CdCl₂ passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: SWANSON, D.E. ...et al., 2018. CdCl₂ passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 123: 203101.

Additional Information:

- This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in SWANSON, D.E. ...et al., 2018. CdCl₂ passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 123: 203101 and may be found at https://doi.org/10.1063/1.5023811

Metadata Record: https://dspace.lboro.ac.uk/2134/33876

Version: Accepted for publication

Publisher: © The Authors. Published by AIP

Please cite the published version.
CdCl₂ Passivation of Polycrystalline CdMgTe and CdZnTe Absorbers for Tandem Photovoltaic Cells

Drew E. Swanson¹,², Carey Reich³, Ali Abbas⁴, Tushar Shimpi⁴, Hanxiao Liu⁵, Fernando A. Ponce⁵, John M. Walls⁴, Yong-Hang Zhang¹, Wyatt K. Metzger², W. S. Sampath³, and Zachary C. Holman¹

¹School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona, USA
²National Renewable Energy Laboratory, Golden, Colorado, USA
³Mechanical Engineering Department, Colorado State University, Fort Collins, Colorado, USA
⁴Loughborough University, Loughborough, UK
⁵Department of Physics, Arizona State University, Tempe, Arizona, USA

Abstract

As single-junction silicon solar cells approach their theoretical limits, tandems provide the primary path to higher efficiencies. CdTe alloys can be tuned with magnesium (CdMgTe) or zinc (CdZnTe) for ideal tandem pairing with silicon. A II-VI/Si tandem holds the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines. Currently, all high-efficiency polycrystalline CdTe cells require a chloride-based passivation process to passivate grain boundaries and bulk defects. This research examines the rich chemistry and physics that has historically limited performance when extending Cl treatments to polycrystalline 1.7-eV CdMgTe and CdZnTe absorbers. A combination of transmittance, QE, PL, TEM, and EDX clearly reveal that during passivation Mg segregates and out-diffuses, initially at the grain boundaries but eventually throughout the bulk. CdZnTe exhibits similar Zn segregation behavior, however the onset and progression is localized to the back of the device. After passivation, CdMgTe and CdZnTe can render a layer that is reduced to predominantly CdTe electro-optical behavior. Contact instabilities caused by inter-diffusion between layers creates additional complications. The results outline critical issues and paths for these materials to be successfully implemented in Si-based tandems and other applications.

I. Introduction

Silicon currently makes up 90% of the global PV market [1] with a record cell efficiency of 26.7% and a theoretical limit of 29.4% [2, 3]. As silicon approaches the proposed single junction efficiency limit, tandem solar cells provide the primary path to increased efficiencies beyond 30% [4]. By utilizing proven and cost-effective technologies, tandems hold a potential for continued reductions in the levelized cost of energy [5, 6]. High efficiency tandems can be achieved by marrying the two most mature and low-cost flat-plate PV technologies: Silicon and CdTe. However, in a tandem cell paired with silicon (1.12 eV bandgap), detailed-balance and spectral efficiency predicts a two-wire tandem top cell will provide optimum performance with an absorber bandgap of approximately 1.7 eV [7, 8]. Presently no photovoltaic material has this bandgap, is inexpensive, and has demonstrated reliability.

CdTe however, has a bandgap that is only slightly too small (1.5 eV) for optimal pairing with silicon. Polycrystalline cadmium telluride (CdTe) has shown significant advancement in the last 5 years moving from 16 to 22% record cell efficiency [2, 9]. It is currently one of the largest US manufactured solar cell technologies and a direct competitor with silicon and fossil fuel technologies [1]. By alloying with magnesium (CdMgTe) or zinc (CdZnTe), the bandgap can be increased from 1.5 eV for CdTe to the modeled 1.7 eV ideal top cell band gap [10, 11]. CdTe alloys have played a large role in the recent advancement of CdTe by passivating the bulk and interfaces of CdTe absorbers [12, 13]. Thus-far polycrystalline II-VI (MgZnCd)(SeTe) materials are relatively unexplored as the primary absorber but hold the greatest promise for inexpensive, high-efficiency top cells that can be quickly deployed in the market using existing polycrystalline CdTe manufacturing lines combined with mature silicon production lines.

