Mechanism of basal-plane antiferromagnetism in the spin-orbit driven iridate Ba$_2$IrO$_4$

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Full details of this licence are available at: https://creativecommons.org/licenses/by/3.0/.

Metadata Record: https://dspace.lboro.ac.uk/2134/34405

Version: Published

Publisher: American Physical Society

Rights: This work is made available according to the conditions of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/

Please cite the published version.
Mechanism of Basal-Plane Antiferromagnetism in the Spin-Orbit Driven Iridate Ba$_2$IrO$_4$

Vamshi M. Katukuri, Viktor Yushankhai, Liudmila Siurakshina, Jeroen van den Brink, Liviu Hozoi, and Ioannis Rouschchatzakis

1Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
2Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna, Russia
3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany

(Received 13 February 2014; revised manuscript received 18 April 2014; published 17 June 2014)

By ab initio many-body quantum chemistry calculations, we determine the strength of the symmetric anisotropy in the 5d^5 $j \approx 1/2$ layered material Ba$_2$IrO$_4$. While the calculated anisotropic couplings come out in the range of a few meV, orders of magnitude stronger than in analogous 3d transition-metal compounds, the Heisenberg superexchange still defines the largest energy scale. The ab initio results reveal that individual layers of Ba$_2$IrO$_4$ provide a close realization of the quantum spin-1/2 Heisenberg-compass model on the square lattice. We show that the experimentally observed basal-plane antiferromagnetism can be accounted for by including additional interlayer interactions and the associated order-by-disorder quantum-mechanical effects, in analogy to undoped layered cuprates.

DOI: 10.1103/PhysRevX.4.021051

Subject Areas: Condensed Matter Physics, Magnetism, Strongly Correlated Materials

I. INTRODUCTION

The few varieties of square-lattice effective spin models are emblematic in modern quantum magnetism and extensively investigated in relation to layered superconducting materials such as the copper oxides [1] and iron pnictides or chalcogenides [2]. While the dominant magnetic energy scale is set in these systems by the isotropic Heisenberg exchange between nearest-neighbor (NN) [3] and possibly next-NN sites [4], there are many examples where the smaller, anisotropic terms become important too, e.g., for correctly describing the antiferromagnetic (AFM) ordering pattern in La$_2$CuO$_4$ [5] or in the cuprate oxychlorides [6,7]. This topic, the role of anisotropic interactions in transition-metal compounds, has received a new impetus with recent insights into the basic electronic structure of 5d systems such as the 5d^5 iridium oxides. Here, a subtle interplay between spin-orbit interactions and sizable electron correlations gives rise to insulating ground states and well-protected magnetic moments [8–13]. Because of the strong spin-orbit couplings, however, these magnetic moments are best described as effective $j \approx 1/2$ entities [9,10,14] and the effective anisotropic exchange parameters are orders of magnitude larger than in 3d transition-metal compounds. For the square-lattice system Sr$_2$IrO$_4$, for instance, Dzyaloshinskii-Moriya (DM) interactions as large as one quarter of the NN AFM superexchange have been predicted [15,16] while in honeycomb iridates the symmetric Kitaev exchange is believed to be even larger than the Heisenberg interaction [17–20].

Valuable insights into the role of different superexchange processes in correlated d-metal oxides come from the detailed analysis of extended multiorbital Hubbard-type models. The foundations of superexchange theory were laid as early as the 1950s with the work of Anderson, Goodenough, and Kanamori [21]. Standard approaches within this theoretical framework proved to be extremely useful in, e.g., better understanding the origin and relative strength of the anisotropic couplings in layered cuprates [22,23]. In 2D iridates, on the other hand, much less information is presently available on the magnitude of various electronic-structure parameters that enter the superexchange models. While estimates for these effective electronic-structure parameters are normally based on either density-functional band-structure calculations [15,16,18,24,25] or experiments [10,11,13,17,20], here we rely on many-body quantum-chemistry methods to directly obtain an ab initio assessment of both the NN Heisenberg exchange and the anisotropic couplings on the square lattice of Ba$_2$IrO$_4$. Our study reveals uniaxial symmetric anisotropy that is bond dependent, thus giving rise to quantum compass interaction terms [26] superimposed onto the much stronger (due to the 180° bond geometry) isotropic Heisenberg exchange. We also show that the resulting Heisenberg-compass model for individual layers of Ba$_2$IrO$_4$ is not sufficient to explain the AFM ground-state ordering pattern inferred from recent resonant magnetic scattering measurements, with spins ordered along the [110] direction [12]. To rationalize the latter,
we carry out a detailed analysis of the role of interlayer couplings and the associated order-by-disorder phenomena. An extended 3D spin Hamiltonian based on NN exchange terms as found in the \textit{ab initio} quantum-chemistry calculations and additional farther-neighbor interlayer exchange integrals turns out to provide a realistic starting point to explain the magnetism of Ba$_2$IrO$_4$.

