Using the sidebands of time modulated arrays

[Presentation]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: CLARK, B. and FLINT, J.A., 2018. Using the sidebands of time modulated arrays. Presented at the 6th Colloquium on Antennas, Wireless and Electromagnetics (CAWE), Bristol, UK, 23rd May.

Additional Information:

- This is a powerpoint presentation presented at the 6th Colloquium on Antennas, Wireless and Electromagnetics - CAWE.

Metadata Record: https://dspace.lboro.ac.uk/2134/33395

Version: Accepted for publication

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Using the Sidebands of Time Modulated Arrays

Ben Clark, James A. Flint
Affiliation

Wolfson School of Mechanical, Electrical and Manufacturing Engineering

Loughborough University, Loughborough, Leicestershire LE11 3TU, UK

Email: BClark@theiet.org
Overview

- Introduction
 - Arrays and Beamforming
 - Time-Modulated Arrays
 - Harmonics and Sidebands
- Using TMAs as a Method for Direction Finding
 - Methods
 - Accuracy
 - Planar Arrays for 2D Estimation
- Conclusion
Arrays and Beamforming

- By introducing delays or phase changes to each individual element, you can change the pattern or the direction in which this beam is steered.
- Although fine control can be obtained, delay networks; especially for radio applications can be complicated and expensive.

Figure: Typical setup and directional response of a 5-element array
Time-Modulated Arrays

- First demonstrated by Shanks [1].
- Each element can be switched “on” or “off”.
- Any pattern or combination of switches has its own properties.
- Power of the received signal is distributed among harmonics of the switching frequency, depending on angle of arrival.

Figure: Typical setup of a time-modulated array
Time-Modulated Arrays

- When a time-modulated array receives a signal from the broadside, each element receives the same phase.
- When the array receives a signal from any other direction, the elements receive a different phase, and periodic phase shifts are shown.

Figure: Time-Response of a 5 element array switched sequentially
Sideband Content

\[X(h, \theta) = \text{sinc} \left(\frac{h}{N} \right) \cdot \sum_{n=0}^{N-1} e^{j2\pi nR \left(\sin \theta - \frac{h}{RN} \right)} \]

- Each harmonic \(h \) (-2 to 2 in the example above) has a unique maximum at angle \(\theta \)
- At each maximum, every other harmonic is at a minimum
 - Max(AF) @ \(\theta_h = \sin^{-1} \left(\frac{h}{RN} \right) \)

R is spacing/wavelength ratio (0.5)
N is the number of elements (5) [2]

![Diagram showing sideband content](image-url)
Direction of Arrival Estimation

- He et al. [3] showed how the ratio of sidebands could be used to calculate the Direction of Arrival (DoA).
- Only needs two elements for a full ±90° range.
- Perfect accuracy in ideal conditions.
- Uses complex numbers in a function that can be affected by noise and signal reflections [4]

\[\theta = \sin^{-1}\left(\frac{2}{KD} \tan^{-1} \frac{\pi X_b}{2X_a} \right) \]

Figure: Target frequency and sideband complex content of a 2-element array
Direction of Arrival Estimation

- More recently, it has been shown that DoA estimation can be achieved with simple weighted averaging of two adjacent sidebands X_a and X_b [2].
- Results can be obtained by using real-valued DFT.
- Results are less accurate than the numerically derived methods in ideal conditions but can make use of more elements for better noise/reflection immunity.

$$\theta_{est} = \frac{(X_a\theta_a) + (X_b\theta_b)}{X_a + X_b}$$

Figure: Target frequency and sideband Amplitude of a 5-element array
Direction of Arrival Estimation

- Small number of signal samples needed.
- Ability to “ignore” some errors caused by reflections.
- Real-valued simple arithmetic, suitable for small, low-cost processors.
- Accuracy can be further improved by weighting the sidebands non-linearly.

Figure: Accuracy of analytical method in ideal conditions with 15 (yellow), 9 (red) or 5 (blue) elements
Planar Arrays for 2D Estimation

- Switching a Planar Array allows two-dimensional patterns to be created [5].
- Many more harmonics are energised and represent different axes if the array is switched sequentially.
- Once each axis broadside angle is estimated, they can be converted to azimuth and elevation.

Figure: Switching pattern example and response (at a single sideband) of a time-modulated planar array
Implementation

Figure: A Simulation of Time Modulated Arrays in LabVIEW
Accuracy of a 2D TMA DoA Estimator

- Initial results indicate small but frequent $\pm 5^\circ$ errors in the centre regions with larger, more accurate regions ($\pm 1^\circ$) in-between for a 9×9 array.
- More work on reducing the errors in these regions is being carried out, with focus on using the known maximum points and on averaging different switching patterns.

Figure: Combined X-Y broadside error in direction of arrival estimation
Conclusions

- The use of the sidebands generated by time-modulation looks interesting in the field of Direction of Arrival.
- Simple and efficient methods of DoA estimation have been described and briefly extended to planar arrays.
- Planar arrays can be modelled as two linear arrays, but harmonic analysis is more involved.
- Continued work is being done on separating the harmonics for accurate 2D Estimation.
References