Interventions for attentional disruption in pain: cognition-general, mechanism-specific, or exercise-based?

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: ATTRIDGE, N. and NIEDERSTRASSER, N.G., 2018. Interventions for attentional disruption in pain: cognition-general, mechanism-specific, or exercise-based?. PAIN, 159 (4), pp.621-622.

Additional Information:

- This is a non-final version of an article published in final form in ATTRIDGE, N. and NIEDERSTRASSER, N.G., 2018. Interventions for attentional disruption in pain: cognition-general, mechanism-specific, or exercise-based?. PAIN, 159 (4), pp.621-622.

Metadata Record: https://dspace.lboro.ac.uk/2134/34251

Version: Accepted for publication

Publisher: Lippincott, Williams & Wilkins © International Association for the Study of Pain

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Interventions for attentional disruption in pain:
cognition-general, mechanism-specific or exercise-based?

Nina Attridge and Nils Niederstrasser
Loughborough University

Keywords: cognition; attention; disruption; interventions; cognitive training

In the current issue of PAIN, Baker et al. [6] report that a computerised cognitive training programme was able to improve chronic pain patients’ performance on a neurocognitive assessment composite. Decades’ worth of research has supported the hypothesis that pain disrupts attention [3-5; 9-14; 17; 20; 21; 28], with the ultimate goal being to reverse this effect in people with pain. As far as we are aware, this is the first study that attempts to do so.

Improving attention in people with chronic pain is a very worthwhile goal. Patients often report that pain makes it difficult to think clearly [1; 2; 7; 14; 16], and disruption to attention has the potential to impact on many, if not all, areas of life, such as work, study, socialising and mood, to name a few. We are not always able to reduce patients’ pain, so many people must learn to live with their pain long-term. By improving their cognitive function, we may be able to improve quality of life for people living with chronic pain.

How should we go about developing interventions to improve attention in people with pain? One way is to use commercially available computerised cognitive training
Interventions for attentional disruption in pain

programmes, as done by Baker et al [6]. Such intervention programmes are usually targeted at older adults to prevent cognitive decline, and operate under the premise that practice on tasks that load heavily on core cognitive domains leads to improvements on other everyday tasks that rely on these domains. This concept is often compared to how exercise improves physical fitness.

Definitive statements pertaining to the efficacy of computerised cognitive training are contentious and beyond the scope of this commentary. Generally, computerised cognitive training is believed to be effective in improving function on the practised cognitive domains, but efficacy varies by domain and improvements seldom transfer far beyond the practiced domain or task [18; 23; 24]. The efficacy for improving attention in particular has been contested [18] and it remains to be determined whether the effects that have been reported represent improvements in attentional capacity, the acquisition of a new strategy, or increased motivation. This has implications for applying computerised cognitive training to improving chronic pain patients’ attention: acquired strategies are highly context- or task-dependent and unlikely to transfer to novel contexts.

Aside from disputes pertaining to its efficacy, the approach of using computerised cognitive training in chronic pain patients has the drawback that interventions tend to be very broad, i.e. training a wide range of cognitive domains at the same time. This may produce small positive effects, but the training will be time-consuming for users and difficult for them to sustain over time. This may be an appropriate approach for programmes that aim to improve or maintain cognitive function in general, as is the case in computerised cognitive
training. But when the aim is to reverse an effect caused by a specific trigger, such as pain, many aspects of a catch-all intervention could be unnecessary.

Another approach to developing interventions for people with pain, and the one we wish to advocate, would be to target the specific mechanisms of the effect of pain on attention. For example, if pain and ongoing tasks are processed simultaneously (i.e. if pain acts as a working memory load), then perhaps interventions should specifically target working memory capacity. Alternatively, if attention is disrupted because our focus shifts frequently from our ongoing tasks to our pain, then perhaps interventions should target attentional control and inhibitory control. These are just two examples of possible mechanisms in the cognitive domain: the mechanisms may instead be metacognitive, motivational [27], or otherwise.

Unfortunately, we do not yet know enough about the mechanisms of the disruptive effect of pain on attention, and what the individual differences may be, to develop such targeted interventions. But if we could develop targeted interventions, the demand on patients’ time could be substantially reduced or spent more effectively, which could reduce the risk of attrition over the course of programmes. If time demands are minimised and patients are provided with strong theoretical reasons why an intervention will work, alongside evidence that it does, they may be more motivated to stick with it for long enough to see results.

If the improvement or maintenance of cognitive function in general is indeed the goal, rather than targeting a specific mechanism, a third approach would be to increase exercise
Interventions for attentional disruption in pain

71 within the constraints of the patient’s condition. Not only does exercise improve cognitive
72 function, it can also help prevent chronic diseases and improve mood [8; 15; 19; 25].
73
74 The specific nature of interventions aside, we can only develop effective interventions if the
75 research they are based on and the studies testing their effectiveness are conducted in a
76 rigorous manner. Pre-registration of study protocols, methods, hypotheses, measures and
77 analyses is vital to ensure transparency and reproducibility of research. Furthermore, it aids
78 in the fight against publication bias and p-hacking. Sample size calculations, active control
79 groups, delayed post-tests and replication studies will also allow us to place trust in research
80 findings. [22; 26]
81
82 Baker et al. [6] have shown that there is potential for improving cognition in people with
83 chronic pain, which gives hope that as we develop and refine interventions, we will be able
84 to substantially improve the everyday lives of patients. However, in our view, we need to
85 fully understand the mechanisms of the effect of pain on attention before we can develop
86 interventions that will be as effective, time-effective, and cost-effective as we would like.
87
88
89 Conflict of Interest Statement
90 The authors have no conflicts of interest.
Interventions for attentional disruption in pain

References

Interventions for attentional disruption in pain

