Workers’ health and productivity under occupational heat strain: a systematic review and meta-analysis

Andreas D Flouris, Petros C Dinas, Leonidas G Ioannou, Lars Nybo, George Havenith, Glen P Kenny, Tord Kjellstrom

Summary

Background Occupational heat strain (ie, the effect of environmental heat stress on the body) directly threatens workers’ ability to live healthy and productive lives. We estimated the effects of occupational heat strain on workers’ health and productivity outcomes.

Methods Following PRISMA guidelines for this systematic review and meta-analysis, we searched PubMed and Embase from database inception to Feb 5, 2018, for relevant studies in any labour environment and at any level of occupational heat strain. No restrictions on language, workers’ health status, or study design were applied. Occupational heat strain was defined using international health and safety guidelines and standards. We excluded studies that calculated effects using simulations or statistical models instead of actual measurements, and any grey literature. Risk of bias, data extraction, and sensitivity analysis were performed by two independent investigators. Six random-effects meta-analyses estimated the prevalence of occupational heat strain, kidney disease or acute kidney injury, productivity loss, core temperature, change in urine specific gravity, and odds of occupational heat strain occurring during or at the end of a work shift in heat stress conditions. The review protocol is available on PROSPERO, registration number CRD42017083271.

Findings Of 958 reports identified through our systematic search, 111 studies done in 30 countries, including 447 million workers from more than 40 different occupations, were eligible for analysis. Our meta-analyses showed that individuals working a single work shift under heat stress (defined as wet-bulb globe temperature beyond 22·0 or 24·8°C depending on work intensity) were 4·01 times (95% CI 2·45–6·58; nine studies with 11 582 workers) more likely to experience occupational heat strain than an individual working in thermoneutral conditions, while their core temperature was increased by 0·7°C (0·4–1·0; 17 studies with 1090 workers) and their urine specific gravity was increased by 14·5% (0·0031, 0·0014–0·0048; 14 studies with 691 workers). During or at the end of a work shift under heat stress, 35% (31–39; 33 studies with 13 088 workers) of workers experienced occupational heat strain, while 30% (21–39; 11 studies with 8076 workers) reported productivity losses. Finally, 15% (11–19; ten studies with 21 721 workers) of individuals who typically or frequently worked under heat stress (minimum of 6 h per day, 5 days per week, for 2 months of the year) experienced kidney disease or acute kidney injury. Overall, this analysis include a variety of populations, exposures, and occupations to comply with a wider adoption of evidence synthesis, but resulted in large heterogeneity in our meta-analyses. Grading of Recommendations, Assessment, Development and Evaluation analysis revealed moderate confidence for most results and very low confidence in two cases (average core temperature and change in urine specific gravity) due to studies being funded by industry.

Interpretation Occupational heat strain has important health and productivity outcomes and should be recognised as a public health problem. Concerted international action is needed to mitigate its effects in light of climate change and the anticipated rise in heat stress.

Funding EU Horizon 2020 research and innovation programme.

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license.

Introduction

Nearly a third of the world’s population is regularly exposed to climate conditions that exceed human thermoregulatory capacity, leading to major increases in morbidity and mortality.1–3 Even if aggressive mitigation measures were to be adopted, estimates suggest that half of the world’s population will be exposed to such conditions by 2100,4 and several studies5–7 report that the resulting occupational heat strain will directly threaten workers’ health, with corresponding negative effects on productivity, poverty, and socioeconomic inequality. Occupational heat strain refers to the physiological effect of environmental heat stress on the body and it has a major impact on the ability of workers to live healthy and productive lives; nearly 1 million work life-years are projected to be lost by 2030 due to occupational heat stroke fatalities, with 70 million work life-years lost because of reduced labour productivity.4,3 Warning systems for extreme weather events have been piloted in some countries, but they are designed for the general
Evidence before this study
Occupational heat strain directly threatens workers’ ability to live healthy and productive lives. To date, the magnitude of this problem has not been systematically investigated. To fill this knowledge gap, we completed the first systematic review and meta-analysis to estimate the effects of occupational heat strain on workers’ health and productivity outcomes. We searched PubMed and Embase from the date of their inception to Feb 5, 2018, for studies in any labour environment, with no restrictions on language, workers’ health status, or study design. We did six random-effects meta-analyses to estimate the effect of occupational heat strain on different health and productivity outcomes. In total, 111 studies done in 30 countries, including more than 447 million workers from over 40 different occupations, were eligible for analysis.