II. GENERAL CONSIDERATIONS

The magnetically active sites, the Ir$^{4+}$ ions, have a 5d^6 valence electron configuration in Ba$_2$IrO$_4$, which under strong octahedral crystal-field and spin-orbit interactions yields an effective $j \approx 1/2$ Kramers-doublet ground state; see Refs. [10,12,14,27]. The exchange interactions between such pseudospin entities involve both isotropic Heisenberg and anisotropic terms. For a pair of NN pseudospins \tilde{S}_i and \tilde{S}_j, the most general bilinear spin Hamiltonian can be cast in the form

$$
\mathcal{H}_{ij} = J_{ij} \tilde{S}_i \cdot \tilde{S}_j + D_{ij} \tilde{S}_i \times \tilde{S}_j + \Gamma_{ij} \cdot \tilde{S}_i \cdot \tilde{S}_j,
$$

(1)

where J_{ij} is the isotropic Heisenberg exchange, the vector D_{ij} defines the DM anisotropy, and Γ_{ij} is a symmetric traceless second-rank tensor that describes the symmetric portion of the exchange anisotropy. Depending on various geometrical details and the choice of the reference frame, some elements of the DM vector and/or of the Γ_{ij} tensor may be zero. For the square lattice of corner-sharing IrO$_6$ octahedra in Ba$_2$IrO$_4$, the symmetry of each block of two NN octahedra is D_{2h}, with inversion symmetry at the bridging oxygen site [28]. Given the inversion center, the DM anisotropy vanishes. The remaining symmetries require that, in the $\{xyz\}$ frame, with x along the Ir-Ir link and z orthogonal to the IrO$_6$ layers, Γ_{ij} is diagonal. The two-site effective spin Hamiltonian for an Ir-Ir link along the x axis can then be written as

$$
\mathcal{H}_{\text{in-plane}} = J \mathbf{S}_i \cdot \mathbf{S}_j + \Gamma_{||} \mathbf{S}_i^x \mathbf{S}_j^x + \Gamma_{\perp} \mathbf{S}_i^y \mathbf{S}_j^y + \Gamma_{zz} \mathbf{S}_i^z \mathbf{S}_j^z,
$$

(2)

with $\Gamma_{zz} = -(\Gamma_{||} + \Gamma_{\perp})$ since Γ is traceless. Because of the fourfold z-axis symmetry, we analogously have

$$
\mathcal{H}_{\text{out-plane}} = J \mathbf{S}_i \cdot \mathbf{S}_j + \Gamma_{||} \mathbf{S}_i^y \mathbf{S}_j^y + \Gamma_{\perp} \mathbf{S}_i^x \mathbf{S}_j^x + \Gamma_{zz} \mathbf{S}_i^z \mathbf{S}_j^z
$$

(3)

for bonds along the y axis. The eigenstates of Eq. (2) are the singlet $|\Psi_S\rangle = (|\uparrow \downarrow\rangle - |\downarrow \uparrow\rangle)/\sqrt{2}$ and the three “triplet” components $|\Psi_1\rangle = (|\uparrow \downarrow\rangle + |\downarrow \uparrow\rangle)/\sqrt{2}$, $|\Psi_2\rangle = (|\uparrow \uparrow\rangle + |\downarrow \downarrow\rangle)/\sqrt{2}$, $|\Psi_3\rangle = (|\uparrow \uparrow\rangle - |\downarrow \downarrow\rangle)/\sqrt{2}$. The corresponding eigenvalues are

$$
E_S = -\frac{3}{4} J, \quad E_1 = \frac{1}{4} J + \frac{1}{2} (\Gamma_{||} + \Gamma_{\perp}),
$$

$$
E_2 = \frac{1}{4} J - \frac{1}{2} \Gamma_{\perp}, \quad E_3 = \frac{1}{4} J - \frac{1}{2} \Gamma_{||}.
$$

(4)

For D_{2h} symmetry of the two-octahedra unit, the four low-lying (spin-orbit) states, $|\Psi_S\rangle, |\Psi_1\rangle, |\Psi_2\rangle,$ and $|\Psi_3\rangle$, transform according to the $A_{1g}, B_{2u}, B_{1u},$ and A_{1u} irreducible representations, respectively [19]. As we discuss in the following, this symmetry analysis is useful in determining the nature of each of the low-lying many-body states in the quantum-chemistry calculations.

III. QUANTUM-CHEMISTRY CALCULATIONS

A. Computational details

The crystalline unit cell of Ba$_2$IrO$_4$ is sketched in Fig. 1(a). NN in-plane exchange paths are indicated for the upper IrO$_2$ layer. The relevant NN effective coupling constants, i.e., the isotropic Heisenberg J and the components of the symmetric anisotropic exchange Γ, are defined in Eqs. (2) and (3). Both J and the set of Γ’s are determined here at various levels of approximation by \textit{ab initio} quantum-chemistry methods. Interlayer exchange paths are also shown in Fig. 1(a). These out-of-plane couplings are characterized by an isotropic exchange J_{out} plus the symmetric second-rank tensor Γ_{out} for the symmetric anisotropy and included at a later stage in our analysis to explain the 3D magnetic structure of Ba$_2$IrO$_4$.

The NN in-plane magnetic coupling constants are obtained on the basis of multireference configuration-interaction (MRCI) calculations [29] on units of two corner-sharing IrO$_6$ octahedra. Since it is important to accurately describe the charge distribution at sites in the immediate neighborhood [30–32], we also include in the actual cluster the closest 16 Ba ions and the six adjacent IrO$_6$ octahedra around the reference [Ir$_2$O$_4$$_1$] fragment; see Fig. 1 and also Refs. [19,33–35]. However, to make the whole analysis tractable, we replace the six Ir$^{4+}$ d^5 NNs by closed-shell Pt$^{4+}$ d^6 ions, a usual procedure in calculations for the two-octahedra unit. The four low-lying states $\{|\Psi_S\rangle, |\Psi_1\rangle, |\Psi_2\rangle, |\Psi_3\rangle\}$ transform according to the $A_{1g}, B_{2u}, B_{1u},$ and A_{1u} irreducible representations, respectively [19]. As we discuss in the following, this symmetry analysis is useful in determining the nature of each of the low-lying many-body states in the quantum-chemistry calculations.

