Regulation of genotype and phenotype of corneal stromal cells [Abstract]

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is the peer reviewed version of the following article: WILSON, S.L., EL HAJ, A.J. and YANG, Y., 2012. Regulation of genotype and phenotype of corneal stromal cells. Journal of Tissue Engineering and Regenerative Medicine, 6 (Suppl. 1), pp.137-138, which has been published in final form at https://doi.org/10.1002/term.1586. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This abstract was presented at the 3rd TERMIS World Congress 2012, 5-8 September 2012, Vienna, Austria.

Metadata Record: https://dspace.lboro.ac.uk/2134/34605

Version: Accepted version

Publisher: Wiley © The Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Regulation of genotype and phenotype of corneal stromal cells

S Wilson, A El Haj and Y Yang Keele University, United Kingdom

Control and maintenance of keratocyte phenotype is vital to developing in vitro tissue engineered strategies for corneal repair. In this study the influence of topographical and chemical cues on mechanical, phenotypical and genotypical behaviour of adult human derived corneal stromal (AHDCS) cells in three dimensional (3D) constructs are examined. Topographical cues are provided via multiple aligned electrospun nanofiber meshes and chemical cues are examined using different media supplements. A non-destructive indentation technique and optical coherence tomography are used to determine the elastic modulus and dimensional changes, respectively. qPCR analysis revealed that the shift between keratocyte and fibroblast marker expression could be adjusted by both chemical and topographical factors. The results demonstrate that changing the surrounding niche from 2D (TCP) to 3D (collagen hydrogel) conditions in serum-containing media increased keratocyte marker gene expression and decreased fibroblast marker expression which was further enhanced by removal of serum, media supplements and the presence of orientated nanofibers. There was a correlation between elastic modulus, contractile characteristics and gene expression. The combination of non-destructive monitoring techniques and analysis of gene expression provide important feedback for optimizing culture condition, which has not previously been shown in 3D corneal models.

Session 21: Ocular Area