The Pollino seismic sequence: shear wave splitting, fracture field and active stress [poster]

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: PASTORI, M. ... et al, 2018. The Pollino seismic sequence: shear wave splitting, fracture field and active stress. Presented at the 36th General Assembly of the European Seismological Commission (ESC), Valletta, Malta, 2-7 September 2018, ESC2018-S10-1002.

Additional Information:

- This is a conference poster.

Metadata Record: https://dspace.lboro.ac.uk/2134/34670

Version: Published

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
In the years between 2000 and 2010, a seismic sequence in the Pollino region, southern Italy, took place. The area is adjacent to the Abruzzo-Calabria boundary, in the Pollino massif. The seismic sequence is characterized by a shear wave splitting of fractures and active stress. The seismic sequence includes more than one earthquake, reaching magnitude 6.0, and occurred in October 2010. After a few years of ongoing activity, the most significant event was recorded in 2010.

Since the late 2000s, several seismic events have been recorded in the area. These events are characterized by a shear wave splitting, which suggests that the stress field in the area has changed. The shear wave splitting is caused by the interaction of stress and strain in the Earth's crust. The shear wave splitting is characterized by a splitting angle, which depends on the orientation of the stress field and the orientation of the shear wave.

The shear wave splitting is a valuable tool for understanding the stress field in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.

The shear wave splitting is a valuable tool for understanding the tectonic processes in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.

The shear wave splitting is a valuable tool for understanding the tectonic processes in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.

The shear wave splitting is a valuable tool for understanding the tectonic processes in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.

The shear wave splitting is a valuable tool for understanding the tectonic processes in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.

The shear wave splitting is a valuable tool for understanding the tectonic processes in the area. The shear wave splitting can be used to infer the orientation of the maximum and minimum stress axes. The shear wave splitting can also be used to infer the orientation of the fracture plane. The shear wave splitting can be used to infer the orientation of the fracture plane, which is important for understanding the tectonic processes in the area.