FIG. 1. (a) Layered crystal structure of Ba$_2$IrO$_4$. In-plane and interlayer exchange paths are shown. (b) Sketch of the cluster used for the calculation of the in-plane NN magnetic interactions. It consists of a central [Ir$_2$O$_4$$_1$] fragment of two corner-sharing IrO$_6$ octahedra and six other adjacent octahedra; see text. Ir, O, and Ba ions are shown in blue, pink, and green, respectively.
quantum-chemistry investigations on d-metal systems [19,33–37]. The extended solid-state surroundings are modeled as a large array of point charges fitted to reproduce the crystal Madelung field in the cluster region. We use the crystal structure reported by Okabe et al. [28].

All calculations are performed with the MOLPRO quantum-chemistry software [38]. Energy-consistent relativistic pseudopotentials from the standard MOLPRO library are used for Ir [39] and Ba [40]. The valence orbitals at the central Ir sites are described by basis sets of quadruple-zeta quality supplemented with two f polarization functions [39], while we apply quintuple-zeta valence basis sets and four d polarization functions for the ligand bridging the two magnetically active Ir ions [41]. The other O’s at the two central octahedra are modeled by triple-zeta valence basis sets [41]. For the additional ligands coordinating the six adjacent $5d$ sites, we use minimal atomic-natural-orbital basis functions [42]. At those adjacent $5d$ sites, we apply triple-zeta valence basis sets [39].

Multiconfiguration reference wave functions were first generated by complete-active-space self-consistent-field (CASSCF) calculations [29]. The active space here is given by five electrons and three (t_{2g}) orbitals at each of the two magnetically active Ir sites. The orbitals are optimized for an average of the lowest nine singlet and the nine triplet states arising from such an active space. All of these states enter the spin-orbit calculations, at both the CASSCF and MRCI levels. In the MRCI treatment, single and double excitations from the six Ir t_{2g} orbitals and the $2p$ shell of the bridging ligand site are taken into account. Similar strategies of explicitly dealing with only selected groups of localized ligand orbitals were adopted in earlier studies on both $3d$ [43–46] and $5d$ [19,33–35] compounds, with results in good agreement with the experiment [33,34,44–46]. To separate the metal $5d$ and O $2p$ valence orbitals into different groups, we use the orbital localization module available in MOLPRO. The MRCI is performed for each spin multiplicity, singlet or triplet, as a nine-root calculation.

To obtain information on the magnitude of the direct exchange, we additionally carry out single-configuration restricted open-shell Hartree-Fock (ROHF) calculations. The latter are performed as frozen-orbital calculations, i.e., we use the orbitals obtained by CASSCF (see above), without further optimization.

The spin-orbit treatment is carried out according to the procedure described in Ref. [47]. To determine the nature of each spin-orbit state, we explicitly compute with MOLPRO the dipole and quadrupole transition matrix elements among those four low-lying states describing the magnetic spectrum of two corner-sharing octahedra; see Table I and Sec. III B. Standard selection rules and the nonzero dipole and quadrupole matrix elements in the quantum-chemistry outputs then clearly indicate which state is which; see also the analysis and discussion in Ref. [19].

<table>
<thead>
<tr>
<th>States</th>
<th>HF + SOC</th>
<th>CAS + SOC</th>
<th>CI + SOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Ψ_1(A_{2g}) = (↑↓ − ↓↑)/√2$</td>
<td>12.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$Ψ_2(A_{2g}) = (↑↑ − ↓↓)/√2$</td>
<td>0.0</td>
<td>37.5</td>
<td>65.0</td>
</tr>
<tr>
<td>$Ψ_1(B_{2g}) = (↑↓ + ↓↑)/√2$</td>
<td>0.2</td>
<td>38.2</td>
<td>66.7</td>
</tr>
<tr>
<td>$Ψ_2(B_{2g}) = (↑↑ + ↓↓)/√2$</td>
<td>0.2</td>
<td>38.2</td>
<td>66.7</td>
</tr>
<tr>
<td>(J, Γ_1)</td>
<td>$(-12.0,0.4)$</td>
<td>(37.5,1.4)</td>
<td>(65.0,3.4)</td>
</tr>
</tbody>
</table>

