arm trial which is also reported as 3 arm trial - see Azima 2015b below</td>
</tr>
<tr>
<td>Azima 2015b</td>
<td>No inclusion / exclusion criteria in either of papers reporting trial, protocol contains some inclusion / exclusion criteria but does not specify regarding secondary dysmenorrhoea, irregular menstruation or hormonal contraception</td>
</tr>
<tr>
<td>Chaudhuri 2013</td>
<td>Some participants were athletes, also some had irregular periods (from correspondence with author)</td>
</tr>
<tr>
<td>Chien 2013</td>
<td>Non-randomized controlled trial</td>
</tr>
<tr>
<td>Dehghanzadeh 2014</td>
<td>Before and after trial</td>
</tr>
<tr>
<td>DeWitt 1981</td>
<td>Asked women about hormonal contraception but did not specify whether these women were excluded</td>
</tr>
<tr>
<td>El Refaye 2007</td>
<td>Thesis, no online abstract, unable to obtain full text through inter-library loans, no contact details for authors</td>
</tr>
<tr>
<td>Gamit 2014</td>
<td>Physical activity intervention for four weeks only</td>
</tr>
<tr>
<td>Golub 1960</td>
<td>Non-randomized controlled trial</td>
</tr>
<tr>
<td>Golub 1963</td>
<td>Before and after trial</td>
</tr>
<tr>
<td>Haldar 2012</td>
<td>Non-randomized controlled trial</td>
</tr>
<tr>
<td>Haman 1945</td>
<td>Before and after trial</td>
</tr>
<tr>
<td>Harris 1955</td>
<td>Before and after trial</td>
</tr>
<tr>
<td>Heidarianpour 2016</td>
<td>Menstrual characteristics, dysmenorrhoea considered but did not exclude secondary dysmenorrhoea</td>
</tr>
<tr>
<td>Huang 2007</td>
<td>No inclusion / exclusion criteria reported, unable to find contact details for authors</td>
</tr>
<tr>
<td>Hubbell 1949</td>
<td>Non-randomized controlled trial</td>
</tr>
<tr>
<td>IRCT2013071013940N1</td>
<td>Registered trial, results published in Behbahani 2016</td>
</tr>
<tr>
<td>IRCT2016103119024N2</td>
<td>Registered trial, unable to find published paper, contacted authors and no reply; probably still ongoing as only registered in 2016</td>
</tr>
<tr>
<td>ISRCTN75567759</td>
<td>Registered trial and published protocol, mixed-methods study with no randomization</td>
</tr>
<tr>
<td>Jahromi 2008</td>
<td>Before and after trial</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
</tr>
<tr>
<td>Kang</td>
<td>2009</td>
</tr>
<tr>
<td>Kaur</td>
<td>2014</td>
</tr>
<tr>
<td>Kashef</td>
<td>2014</td>
</tr>
<tr>
<td>Khare</td>
<td>2016</td>
</tr>
<tr>
<td>Kumar</td>
<td>2013</td>
</tr>
<tr>
<td>Locke</td>
<td>1999</td>
</tr>
<tr>
<td>Locke</td>
<td>1999</td>
</tr>
<tr>
<td>Lundquist</td>
<td>1947</td>
</tr>
<tr>
<td>Mahishale</td>
<td>2013</td>
</tr>
<tr>
<td>Mahvash</td>
<td>2012</td>
</tr>
<tr>
<td>Mathur</td>
<td>1986</td>
</tr>
<tr>
<td>Monika</td>
<td>2012</td>
</tr>
<tr>
<td>Motesharee</td>
<td>2013</td>
</tr>
<tr>
<td>Nag</td>
<td>2013</td>
</tr>
<tr>
<td>Pazoki</td>
<td>2013</td>
</tr>
<tr>
<td>Pazoki</td>
<td>2016</td>
</tr>
<tr>
<td>Rani</td>
<td>2013</td>
</tr>
<tr>
<td>Roozbahani</td>
<td>2015</td>
</tr>
<tr>
<td>Rezvani</td>
<td>2013</td>
</tr>
<tr>
<td>Rong</td>
<td>2013</td>
</tr>
<tr>
<td>Shah</td>
<td>2016</td>
</tr>
<tr>
<td>Stege</td>
<td>1993</td>
</tr>
<tr>
<td>Thomas</td>
<td>2010</td>
</tr>
<tr>
<td>Vaziri</td>
<td>2015</td>
</tr>
<tr>
<td>Wilt</td>
<td>1976</td>
</tr>
<tr>
<td>Yeknami</td>
<td>2015</td>
</tr>
</tbody>
</table>
Appendix D – Risk of Bias Assessment

<table>
<thead>
<tr>
<th>Risk of Bias</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence generation</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Allocation concealment</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Blinding to study group / study purpose</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Blinding of outcome assessment</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Incomplete outcome data</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Selective outcome reporting</td>
<td>Low / High / Unclear</td>
</tr>
<tr>
<td>Other bias (observer bias, recall bias, contamination, co-interventions, Hawthorne effect)</td>
<td>Low / High / Unclear</td>
</tr>
</tbody>
</table>

Studies were considered at high risk of bias if they reported that no blinding was done, or blinding was not reported but the comparator group received no intervention.

Studies were considered at high risk of bias if one of these biases was present. If none of these biases were adequately described studies were considered at unclear risk of bias.

Interviewer bias - high risk if outcomes assessed during interview.

Recall bias – high risk if outcomes assessed more than one day after the end of menstruation.

Contamination – high risk if participants were from schools / colleges / individual courses unless cluster randomized.

Co-interventions – high risk if there was a co-intervention or physical activity was performed in a group.

Hawthorne effect – high risk if physical activity was performed in a group or closely monitored setting.
Appendix E - Reasons For Exclusion From Meta-Analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Pain intensity</th>
<th>Pain duration</th>
<th>Absenteeism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aboushady 2016</td>
<td>Only reported for intervention group</td>
<td>Included</td>
<td>Not reported</td>
</tr>
<tr>
<td>Behbahani 2016</td>
<td>Pain intensity reported via McGill</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td></td>
<td>questionnaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaur 2013</td>
<td>Included</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Motahari-Tabari 2017</td>
<td>Included</td>
<td>Included</td>
<td>No measure of variance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>given</td>
</tr>
<tr>
<td>Nasri 2016</td>
<td>Included</td>
<td>Included</td>
<td>Not reported</td>
</tr>
<tr>
<td>Ortiz 2015</td>
<td>Included, derived from graph</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Patel 2015</td>
<td>Included</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Rakhshaee 2011</td>
<td>VAS reported as 0 to 3 categorical scale</td>
<td>Included in cluster randomised meta-analysis</td>
<td>Not reported</td>
</tr>
<tr>
<td>Reyhani 2013</td>
<td>Included</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Saleh 2016</td>
<td>Included</td>
<td>Included</td>
<td>Not reported</td>
</tr>
<tr>
<td>Shahr-Jerdy 2012</td>
<td>Cluster randomised; no other clusters to combine with</td>
<td>Included in cluster randomised meta-analysis</td>
<td>Not repeated</td>
</tr>
<tr>
<td>Siahpour 2013</td>
<td>Included</td>
<td>Included</td>
<td>Not reported</td>
</tr>
<tr>
<td>Sutar 2016</td>
<td>No measure of variance given</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Yang 2016</td>
<td>Included</td>
<td>Included</td>
<td>Not reported</td>
</tr>
<tr>
<td>Yonglitthipagon 2017</td>
<td>Included</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
</tbody>
</table>