Single crystal CdMgTe and CdZnTe absorbers have demonstrated capability with verified efficiencies of 15.3% and 16.4% at ~1.7 eV band gaps [14, 15], however record efficiencies for polycrystalline CdMgTe and CdZnTe absorbers are currently both below 7% [16, 17, 18, 19]. In both cases, the authors report absorber degradation during passivation treatments resulting in a defect dense absorber. Anneal treatments have been reported for improved material quality, however without a Cl vapor present, cell efficiency remains below 1% [19]. A key difference between single crystal and polycrystalline II-VI cells has been the need for a chlorine-based passivation treatment to remove defects induced during growth. CdCl₂ has been reported to have various effects on CdTe including recrystallization, grain growth, removing stacking faults, and passivating grain boundaries by putting chlorine on tellurium vacancies [20, 21, 22, 23]. However, initial attempts at CdCl₂ passivation of CdMgTe and CdZnTe has revealed reductions in the bandgap of both absorbers during CdCl₂ passivation [16, 18, 19]. This work aims to study this CdCl₂ induced degradation and develop a more comprehensive understanding of the reactions occurring. To this end, we passivate three solar cell sample sets: a 1.7 eV CdMgTe absorber, a 1.7 eV CdZnTe absorber, and a 1.5 eV CdTe reference absorber. CdCl₂ treatments are applied for a series of temperatures between 380 and 460 °C. The resulting chemical and physical processes occurring in the absorbers and cells and are revealed with transmittance, quantum efficiency, photoluminescence, transmission electron microscope, energy-deterative x-ray spectroscopy, and time-resolved photoluminescence.
II. Materials and Methods

This work explores three different primary absorbers: CdTe, CdMgTe, and CdZnTe absorbers were grown using a novel co-sublimation process developed at Colorado State University. A fully automated single vacuum PV manufacturing tool utilizes multiple inline close space sublimation sources with automated substrate control. Sources have independent temperature control and multiple vapor pressures can be concurrently developed with each CSS sources. This technology allows CdTe to be controllably alloyed with magnesium, zinc, and selenium [10, 13]. The single vacuum deposition system, processing details, and hardware are described in reference [24]. In the case of CdZnTe, films were deposited in a separate chamber and then transferred to the single vacuum deposition system for further processing [10].

Cell structures are depicted in Figure 1 with approximate thicknesses and doping concentrations as reported in literature. Traditional CdTe contacts were used: a commercially available Pilkington Tec10 soda-lime glass with a SnO2:F (FTO) layer followed by a sputtered magnesium zinc oxide (MZO) buffer for the electron contact and an evaporated tellurium layer for the hole contact [25, 26, 27]. The contacts had been optimized in the past for a CdTe absorber, here no further re-optimization for the alloy absorbers was performed.

All three sample sets received similar CdCl2 treatments with varying intensity by modifying the temperature of the CdCl2 sources from 380 – 460 °C. The CdCl2 treatment time was maintained at 180 seconds but was modified to a vapor treatment not to prevent localize magnesium loss at the grain boundaries. A methanol rinse was performed after deposition during treatment, which makes the variation in the nature of CdMgTe contacts on CdTe absorbers during CdCl2 passivation [28]. It appeared that the CdTe cap prevented the complete loss of magnesium from the CdMgTe contact but did not prevent localize magnesium loss at the grain boundaries.

![Fig. 1. Cell structure for each of the three absorbers studied: a) CdTe, b) CdMgTe, and c) CdZnTe. Only the absorber layer was purposely varied between cells. Note: the back contact (Te/Ni) is only present for electrical characterization as identified. The average as-deposited band gaps ± a std. dev. are identified for all three sample sets.](image)

Samples underwent extensive materials characterization at different fabrication stages.