B. Ab initio results

Of the 36 spin-orbit states that are obtained in the ab initio calculations, the low-lying four are listed in Table I [48]. These four states are further mapped onto the eigenvalues of the effective spin Hamiltonian in Eq. (2). Energy splittings and the associated effective magnetic couplings are provided at three levels of approximation: single-configuration ROHF (HF + SOC), CASSCF (CAS + SOC), and MRCI (CI + SOC). It is seen that, at all levels of theory, two of the triplet components, $Ψ_1$ and $Ψ_2$, are degenerate [49]. Given the tetragonal distortions in Ba$_2$IrO$_4$, with out-of-plane (z axis) Ir-O bonds significantly stretched as compared to the in-plane (x/y) bonds [28], this degeneracy is somewhat surprising. Using Eq. (4), this means that two of the diagonal couplings of Γ_1 are equal, $\Gamma_{zz} = \Gamma_1$, which further implies $\Gamma_1 = -2\Gamma_⊥$. The interaction terms in Eqs. (2) and (3) can then be rewritten as

$$\mathcal{H}_{(ij)\|x} = \bar{J}\mathbf{S}_i \cdot \mathbf{S}_j + \bar{\Gamma}_1 \bar{S}_i^z \bar{S}_j^z,$$

$$\mathcal{H}_{(ij)\|y} = \bar{J}\mathbf{S}_i \cdot \mathbf{S}_j + \bar{\Gamma}_1 \bar{S}_i^z \bar{S}_j^z,$$

where $\bar{J} = J + \Gamma_1$, and $\bar{\Gamma}_1 = -3\Gamma_⊥$. Quantum-chemistry results for \bar{J} and $\bar{\Gamma}_1$ are provided on the lowest line in Table I.

The value computed for the Heisenberg \bar{J} within the ROHF approximation, -12 meV (see Table I), is sizable and close to the results computed in square-lattice $3d^9$ Cu oxides (see, e.g., Ref. [44]). It accounts for only direct exchange, since no (intersite) excitations are allowed. In contrast to the ROHF \bar{J}, the anisotropic $\bar{\Gamma}_1$ is AFM by ROHF.

With correlated wave functions, CASSCF and MRCI, the singlet $Ψ_s$ becomes the ground state, well below the triplet components $Ψ_1$, $Ψ_2$, and $Ψ_3$. This shows that the largest energy scale is defined here by the isotropic Heisenberg exchange $J (\bar{J} > 0)$. In the CASSCF approximation, only intersite d-d excitations as analyzed by Anderson [21] are accounted for, i.e., polar $t_{2g}^0\rightarrow t_{2g}^1\rightarrow t_{2g}^2$ configurations. Again, the CAS + SOC \bar{J}, 37.5 meV, is very similar to the CASSCF J’s in layered $3d^9$ cuprates [44,50,51]. It is seen in Table I that the configuration-interaction treatment, which now includes $t_{2g}^1e_s^1\rightarrow t_{2g}^0$ and O
2p to Ir 5d charge-transfer virtual states as well, enhances \(\tilde{J} \) by about 70% as compared to the CAS + SOC value, somewhat less spectacular than the ratio between the configuration interaction and CASSCF \(J \)'s in layered cuprates. In the latter compounds, this ratio is 3:4 [44,52].

If we include in the MRCI treatment only the six Ir \(t_{2g} \) orbitals, \(\tilde{J} \) is 49.1 meV (not shown in Table I). The difference between the latter number and the CAS + SOC value given in Table I is indicative of the role of excitation processes via the Ir 5d \(e_g \) levels. The further increase from 49.1 to 65 meV is due to excitations that additionally involve the bridging O 2p orbitals. The data in Table I also show that the correlation treatment very much enlarges the symmetric anisotropic coupling \(\tilde{\Gamma}_\parallel \), from 0.4 by ROHF to 3.4 meV by MRCI.

IV. COMPARISON TO EFFECTIVE SUPEREXCHANGE MODELS

For the Mott-like insulating regime occurring in the iridates [8–10], an effective superexchange model can be in a first approximation set up by considering the leading excited configurations with two holes at the same Ir site. With corner-sharing octahedra and straight Ir-O-Ir bonds along the \(x \) axis, the intersite \(d-d \) hopping takes place via both in-plane \(p_x \) and out-of-plane \(p_y \) \(x \)-type O orbitals. The relevant effective hopping integrals are \(t_1 = (t_{pd})^2/(e_{p_x}^d - e_{p_x}^f) \) for the in-plane, \(xy \) pair of NN Ir \(t_{2g} \) functions, and \(t_2 = (t_{pd})^2/(e_{p_y}^d - e_{p_y}^f) \) for the out-of-plane, \(xz \) \(t_{2g} \) functions. \(e_{p_x}^d \) and \(e_{p_y}^d \) are crystal-field split energy levels while the \(p-d \) \(x \)-type hopping amplitude \(t_{pd} \) is assumed to be the same for both channels.

For tetragonal distortions, \(e_1 \neq e_2, e_2^d \neq e_2^f \), and, therefore, \(t_1 \) and \(t_2 \) may acquire quite different values. A hole hopping between NN Ir ions is then described by the Hamiltonian

\[
H_{\text{hop}}^{ij} = \sum_{m=1}^{2} \sum_{\sigma = \uparrow, \downarrow} \sum_{\sigma = \uparrow, \downarrow} (t_m d_{i\sigma}^\dagger d_{j\sigma} + \text{H.c.}),
\]

where \(d_{i\sigma}^\dagger (d_{i\sigma}) \) is the creation (annihilation) operator of a hole with spin \(\sigma \) in the orbital \(d_{ix} \) for \(m = 1 \) and \(d_{iz} \) for \(m = 2 \) at site \(i \). For a bond along the \(y \) axis, \(p_x \) is replaced by \(p_y \), \(d_{yx} \), \(e_{p_y}^d \), \(e_{p_y}^f \), \(e_2^d \), \(e_2^f \), and \(e_2^f \) are the hopping Hamiltonian in Eq. (6) has the same form.

