Identifying technologies for rehabilitation of military traumatic brain injury

[Abstracts]

This item was submitted to Loughborough University's Institutional Repository by the/an author.


Additional Information:

- This is an abstract of a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/34735

Version: Accepted for publication

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
Abstract—Traumatic brain injuries are heterogeneous in terms of their mechanisms, pathology, severity & treatment, with widely varying outcomes. Explosive blast injuries are the leading cause of TBI amongst deployed military personnel, with over sixty percent of blast injuries resulting in a TBI. TBI symptoms are broad-spectrum with long-term physical, cognitive, behavioural & emotional consequences. Military injuries result in unique & clinically challenging pathologies which complicate patient diagnosis, classification, treatment & rehabilitation. Improved interventions & use of novel technologies & multidisciplinary teams have the potential to address the concerns regarding the rehabilitation of TBI military veterans for previously un-survivable conditions.

I. INTRODUCTION

A Traumatic brain injury (TBI) is “an alteration in brain function or other evidence of brain pathology, caused by an external force” [1]; often referred to as the “signature wound” or of modern warfare [2]. Approximately 330,000 military personnel sustained combat-related TBI in the Iraq & Afghanistan conflicts [3], primarily due to increased frequencies of explosive blast attacks. Improvements to personal protective equipment [2]; tourniquet use [4]; better resuscitative techniques [5] & pre-hospital care [6]; coupled with highly efficient evacuation procedures have increased patient survivability of previously fatal wounds, in particular with regards to blast injuries. This has led to a new population of survivors with complex injuries including co-morbidities &/or polytrauma.

II. OBJECTIVE

To formulate a technology strategy for improved rehabilitation of both motor and cognitive impairments of military TBIs by determining key science & technology challenges & opportunities.

III. RESULTS

Eight overlapping & interrelated areas/needs for further research were identified (Figure 1).

*Research supported by EPSRC Defence Medicine Institutional Sponsorship award, grant number: EP/N508706/1

M Zecca is with the Wolfson School of Engineering, Loughborough University, UK (email: M.Zecca@lboro.ac.uk)

M.J. Craner is with the Department of Neurology, Oxford University Hospitals national Health Service trust, Oxford, UK (email: matthew.craner@ndcn.ox.ac.uk)

T.J. Hodgetts is with the Defence Medical Services, Royal Centre for Defence Medicine, Birmingham, UK (email: sg-dmed-medd-d@mod.uk)

D.J. Williams is with the Wolfson School of Engineering, Loughborough University, UK. (email: D.J.Williams2@lboro.ac.uk)

Figure 1. Key science & technology challenges related to military TBI

IV DISCUSSION & CONCLUSION

Overlapping symptoms & delayed clinical manifestations confuse precise epidemiological description of TBI, delivery of appropriate clinical management, & development of rational research strategies [1]; highlighting the need for objective diagnostic tools, able to classify TBI by incorporating pathological, clinical & mechanistic factors, whilst providing insight into TBI phenotype. Multi-disciplinary teams guided by clinicians from multiple specialisms, need to be assembled, to design, develop & establish useful & human-relevant blast models. Repair interventions including regenerative medicine, neuronal & bionic devices must be accounted for in rehabilitation strategies & vice versa. Personalized therapeutic intervention which utilizes bio-robotics & neuropsych prostheses as biomarkers of TBI have potential for the improved assessment & diagnosis of TBI, whilst assisting rehabilitation strategies by providing accurate monitoring & quantification of neural gain & improved outcomes.

ACKNOWLEDGMENT

Dr Debra Carr, Reader in Impact & Armour, Defence Academy of the UK; Dr Emer McGilloway, Clinical Lead Rehabilitation Medicine, King’s College Hospital. London, UK.

REFERENCES