Absorber transmittance (T) was recorded with a PerkinElmer LAMBDA 950/1050 UV/VIS/NIR spectro-photometer equipped with a 150 mm integrating sphere accessory. Band gaps were calculated using the Tauc plot method, where \((\alpha h\lambda)^2\) is plotted against photon energy, hv, and the linear portion of \((\alpha h\lambda)^2\) is extrapolated to where \(\alpha = 0\) cm\(^{-1}\) (i.e., the x-axis) [10, 29].

Cross-sectional cathodoluminescence (CL) spectroscopy used a scanning electron microscope, with a spectrometer equipped with a 1200 l/mm grating and a GaAs photomultiplier tube. The CL measurements were taken at 298 K, with an electron beam current of 2.0 nA, and an acceleration voltage of 9 kV. Monochromatic CL images were obtained by setting the monochromator to a specific wavelength and recording the spatial variations of the light emission intensity.

Samples for transmission electron microscopy (TEM) were prepared by focused ion beam (FIB) milling using a dual beam FEI Nova 600 Nanolab. Cross-sectional samples were prepared through the coating into the glass substrate by a standard in situ lift out method. An electron beam assisted platinum (e-Pt) over-layer was deposited followed by an ion assisted layer to define the surface and homogenize the final thinning of the samples down to 100 nm. TEM analysis was performed with a Tecnai F20 operating at 200 kV to investigate the detailed microstructures of the solar cell cross sections.

The TEM system was equipped with an Oxford instruments X-max N80 TLE SDD energy-dispersive X-ray spectroscopy (EDX) detector and operated in STEM mode to acquire elemental distribution maps and line scans. The maps were collected in a single frame using a long dwell time, as well as a small condenser aperture (70 microns) to minimize drift and beam spread during data collection.

Steady-state photoluminescence (PL) used an excitation energy of 520 nm at ~40 suns intensity. A 570-nm long pass filter was used to minimize any signature of the excitation energy, however a small tail is present and identified in the shown data. PL is measured from the glass-side and predominantly excite carriers within the first 500 nm of the various absorbers. All PL intensities are normalized for comparison across absorbers.

Single-photon time-resolved photoluminescence (TRPL) was performed with a pulsed laser tuned to a wavelength of 640 nm firing at 1 MHz with an average power of 1 mW. Cells were measured from the glass-side and predominantly excite carriers within the first 500 nm of the absorber. Data presented is representative of the substrate. A bi-exponential fit is used to describe and compare the results [30].

External quantum efficiency (QE) was measured on cells with the tellurium and nickel hole contact present, each substrate was finished into 0.6 cm\(^2\) small area devices with roughly 10 cells for each condition. A representative cell, near average for the data set, is presented.

III. RESULTS AND DISCUSSION

This work explores identical samples sets with three different primary absorbers: CdTe, CdMgTe, and CdZnTe. All three sample sets use traditional CdTe contacts and received similar CdCl2 treatments at temperatures ranging from 380 – 460 °C.

A. PASSIVATION OF CdTe

CdTe absorbers are presented to give reference to the CdCl2
intensities required to initiate passivation characteristics and give scale to the onset of degradation in the other absorbers. Figure 2 gives the transmittance (T), quantum efficiency (QE), and photoluminescences (PL) plots for the CdTe absorber for different CdCl₂ passivation temperatures. A 1.5-eV band gap is marked with a dashed line showing agreement across the various measurements. CdTe maintains its composition after passivation with no significant shift in the band edge of the material with increasing passivation intensity.

An increase in the collection of carriers generated deep within the absorber was observed in QE from 700 – 830 nm with increasing temperature. At the highest temperature studied (460 °C), there is a two order of magnitude increase in PL signal. This indicates the onset of passivation of the CdTe absorber. The passivation treatments are intentionally light compared to previous work on this manufacturing equipment, [24, 31] however at 460 °C the onset of bulk passivation was observed.