The interaction of two holes in the \(t_{2g} \) subshell is described by Hund’s coupling \(J_H \) and the Coulomb repulsion integrals \(U_{mn} = U - 2J_H \), if \(m \neq n \), and \(U_{mm} = U \). While the isotropic exchange is related to second-order processes that concern transitions between the lowest spin-orbit Kramers doublets, i.e., \(J \sim \tilde{t}_{1/2}^2/U \), the symmetric anisotropy is entirely determined by third-order processes that involve excited Kramers doublets, i.e., is dependent on \(\tilde{t}_{1/2}^2/J_H/U^2 \). The lowest Kramers-doublet wave functions

\[
|\uparrow\rangle = \sin \theta |x,y,\uparrow\rangle + \cos \theta \sqrt{\frac{1}{2}} (|x,z,\downarrow\rangle + |y,z,\downarrow\rangle),
\]

\[
|\downarrow\rangle = \sin \theta |x,y,\downarrow\rangle - \cos \theta \sqrt{\frac{1}{2}} (|x,z,\uparrow\rangle - |y,z,\uparrow\rangle),
\]

as well as those for the excited Kramers doublets, are parametrized here as in Ref. [10], with the angle \(\theta \) given by \(\tan(2\theta) = 2\sqrt{2/\left(\lambda - 2\Delta\right)} \) while \(\Delta = e_2^d - e_1^d \) is the tetragonal \(t_{2g} \) splitting.

By collecting the second- and third-order processes in this effective superexchange model, we arrive at the pseudospin Hamiltonian in Eq. (2), with

\[
J = \frac{4}{U} \left(t_1 \sin^2 \theta + t_2 \cos^2 \theta \right)^2 + \gamma,
\]

\[
\Gamma_\parallel = -\eta \frac{(t_1 - t_2)^2}{U} \sin^2 \theta \cos^2 \theta - \gamma,
\]

\[
\Gamma_\perp = -\eta \frac{t_2^2}{U} \sin^2 \theta \cos^2 \theta - \gamma,
\]

\[
\Gamma_{zz} = -\eta \frac{t_2^2}{2U} \cos^4 \theta - \gamma.
\]

Here, \(\eta = J_H/U \) and \(\gamma = -(\eta/U) \cos^2 \theta ((t_1 - t_2)^2 \sin^2 \theta + t_2^2 \sin^2 \theta + \frac{1}{4} \tilde{t}_{1/2}^2 \cos^2 \theta) \).

For \(\Gamma_{zz} = \Gamma_\perp \), the model described by Eq. (5) displays uniaxial compressible anisotropy [26]. That is obviously the case for perfect, cubic octahedra with \(\Delta = 0, t_1 = t_2 = t \), and \(\cos \theta_c = \sqrt{2/3} \). In the cubic limit, from Eq. (8) we further have \(\Gamma_c = (16/9) t_2^2/U + \gamma_c, \gamma_c = - (4\eta/9) t_2^2/U, \Gamma_{\parallel c} = -\gamma_c, \) and \(\Gamma_{\perp c} = \Gamma_{zz} = -(2\eta/3) t_2^2/U - \gamma_c \).

For tetragonal distortions as found in Ba\(_2\)IrO\(_4\) [28], \(\Gamma_\parallel = \Gamma_{zz} \) implies that \((t_2/t_1)^2 = 2\tan^2 \theta \). As a measure of how large the departure from the cubic limit is, we can take the ratio between the tetragonal \(t_{2g} \) splitting \(\Delta \) and the strength of the spin-orbit coupling \(\lambda \). The quantum-chemistry calculations yield \(\Delta = 65 \) meV in Ba\(_2\)IrO\(_4\) (see the discussion in Ref. [53]), in agreement with estimates based on experiment [27]. A direct estimate of the spin-orbit coupling can also be obtained, from the splitting of the \(j = 1/2 \) and \(j = 3/2 \) states for idealized cubic octahedra. It turns out that for perfect octahedra \(\lambda = 0.47 \) eV [34,53], close to values of 0.4–0.5 eV previously derived from electron spin resonance and optical measurements on 5d\(^8\) ions [54–57]. The ratio \(\Delta/\lambda \) is, therefore, rather small, \(\approx 0.15 \).

Estimates for the parameters that enter the effective superexchange model can most easily be obtained in the cubic limit. Using Eq. (8), we find that \(\tilde{\Gamma}_\parallel /J \approx (3/8) \eta \). The CI + SOC values of Table I, \(\tilde{\Gamma}_\parallel = 3.4 \) and \(\tilde{J} = 65 \) meV, then lead to \(\eta \approx 0.14 \) and \(1\tilde{t}_{1/2}^2/U \approx 149 \) meV. Interestingly, estimates of the hopping integral \(t \) from calculations based
on density-functional theory (DFT) are $t_{\text{DFT}} \approx 260$ meV, while the on-site Coulomb repulsion comes out from constrained calculations in the random phase approximation (RPA) as $U_{\text{RPA}} \approx 1.65$ eV [25]. The ratio $4t_{\text{DFT}}^2/U_{\text{RPA}}$ is, therefore, ≈ 164 meV, close to the result derived on the basis of the CI+SOC effective couplings listed in Table I. On the other hand, the η parameter extracted from the periodic DFT calculations [25] is $\eta_{\text{DFT}} \approx 0.08$, much smaller than the above value of 0.14. Using the latter value for η, $\eta_{\text{DFT}} \approx 0.08$, an estimate for the symmetric anisotropic coupling $\Gamma_{\parallel} = (3/8)\eta J$ would be significantly smaller than the quantum-chemistry result.