Added value of this study
This study estimated that individuals working a single work shift under heat stress are four times more likely to experience occupational heat strain, while their core temperature is increased by 0·7°C and their urine specific gravity is increased by 14·5%. Of those individuals who work under heat stress, 35% experience occupational heat strain, while 30% report productivity losses. Finally, 15% of individuals who typically work under heat stress experience kidney disease or acute kidney injury.

Implications of all the available evidence
Occupational heat strain has important effects on health and productivity outcomes and should be recognised globally as a public health problem. Concerted international action is needed to mitigate its effects in light of the occurring climate change and the anticipated rise in heat stress. Efforts should be made towards establishing a surveillance system, which will provide a basis for public health policy, health-care planning, and resource allocation for occupational heat strain prevention initiatives.

Methods
Search strategy and selection criteria
Following PRISMA guidelines,13 for our systematic review and meta-analysis we searched the PubMed and Embase databases from inception to Nov 30, 2017, for studies that assessed the effect of occupational heat strain on workers’ health or productivity outcomes. A search update, via alerts, was done up until Feb 5, 2018. Studies done in any labour environment and published in any language were included. No restrictions on workers’ health status or study design were applied. The search algorithms used are provided in the appendix. We excluded reviews, conference proceedings, editorials, and magazine articles, but we screened the reference lists of such publications and of the retrieved articles for relevant papers. We supplemented the electronic database searches with manual searches for published studies in international trial registers and websites of international agencies (eg, WHO). Across all searches, we included articles if they consisted of original quantitative research published in a peer-reviewed journal or scholarly report, while we excluded studies that calculated effects with simulations or statistical models instead of actual measurements in humans.

The screening of the titles, abstracts, and full texts for eligibility, and the selection of studies to be included, were done independently by two investigators (PCD and LGI). Any conflicts were resolved by a referee investigator (ADF). We included studies that involved any individuals working in any kind of conditions and at any level of heat exposure. We also included measurements that were done during working hours, either as an intervention using working modes or as epidemiological measurements. We included all methodological designs that had any kind of control-group (ie, non-workers) or crossover design (ie, different working and non-working conditions); no sample size criterion was applied for the included studies. The list of included and excluded papers is available in the appendix.

When necessary, additional information was requested from the journals or the study authors via email. For all studies, we extracted the author names, year of
publication, and data on the participant numbers, age, sex, occupation, environmental conditions, intervention (if any), and adverse primary outcome (symptom, incidence). For epidemiological studies, we extracted incidence rate ratio for heat-related illness. For occupational health field studies, we extracted information for indices measured to calculate occupational heat strain: prevalence and SE, incidence rate ratio, risk ratio and odds ratio (OR), mean and SD, and confidence intervals. For the productivity-related field studies, we extracted the amount of work done, and the percentage of work time lost and reported productivity loss by the workers to calculate productivity loss for each included study. No transformations were applied to the extracted data.

To reduce bias and the likelihood of duplication, and to maximise the validity of the procedures used, we registered our systematic review in the international prospective register for systematic reviews (PROSPERO) database (number CRD42017083271) and reported our study in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist (appendix). Because all included studies used an observational design, two independent investigators (PCD and LGI) assessed the risk of bias via the 13-item Research Triangle Institute item bank, which is designed for observational studies and has previously shown median inter-rater agreement of 75% and 93-5%. The PROSPERO study protocol can be found online.