Similar to CdTe, the QE response increases significantly after 380 °C CdCl₂ passivation. With increasing CdCl₂ temperature, T data indicate the dominant optical band edge shifts from directly from 1.7 to 1.5 eV, which is consistent with a loss in magnesium from the bulk absorber. The QE data present a similar trend as carrier collection is increasing between the 1.5-eV and 1.7-eV absorption band edges with increasing temperature, giving further indication of localized magnesium loss resulting in the formation of CdTe. QE initially presents with a tail signature at 380 °C, which increases with CdCl₂ temperature. This tail is not present in either of the other absorbers and is not associated with the CdTe capping layer as previous work showed no correlation between the CdTe capping layer thickness and the tail signature [18]. The tail feature may represent the onset of loss at grain boundaries, a loss reaction seen in CdMgTe hole contact research [28].

The PL data display an increasing peak at ~1.80 eV with increasing passivation temperature. Note that 1.80 eV is significantly higher than the T and QE band edges, which implies a higher band gap material forms. This is later attributed to zinc diffusion from the MZO electron contact. The addition of zinc at the front of the device increases the local band gap, shifting the PL peak from 1.7 to 1.8 eV. This is not observed in T or QE as both measurements detect the lowest prevalent band gap at 1.7 eV.

Beginning at ~440 °C, an additional PL peak emerges at 1.5 eV thus two separate alloys are photo-luminescing at 1.8 and 1.5 eV. Supported by T and QE, this suggests the magnesium loss is non-uniform resulting in a compositional spatial inhomogeneity within the absorber. An increased passivation temperature of 460 °C resulted in a further increase in the 1.5 eV peak and a decrease in the 1.80 eV peak, implying continued loss of magnesium from the CdMgTe absorber regions and passivation of the growing CdTe absorber regions.

B. PASSIVATION OF CdMgTe

Figure 3 shows the T, QE, and PL for the CdMgTe absorber with increasing CdCl₂ passivation temperatures. Dashed lines corresponding to 1.7 and 1.5 eV are plotted for reference. Transmittance of the as-deposited CdMgTe cell shows a dominant 1.7-eV band edge with a minor 1.5-eV band edge which appeared after the deposition of the 100-nm CdTe capping layer.
C. PASSIVATION OF CdZnTe

Figure 4 gives the T, QE, and PL for the CdZnTe absorber over increasing CdCl₂ passivation temperatures. Here, 1.7 and 1.5-eV dashed lines are plotted for reference. Transmittance of the as-deposited CdZnTe cell shows a dominant 1.7-eV band edge with a minor 1.5-eV band edge, which appeared after the deposition of the 100-nm CdTe capping layer.

Similar to CdTe and CdMgTe, the QE response increases with 380 °C CdCl₂ passivation, however to a lesser degree until significant zinc loss is observed. Transmittance of CdZnTe shows a similar shift from 1.7 to 1.5-eV band edges as CdMgTe, however the formation of the optically dominant 1.5-eV band edge presents as a gradual downward shift from 1.7 to 1.5 rather than two distinct peaks of 1.7 and 1.5 eV with varying magnitude as observed for CdMgTe. The QE data show a similar single band edge shift, suggesting a single alloy was present during loss, and zinc diffused throughout the bulk absorber to maintain a single alloy. The PL indicates a peak intensity at 1.7 eV for 380 - 400 °C CdCl₂ passivation, in agreement with the band edges presented in T and QE. As the passivation temperature was increased to 420 °C, the peak began to shift from 1.7 to 1.5 eV as a single peak with a similar onset to that in the QE spectra. At 440 °C, the peak begins to saturate at 1.5 eV, suggesting an optically dominant amount of the CdZnTe absorber has been converted to CdTe, in agreement with T and QE. By 460 °C an optically dominant 1.5-eV band edge was present in both alloys, however the CdZnTe shift appeared to onset at lower temperatures than the CdMgTe.

D. IDENTIFYING LOSS LOCATION

CdMgTe and CdZnTe absorbers show a reduction in band gap with increasing CdCl₂ passivation temperatures associated with the loss of the magnesium and zinc. The loss mechanisms are distinct for each alloy, STEM and EDX were performed to identify where the loss was occurring and give further insight into the loss reaction for each alloy.