V. GROUND-STATE PHASE DIAGRAM

Having established the strength of the dominant in-plane exchange interactions and anisotropies, we now turn to the nature of the magnetic ground state of Ba$_2$IrO$_4$, focusing first on a single square-lattice IrO$_2$ layer. In the classical limit, the compass-Heisenberg model defined by Eq. (5) has an accidental SO(2) ground-state degeneracy, with spins pointing along any direction in the basal xy plane [26,58,59]. This degeneracy is eventually lifted via thermal [60–62] or quantum [23,62–64] order-by-disorder effects, whereby harmonic spin wave fluctuations select the states with spins pointing either along the x or y axis. This is, however, in sharp contrast to experiments that below ~ 240 K show basal-plane AFM order with magnetic moments along the [110] direction [12]. It indicates additional anisotropies in the system, large enough to overcome the energy gain from the order-by-disorder mechanism.

The situation is actually analogous to several 3d^9 Cu oxides with the same “214” crystal structure as Ba$_2$IrO$_4$. It has been shown that in cuprates that particular type of AFM order is selected by a subtle interplay between in-plane and interlayer interactions, as discussed in detail in Ref. [23]. Assuming that qualitatively the same 3D mechanism is applicable to Ba$_2$IrO$_4$, below we analyze the main contributions to the expression of the 3D ground-state energy and derive a generic phase diagram. This exercise provides useful insights into the dependence of the ground-state spin configuration on various interaction parameters in 214 iridates.

It turns out that the most important effects competing with the in-plane NN interactions concern (i) the frustrating nature of the isotropic interlayer exchange and (ii) the symmetric part of the anisotropic exchange between layers. To show this, we proceed by parametrizing the global spin direction in each basal plane by an angle ϕ_n, where n is the layer index, and by writing down all relevant energy contributions.

The first contribution is the zero-point energy (per spin) coming from the order-by-disorder mechanism in each individual layer, $E_{\text{ZP,2D}}(\phi_n) = \sum_n E_{\text{ZP,2D}}(\phi_n)$, where

$$E_{\text{ZP,2D}}(\phi_n) = \frac{1}{2N} \sum_q [\omega_+(\mathbf{q}) + \omega_-(\mathbf{q})]_n,$$ \(9\)

and $\omega_\pm(\mathbf{q})$ are the two spin wave branches. Summation over the Brillouine zone is implied in Eq. (9) and the explicit dependence of $\omega_\pm(\mathbf{q})$ on ϕ is provided by expressions in Appendix A. A numerical analysis of Eq. (9), using the ab initio quantum-chemistry values for the in-plane NN effective couplings (see Sec. III), shows that $E_{\text{ZP,2D}}(\phi)$ is almost identical to the expression

$$E_{\text{ZP,2D}}(\phi) = -K \cos(4\phi) + E_0,$$ \(10\)

with $K = 0.86$ μeV and $E_0 = 56.55$ meV.

We now turn to the second contribution to the energy, which stems from the interlayer isotropic exchange J_{out}. Despite being the dominant portion of the interlayer interactions, its total contribution to the energy vanishes in the mean-field sense due to geometric frustration in the 214 structure; see Fig. 1. Yet, quantum fluctuations driven by J_{out} still give rise to a zero-point energy contribution [22,23]

$$E_{\text{ZP,3D}}(\{\phi_n\}) = -B \sum_n \cos(2\phi_n - 2\phi_{n+1}),$$ \(11\)

where $B = 0.032 J_{\text{out}}^2/(2J_{\text{av}})$ and $J_{\text{av}} = J + (\Gamma_{\parallel} + \Gamma_{\perp})/2$ [see Eq. (53) in Ref. [23] and references therein]. Since B is positive for any sign of J_{out}, this contribution favors collinearity of the staggered magnetization in adjacent layers.

The third contribution to the energy comes from the anisotropic portion of the interlayer couplings. We first note that the antisymmetric DM component vanishes by symmetry since the midpoint of each out-of-plane NN Ir-Ir link is an inversion center. The remaining, symmetric portion can be described by a traceless second-rank tensor Γ_{out}, the structure of the latter is simplified by using the fact that each of the out-of-plane NN Ir-Ir links has C_{2h} symmetry, with the $\{110\}$ plane as a mirror plane (see Fig. 1). The principal values of Γ_{out} are denoted as Γ_{out}, Γ_{out}, and Γ_{out}, where Γ_{out} is for the principal axis perpendicular to the mirror plane and the other two elements correspond to two mutually orthogonal axes within the $\{110\}$ plane. The orientation of the in-plane principal axes with respect to the tetragonal z axis is given by some angle β [23]. Having the tensor Γ_{out} for one Ir-Ir link, the corresponding coupling terms for the other three out-of-plane NN Ir-Ir links emerging out of a given Ir site are determined by symmetry. Adding up these symmetric anisotropic contributions for all four NN bonds above and below the square-lattice layer at a reference Ir site yields [23]
where \(A = (1/4)(I_{\parallel,\text{out}} - I_{\perp,\text{out}}) \cos \beta \).