Data analysis
We did six random-effect model meta-analyses. Specifically, for meta-analysis one, we estimated the prevalence of occupational heat strain (ie, the physiological consequences of environmental heat stress) that occurred during or at the end of a work shift in heat stress conditions (wet-bulb globe temperature [WBGT], 21·2–52·0°C; air temperature, 33·0–38·7°C). Occupational heat strain was defined as present if one or more criteria were met: (1) core body temperature higher than 38°C, according to international occupational health and safety standards; (2) at least one occupational heat strain symptom, as defined by international health and safety guidelines (ie, serum creatinine concentration of >1·2 mg/dL [indicating acute kidney injury], 25 displayed urinary lithiasis [indicating acute kidney injury], 26 urine specific gravity ≥1·020 [indicating dehydration], heat-associated self-reported nausea or vomiting [indicating heatstroke], painful muscular spasms [indicating heat cramps], confusion, dizziness, or fainting [indicating heat syncope, heat exhaustion, or heatstroke], hot dry skin [indicating heatstroke], and self-reported heat strain [indicating heat exhaustion]); and (3) cholesterol concentration higher than 6·7 mmol/L or low-density lipoprotein concentration higher than 3·4 mmol/L (indicating heat-induced dyslipidaemia).

For meta-analysis two, we estimated the prevalence of kidney disease or acute kidney injury in individuals who frequently or typically work in heat stress conditions (minimum of 6 h per day, 5 days per week, for 2 months of the year for typical occupations, or minimum of 12 h per day, 2 days per week, for 12 months of the year for specialised occupations, such as mining: WBGT, 24·8–33·8°C; air temperature, 38·0–150·0°C). This evaluation was done given the well-established link between hydration and kidney function. The occurrence of kidney disease was reported via self-reporting or a physician diagnosis. Acute kidney injury was defined according to international health guidelines 25 and included (appendix) estimated glomerular filtration rate, serum urea concentration, serum creatinine concentration, albumin creatinine ratio, diagnosed urinary lithiasis, and fulfilment of KDIGO (Kidney Disease: Improving Global Outcomes) criteria (ie, increase in serum creatinine concentration by ≥0·3 mg/dL [≥26·5 μmol/L] within 48 h or increase in serum creatinine concentration to ≥1·5 times baseline, which is known or presumed to have occurred within the previous 7 days, or urine volume <0·5 mL/kg per h for 6 h) for self-reported acute kidney injury.

For meta-analysis three, we estimated the prevalence of productivity loss in individuals working in heat stress conditions (WBGT, 21·2–52·0°C; air temperature, 26·8–38·0°C), which in the included studies was either reported as loss of productivity or measured as loss of labour time, performance, or absence from work due to occupational heat strain (appendix).

In meta-analysis four, we estimated the OR of occupational heat strain that occurred during or at the end of a work shift performed under heat stress conditions (WBGT, 26·2–26·4°C; air temperature, 37·3–150·0°C). This assessment included comparing the occupational heat strain events (as defined in meta-analysis one and recorded by the study investigators) that occurred in heat stress conditions against the occupational heat strain events that occurred in thermoneutral conditions. Thus, the fourth meta-analysis complements the prevalence rate estimated in meta-analysis one by calculating the probability of an occupational heat strain event occurring when in hot workplace conditions.

For meta-analysis five, we estimated the average core temperature during a single work shift done in heat stress conditions (WBGT, 22·0–40·8°C; air temperature, 29·0–47·0°C). This average was calculated by comparing the core temperature measurements collected at preshift against postshift or by comparing those collected postshift from individuals working in heat stress conditions against individuals working in thermoneutral conditions.