Figure 6 shows a cross-section STEM/EDX image of the CdMgTe absorber: as-deposited, and after a 390 °C, 420 °C, and 440 °C CdCl₂ passivation. The MZO electron contact appears to have reacted with the CdMgTe layer as significant zinc and magnesium have diffused between the layers. It appears to occur upon deposition of CdMgTe and increase in severity with increasing passivation temperature. Inter-diffusion of zinc and magnesium at the front of the device could potentially increase its local band gap, providing a possible explanation for the increased 1.80-eV PL emission observed in Figure 3.

Figure 5 gives the atomic percent of magnesium and zinc for the MZO over the various treatments. With increasing passivation the MZO composition appears to shift significantly, with an increasing magnesium and decreasing zinc composition from within the material. The electron affinity of the MZO layer is dependent on its stoichiometry [26], thus any change in the
zinc and magnesium concentration will change the band alignment at the MZO/CdMgTe interface. This MZO degradation will need to be addressed if it is to be used as a suitable electron contact for CdMgTe.

The as-deposited CdMgTe absorber shows magnesium non-uniformity throughout the bulk with a standard deviation of ~1.5 atomic percent or ~0.023 eV in the Fig. 7 EDX map. The magnesium loss appeared to occur in two stages: early onset at the grain boundaries, then bulk loss initiating at the front and progressing towards the rear. At 380 °C, EDX line scans in Fig. 6 show a sudden drop in magnesium signal along the grain boundaries. TEM images in Fig. 7 show small voids forming along the grain boundaries, consistent with localized degradation. The magnesium loss increases at the grain boundaries with preferential loss towards the front of the device as the passivation temperature increases to 420 °C. while at the same time voids multiply and increase in size along the grain boundaries. The magnesium loss at the grain boundary is consistent with the growth of the tail feature shown in the QE of Figure 3.

At 390 °C, chlorine and oxygen signatures are present at the grain boundaries. A chlorine signature along the grain boundaries is typical for CdTe passivation [20], but the strong corresponding oxygen signal is atypical. At 420 °C, no significant change in the chlorine signature was observed, but large voids begin to form near select grain boundaries with corresponding oxygen signals. The oxygen presence in combination with growing voids appears to be a magnesium loss reaction signature, as magnesium is favorable to oxidize and may drive this reaction [10, 28].

Magnesium bulk loss is prevalent at 440 °C passivation, voids often form throughout the absorber and correspond to strong chlorine, oxygen, and magnesium signals. Bulk magnesium loss was preferential towards the front of the device and progressed toward the hole contact with voids acting as potential sinks for magnesium loss. This supports compositional segregation shown in T, QE, and PL of Fig. 3.

In CdTe chloride passivation, it has been theorized that chlorine travels down the grain boundaries in an elemental state and preferentially accumulates there [20, 32]. The chlorine can remove stacking faults from within the CdTe grains and may passivate the grain boundaries by filling tellurium vacancies with chlorine, effectively making the grain boundaries less p-type [23]. This can affect both transport and recombination [33, 34, 35]. In this research CdMgTe grain boundaries are proposed to be converted to CdTe when passivated with CdCl2. The combination of localized magnesium loss and Cl effects noted above may have significant effects on recombination and transport near grain boundaries. In particular, CdTe compositions can allow for minority carriers to preferentially flow to the lower energy state at the CdTe grain boundary and adjacent regions, thereby increasing dark current and limiting the potential voltage of the cell [36].
Cross-section cathodoluminescence images of as-deposited and 440 °C CdCl₂ passivation CdMgTe absorbers are presented in Fig. 8. The red response corresponds to a ~1.77 eV emission and blue to ~1.5 eV. As-deposited shows a strong 1.77-eV red response throughout the bulk absorber with a faint 1.5-eV blue response at the back from the CdTe capping layer. After the 440 °C passivation treatment, the first 1 µm of the device shifts to a 1.5-eV blue response. This supports the STEM/EDX evidence that the bulk loss initiates at the front of the CdMgTe absorber and progresses towards the rear with increasing passivation intensity.