The total energy now reads

\[
E = E_{ZP,2D} + E_{ZP,3D} + E_{\text{aniso},3D}. \tag{13}
\]

It can be minimized analytically as described in Appendix B by working it out for a bilayer of Ba214. The resulting phase diagram in the \((A/K, B/K)\) plane is shown in Fig. 2 for positive \(A \) (the phase diagram for \(A < 0 \) is identical, see Appendix B) and hosts three different phases, two collinear (phases I and II) and one noncollinear (phase III).

In phase I, the staggered magnetizations point along one of the \((110)\) axes and the relative directions between adjacent planes are regularly collinear or anticolinear. In phase III, the AFM magnetization prefers one of the \((100)\) axes and the relative directions in adjacent planes are now perpendicular to each other. Finally, in phase II, the relative directions between adjacent planes are again either collinear or anticolinear, but the staggered magnetizations in each layer rotate in the basal plane as a function of \(A/K \); see Appendix B. Importantly, the degeneracy is not completely lifted by the above couplings. As explained in Appendix B, all phases have an Ising degree of freedom per layer, which comes from the fact that the energy remains the same if we flip all spins within a given layer. This remaining macroscopic degeneracy may eventually be lifted via higher-order processes or farther-neighbor couplings; see, for example, the discussion in Ref. [22]. The collinear AFM structure observed experimentally [12] in Ba2IrO4 can now be naturally explained provided that \(A \) and \(B \) fall into the broad region of phase I in the phase diagram of Fig. 2 and by taking into account lifting of the remaining Ising degeneracy by the mechanism mentioned above.

As pointed out by Boseggia et al. [12], the AFM component of the ordered momenta in the 214 iridates Sr2IrO4 and Ba2IrO4 is essentially identical: in Sr2IrO4, the canted AFM state is characterized by an AFM vector aligned along the \((110)\) direction and a residual FM moment confined to the same basal plane. Staggered rotation of the IrO6 octahedra as realized in Sr2IrO4 requires the more general single-layer Hamiltonian of Eq. (1) [10,16], with a DM vector along the \(z \) axis and a biaxial easy-plane symmetric anisotropy described in our notation by two independent diagonal components \(\Gamma_{||} > 0 \) and \(\Gamma_{zz} > 0 \). This model correctly explains the canting angle of the basal-plane AFM order [16] but fails in predicting the AFM vector alignment along one of the \((110)\) axes. The reason is that the two additional anisotropies, \(D \text{|z|} \) and \(\Gamma_{zz} > 0 \), do not remove the SO(2) basal-plane ground-state degeneracy, at least not in the classical limit. This accidental degeneracy can, however, again be lifted via the 3D mechanism discussed above, to arrive at an AFM ordering pattern similar to that of Ba2IrO4 [12].

\[E_{\text{aniso},3D} = -A \sum_n \sin(\phi_n + \phi_{n+1}), \tag{12} \]

\[\text{FIG. 2.} \quad \text{Ground-state phase diagram of the model described in Sec. V, including the single-layer Heisenberg-compass terms of Eq. (5) plus the effect of interlayer (isotropic and anisotropic) exchange. The in-plane coupling constants are taken as obtained in the \textit{ab initio} CI + SOC calculations, while the effective interactions} \ A, \ B, \ \text{and} \ K \ \text{are defined through Eqs. (10)--(12); see text.} \]
ACKNOWLEDGMENTS

We thank N. Perkins for useful discussions. L. H. acknowledges financial support from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG).

APPENDIX A: SPIN WAVE DISPERSIONS

In the magnetic Brillouin zone, where \(\sum q \equiv N/2 \), there are two spin wave branches, with dispersions given by [23]

\[
\omega_{\pm}(q) = 4J_{av} S \sqrt{(1 \mp B_q)^2 + A_q^2}.
\]

(A1)

In this expression, \(S = 1/2 \), \(J_{av} = J + (\Gamma_\| + \Gamma_\perp)/2 \),

\[
A_q = \frac{1}{4J_{av}} [J_1 \cos(q_y a) + J_2 \cos(q_x a)],
\]

\[
B_q = -\frac{1}{4J_{av}} [J_3 \cos(q_y a) + J_4 \cos(q_x a)],
\]

and

\[
J_1 = 2J + \Gamma_{zz} + \Gamma_\| \sin^2 \phi + \Gamma_\perp \cos^2 \phi,
\]

\[
J_2 = 2J + \Gamma_{zz} + \Gamma_\| \cos^2 \phi - \Gamma_\perp \sin^2 \phi,
\]

\[
J_3 = -\Gamma_{zz} + \Gamma_\| \sin^2 \phi + \Gamma_\perp \cos^2 \phi,
\]

\[
J_4 = -\Gamma_{zz} + \Gamma_\| \cos^2 \phi - \Gamma_\perp \sin^2 \phi.
\]

(A3)

These can be rewritten in terms of the coupling constants \(J \) and \(\tilde{\Gamma}_\| \) entering the Hamiltonian terms in Eq. (5) by making the replacements \(J = J + (1/3)\tilde{\Gamma}_\| \), \(\Gamma_\| = (2/3)\tilde{\Gamma}_\| \), and \(\Gamma_\perp = -\Gamma_{zz} = -(1/3)\tilde{\Gamma}_\perp \).