For the final meta-analysis, we estimated the average percentage change in urine specific gravity due to completing a single work shift in heat stress conditions (WBGT, 24·8–48·9°C; air temperature, 32·7–38·0°C). This average was calculated by comparing the urine
specific gravity results obtained either preshift against postshift or by comparing those obtained postshift from individuals working in heat stress conditions against postshift, or only postshift in individuals working in non-heat stress conditions, while we calculated weighted proportions based on each study’s sample size.26

If data for the same participants were presented in multiple publications, these data were only used once (ie, single outcome). We synthesised the study effect sizes using a random-effects meta-analysis model to account for heterogeneity due to differences in study populations, interventions, study duration, and other factors.

We evaluated the 95% CI and heterogeneity between studies using the I^2 statistic. We considered a significant result for heterogeneity when $p<0.10$, while interpretation of I^2 index was made based on previous guidelines.29 We assessed small study effects, potentially caused by publication bias, using funnel plots produced via RevMan. Given the large heterogeneity ($I^2>70\%$) in all six meta-analyses, a sensitivity analysis was done (Grading of Recommendations, Assessment, Development and Evaluation [GRADE]) for each meta-analysis.28 GRADE assessed the quality of the meta-analysis results via methodological design, risk of bias, heterogeneity, indirectness, imprecision, publication bias, and effect sizes displayed in both the included studies in a meta-analysis and the meta-analysis itself. GRADE rates the quality of a meta-analysis as very low, low, moderate, and high, allowing for firmer conclusions to be made.28

Role of the funding source

The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

A total of 958 records were identified through our systematic search, of which 105 were duplicates (figure 1). A further 194 records were excluded (reviews, editorials, or conference proceedings). Of the 465 full-text articles assessed for eligibility, three articles were excluded due to non-availability of full texts (despite contacting authors and journals) or due to non-English language used, while 364 were classified as non-eligible. A total of 91 studies assessing the effect of occupational heat strain on workers’ health or productivity outcomes were included in the review. 20 additional studies were retrieved through manual searches or the reference lists of the retrieved articles.

The 111 studies included in the analysis were published between 1954 and 2018 and included 447,108,664 workers from more than 40 occupations. The studies were done across 30 countries covering all the continents, relevant differences, using a continuous, inverse variance, random-effect model via the RevMan 5.3 software. We used means and SDs either preshift against postshift or postshift from individuals working in heat stress conditions against postshift, or only postshift in individuals working in non-heat stress conditions, while we calculated weighted proportions based on each study’s sample size.26

We manually did meta-analyses one, two, and three, which refer to prevalence, by dividing the incidence of occupational heat strain by the overall sample size of each study. We calculated SEs for these meta-analyses using the formula:

$$SE = \frac{incidence}{incidence \times sample\ size}$$

We then used SEs for weighted proportions and the RevMan 5.3 software27 to generate forest and funnel plots. We did meta-analysis four, which refers to OR, using a dichotomous, inverse variance, random-effect model via the RevMan 5.3 software. We used incidence of occupational heat strain in individuals exposed to heat stress conditions against the same incidence in non-exposed individuals, while we calculated weighted proportions based on each study’s sample size. We did meta-analyses five and six, which refer to mean
Figure 2: 30 countries where the 111 included studies took place

(A) Area plot indicating the number of studies per country categorised by WHO region.

(B) Key performance indicators for the 30 countries. Share of world GDP estimated based on data from the International Monetary Fund World Economic Outlook Database, 2017; share of world labour force estimated based on the Central Intelligence Agency World Factbook, 2018; share of world population estimated based on data from the World Population Prospects: The 2017 Revision by the UN, Department of Economic and Social Affairs, Population Division. GDP=gross domestic product.