The as-deposited CdZnTe absorber showed zinc non-uniformity throughout the bulk with a standard deviation of ~3.5 atomic percent. This translates to a band gap variation of ~0.017 eV, the zinc EDX map is shown in Fig. 9. At 390 °C, chlorine decorates the grain boundaries with no significant oxygen signature from within the bulk, similar to what is typically seen in CdCl₂ passivation of CdTe. At 420 °C, zinc loss initiates from the back of the device with a corresponding reduced concentration of zinc (from x = 0.4 to 0.2) at the front as observed in PL. Several loss reactions have been proposed in the literature to explain this behavior [6]. Figure 4 shows a single PL peak is maintained during loss despite the lower band gap signature observed in T and QE. The zinc is believed to be diffusing at the front to form a more homogenous lower band gap alloy while a growing CdTe layer develops at the back and progresses forward. PL was performed using a 520-nm excitation light that has an approximate excitation depth of 400 nm, thus the developed CdTe layer was likely not probed. Localized voids form between the CdZnTe at the front and the growing CdTe film at the back. It has been noticed that films passivated around 420 °C are prone to absorber delamination. The recrystallization of CdTe at the back of the device during zinc loss may induce localized stress between the reacted CdTe and CdZnTe absorber, making the films prone to delamination. These voids appear to have a corresponding oxygen and chlorine signal similar to CdMgTe, but with reduced spacial density. By a 440 °C the Cl signature is significantly reduced at the grain boundaries. Chlorine loss mechanisms have been reported in CdTe literature at elevated temperatures [20].
Cross-sectional cathodoluminescence images of as-deposited and 420 °C CdCl₂ passivation CdZnTe absorbers are presented in Fig. 10. The red response corresponds to a 1.74-eV emission, green to 1.61 eV, and blue to 1.51 eV. As-deposited shows a strong 1.74-eV red response throughout the bulk absorber with a faint 1.5-eV blue response at the back associated with the CdTe capping layer. After the 420 °C passivation treatment, the back 1-µm of the device shifts to a 1.5-eV blue response. This supports the STEM/EDX evidence that the bulk loss initiates at the back of the CdZnTe absorber and progresses towards the front with increasing passivation intensity. The signature at the front shifts from 1.74 to 1.61 eV in agreement with PL and supporting zinc diffusion at the front to compensate for loss at the back.

E. TIME-RESOLVED PHOTOLUMINESCENCE

Single photon time-resolve photoluminescence was performed on all three absorber alloys assessing decay of total illumination. These curves were fitted with a bi-exponential fit and the resulting average values (± standard deviation) for the fitted constants Tau₁ and Tau₂ are plotted in Fig. 11 [30]. The instrument response function (IRF) represents the inherent equipment delay and thus represents the minimum value that can be measured.

Both lifetime fit constants are low for the CdTe absorbers from 380 - 420 °C, associated with the intentional under passivation of the absorber [30]. At 440 °C both constants begin to improve and by 460 °C are approaching reported non-selenium passivated CdTe lifetimes of Tau₂ = 2-6 ns. Improved QE and PL signature in Fig. 2 correspond with the increasing lifetime fit constants for the CdTe absorber.

We have shown that the CdMgTe and CdZnTe absorbers undergo significant degradation during passivation making lifetime approximation convoluted by the potential for multiphase. Variation in lifetime at the grain boundaries and grain interior could not be distinguished. CdMgTe and CdZnTe absorbers exhibited low Tau₁ and Tau₂ values until bulk degradation was apparent. Significant improvement in lifetime above 1 ns for Tau₂ was seen but not till after significant zinc loss was identified. This increase in lifetime is associated with the increasing carrier localization into the higher lifetime CdTe material, which is also increasing in volume. With increasing zinc and magnesium loss the minority carrier lifetimes converge to values similar to CdTe. CdTe lifetimes appear to be similar either as deposited or after CdMgTe and CdZnTe are degraded to CdTe. This implies that magnesium and zinc may be added and removed without irreversibly changing the CdTe absorber.