APPENDIX B: ENERGY MINIMIZATION FOR A BILAYER

The ground-state magnetic energy of the layered system can be written as a sum over bilayer contributions (per spin and per layer):

\[
E(\phi_1, \phi_2) = -\frac{K}{2}[\cos(4\phi_1) + \cos(4\phi_2)]
\]

\[
- B \cos[2(\phi_1 - \phi_2)] - A \sin(\phi_1 + \phi_2)
\]

\[
- K \cos(2\phi_+ + 2\phi_-) - B \cos(2\phi_-)
\]

\[- A \sin \phi_+.
\]

where the angles \(\phi_1 \) and \(\phi_2 \) define orientations (say, with respect to the \(z \) axis) in two adjacent planes and \(\phi_\pm = \phi_1 \pm \phi_2 \). We note that both \(K \) and \(B \) are positive. In the subsequent discussion, the coupling \(A \) is chosen positive as well by taking into account the fact that for \(A < 0 \) the simultaneous change of signs, \(\phi_1 \to -\phi_1 \) and \(\phi_2 \to -\phi_2 \), retains the expression for \(E(\phi_1, \phi_2) \) invariant.

Minimizing \(E(\phi_1, \phi_2) \) we find four possible extrema solutions for \(\phi_1 \) and \(\phi_2 \) and the respective energies (\(n \) and \(m \) are integers):

\[
\phi_1^{(1)} = m\pi, \quad \phi_2^{(1)} = \frac{\pi}{2} + 2n\pi, \quad E^{(1)} = K - B - A,
\]

which is possible if \(B > K \);

\[
\phi_1^{(2)} = m\pi, \quad \phi_2^{(2)} = \arcsin \frac{A}{4K} + 2n\pi.
\]

(B2)

with the requirement \(A < 4K \);

\[
\phi_1^{(3)} = (2m + 1)\frac{\pi}{2}, \quad \phi_2^{(3)} = \frac{\pi}{2} + 2n\pi,
\]

(B3)

which is possible if \(B < K \);

\[
\sin \phi_+^{(4)} = \sqrt{\frac{1 + B/K}{2}},
\]

\[
\cos(2\phi_-^{(4)}) = \frac{A}{4K} \sqrt{2 \frac{1 + B/K}{1}}.
\]

(B4)

which may occur in the parameter region

\(B < K, A < K \sqrt{1 + B/K} \).

Comparison of the energies of the four possible ground-state configurations shows that three of them, Eqs. (B1)–(B3), occur in different domains of the \(A-B \) parameter space. In the region \(B > K \) and \(A > 4K \), the most stable is the configuration (B1) with \(\phi_1^{(1)} = (\pi/4) + n(\pi/2) \) and \(\phi_2^{(1)} = \phi_1^{(1)} - m\pi \), which means that the spins (staggered magnetizations) are along one of the \(\langle 110 \rangle \) axes and in two adjacent planes the spin alignment is either collinear or anticollinear. Next, in the region with \(B > K \), \(0 < A < 4K \), the second configuration (B2) with \(\phi_1^{(2)} = -\frac{1}{2}\arcsin(A/4K) + n(\pi/2) \) and \(\phi_2^{(2)} = \phi_1^{(2)} - m\pi \) is realized. Here, the collinear-anticollinear alignment in successive layers still persists. However, the preferred direction is specified by \(A/4K \). In the region with \(B < K \), \(A > 4K \), the third configuration (B3) with \(\phi_1^{(3)} = m(\pi/2) \) and \(\phi_2^{(3)} = \phi_1^{(3)} - (\pi/2) - m\pi \) is the most stable, which corresponds to having the magnetization along one of the \(\langle 100 \rangle \) axes with two directions in successive layers being rotated by \(90^\circ \). Finally, for \(B < K \) and \(A < 4K \), the fourth solution (B4) has the highest energy and two of the other configurations, i.e., Eqs. (B2) and (B3), compete to give the phase boundary depicted in Fig. 2.

021051-7
Ising degrees of freedom.—It is clear that the above classical minima of a Ba214 bilayer are also the minima of the infinite system. In all phases, however, there is still an Ising degree of freedom per layer, which is not fixed by the couplings considered here. In phase I, for example, we may flip the directions of all spins in any plane, since the energy is the same for both collinear and anticollinear relative orientations between adjacent planes. The eventual removal of this remaining macroscopic Ising degree of freedom must originate from higher-order processes or farther-neighbor couplings [22].

[12] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, Iron-Based Layered Superconductor La[O\(_{1-x}\)F\(_x\)]FeAs \((x = 0.05–0.12)\) with \(T_c = 26\) K, J. Am. Chem. Soc. 130, 3296 (2008).

K. Fink, R. Fink, and V. Staemmler, Ab Initio Calculation of the Magnetic Exchange Coupling in Linear Oxo-Bridged Binuclear Complexes of Titanium(III), Vanadium(III), and Chromium(III), Inorg. Chem. 33, 6219 (1994).

The higher-lying spin-orbit states imply an excitation energy of at least 0.6 eV. This gap concerns the $j = 1/2$ to $j = 3/2$ transitions [11,53].

The energies of those two states differ by not more than 0.1 cm⁻¹ in the spin-orbit ROHF, CASSCF, and MRCl calculations.

B. Andlauer, J. Schneider, and W. Tolksdorf, Optical Absorption, Fluorescence, and Electron Spin Resonance
of Ir4+ on Octahedral Sites in \(Y_3\text{Ga}_5\text{O}_{12}\), Phys. Status Solidi B \textbf{73}, 533 (1976).