All three absorbers appear under-passivated from 380 – 400 °C. As expected, a more aggressive CdCl₂ passivation treatment to CdTe (460 °C) showed increased PL signature and higher minority carrier lifetimes. As increasing intensities of CdCl₂ passivation for CdMgTe and CdZnTe absorbers resulted in alloy degradation the improved lifetime is primarily associated with the increasing carrier localization into the higher lifetime CdTe material that is formed. More aggressive passivation treatments are desired however methods to mitigate loss must be developed.
IV. CONCLUSION

At the modeled ideal band gap of 1.7 eV, CdZnTe and CdMgTe absorbers have been deposited using large scale manufacturing processes. Single crystal CdMgTe and CdZnTe cells have reported efficiencies over 15% and no fundamental limitation has been yet identified. The largest hurdle between transferring single crystal performance to polycrystalline in II-VI solar cells is currently the need for a CdCl$_2$ passivation step. As-deposited CdMgTe and CdZnTe absorbers exhibited poor performance and low carrier lifetime indicating a need, similar to CdTe, for CdCl$_2$ passivation. Upon CdCl$_2$ passivation treatments of CdMgTe and CdZnTe absorbers QE and PL performance improved but present the absorbers present with significant degradation. The degradation magnitude and presentation was different for each II-VI alloy.

CdMgTe exhibited inter-diffusion with the MZO electron contact resulting in localized band gap grading and MZO bulk loss. The magnesium loss appears to occur in two stages: early onset at the grain boundaries, then bulk loss initiating at the front and progressing towards the rear. Localized magnesium loss at the grain boundary is correlated to a tail feature in QE. This loss could theoretically limit the potential voltage of the cell by reducing the maximum possible quasi-fermi-level splitting and hence undermine the objective of a high band gap top cell. This localized magnesium loss will have to be addressed if CdMgTe is to be a suitable tandem top cell.

CdZnTe did not exhibit instability with MZO and thus MZO is identified as a potential electron contact for CdZnTe. MZO will likely require a compositional tuning due to the change in the electron affinity if the CdZnTe as compared to CdTe, for ideal performance. The loss of zinc occurs as a gradual shift from 1.7 to 1.5 eV in T, QE, and PL. Zinc was lost from the back of the device as the formation of CdTe propagated towards the electron contact shown in EDX. Unlike CdMgTe, CdZnTe did not present early onset loss at the grain boundaries and had improved minority carrier lifetime compared to CdMgTe degradation at the highest temperatures. Alternate back contacts may be developed to reduce zinc diffusion and permit more aggressive passivation treatments.

Both CdMgTe and CdZnTe appear to undergo degradation and loss of Zn/Mg before passivation treatments are completed. More aggressive passivation treatments are desired however methods to mitigate loss must be developed. Alternate passivation treatments containing MgCl$_2$, ZnCl$_2$, magnesium, or zinc vapor pressures may saturate possible loss reactions and reduce alloy degradation. Preliminary work with increased time at lower CdCl$_2$ passivation treatment temperatures show similar degradation signatures in T and QE, but a comprehensive study has not been performed.

ACKNOWLEDGMENTS

The authors are thankful for funding support from the DOE PVRD DE-EE0007552 and collaborations with Colorado State University, Loughborough University, and the National Renewable Energy Laboratory. The authors are grateful for assistance with the research from Kevan Cameron, Amit Munshi, Andrew Moore, Jason Kephart, Kurt Barth, Marina D’Ambrosio, Christina Moffett, Arthur Onno, and Lauren Swanson.

REFERENCE

34B. Gaury and P. M. Haney, Charged grain boundaries reduce the open-circuit voltage of polycrystalline solar cells - An analytical description, Journal of Applied Physics, 120, 234503 (2016).

Absorber

- CdMgTe
- CdZnTe

Reported value [26]

MZO Mg Atomic (%)

MZO Zn Atomic (%)

As-deposited 380 400 420 440

CdCl₂ Source Temperature (°C)

Mg Increase

Zn Loss
a) As-deposited

<table>
<thead>
<tr>
<th>Layer</th>
<th>Color</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdTe Cap</td>
<td>Blue</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>1.7</td>
</tr>
<tr>
<td>CdZnTe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CdZnTe

b) 420 °C

<table>
<thead>
<tr>
<th>Layer</th>
<th>Color</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdTe Cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdZnTe (Zn Loss)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CdZnTe (Minor Zn Loss)