UAE=United Arab Emirates.
Table: Six random-effects meta-analyses assessing the effects of occupational heat strain on workers' health and productivity outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Studies included</th>
<th>Number of positive events in workers assessed*</th>
<th>Controls</th>
<th>Prevalence (95% CI)</th>
<th>Odds ratio (95% CI)</th>
<th>Mean difference (95% CI)</th>
<th>I^2</th>
<th>Risk of bias (%)†</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Prevalence of occupational heat strain</td>
<td>33</td>
<td>2542/31 088</td>
<td></td>
<td>35% (31–39)</td>
<td></td>
<td>-</td>
<td>97%</td>
<td>77 100 13 0 90 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Prevalence of kidney disease or acute kidney injury</td>
<td>10</td>
<td>80/21721</td>
<td></td>
<td>15% (11–19)</td>
<td></td>
<td>-</td>
<td>96%</td>
<td>58 92 25 8 92 58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Prevalence of productivity loss</td>
<td>11</td>
<td>962/8076</td>
<td></td>
<td>30% (21–39)</td>
<td></td>
<td>-</td>
<td>98%</td>
<td>64 91 0 0 82 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Occupational heat strain during or at end of a work shift</td>
<td>8</td>
<td>420/2009</td>
<td></td>
<td>4 01 (2-4 5-6-58)</td>
<td></td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Average core temperature during work shift in heat stress conditions</td>
<td>17</td>
<td>575</td>
<td></td>
<td></td>
<td></td>
<td>0·7°C (0·4–1·0)</td>
<td>99%</td>
<td>78 100 0 0 94 89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Change in urine specific gravity due to a work shift in heat stress conditions</td>
<td>14</td>
<td>679</td>
<td></td>
<td></td>
<td></td>
<td>0·003</td>
<td>71%</td>
<td>80 100 0 0 100 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For meta-analyses 5 and 6, number of workers assessed shown only. †Risk of bias estimates are the proportion of studies assessed as low risk in terms of selection bias (A), performance bias (B), detection bias (C), attrition bias (D), selective outcome bias (E), and confounding factors bias (F).

climate zones, and WHO regions (figure 2). 56 (50%) of 111 studies did not report funding. The remaining studies were funded by government agencies (41 [40%]), industrial actors (six [5%]), or by government and industrial cofunding (8 [7%]). From the 88 included studies that examined health-related outcomes due to occupational heat strain, 62 (70%) reported ranges for WBGT of 19·3–52·0°C and air temperature of 21·2–150·0°C (this extreme value was recorded in a steel plant worksite). From the 14 included studies that examined productivity loss due to occupational heat strain, 10 (71%) reported ranges of WBGT (21·2–52·0°C) and air temperature (26·8–38·0°C). The main characteristics and outcomes are reported in the appendix.

We used data from 64 studies, which included a total of 55791 workers, to do the meta-analyses. 22 studies provided sufficient information to be used in more than one analysis. 33 studies including 13088 workers were included in meta-analysis one. The pooled proportion of individuals experiencing occupational heat strain during or at the end of a work shift in heat stress conditions was 35% (95% CI 31–39; appendix). Ten studies with 21721 workers were included in meta-analysis two. The pooled proportion of individuals who frequently work in heat stress conditions and experience kidney disease or acute kidney injury was 15% (11–19; appendix). 11 studies with 8076 workers were included in meta-analysis three. The pooled proportion of individuals showing productivity loss due to occupational heat stress during work in heat stress conditions was 30% (21–39; appendix). In addition to the prevalence of productivity loss, seven studies reported precise changes in productivity as a function of environmental heat stress. These studies suggest an average 2·6% productivity decline (individual study estimates: 0·8%, 1·4%, 1·8%, 2·2%, 2·8%, 4·4%, 5·0%) for every degree increase beyond 24°C WBGT. Nine studies with 11 582 workers were included in meta-analysis four. Individuals working in heat stress conditions were more likely to experience occupational heat strain during or at the end of a work shift compared with individuals working in thermoneutral conditions (OR 4·01 [2·45–6·58]; table; appendix). 17 studies with 633 workers were included in meta-analysis five. The average increase in core temperature during a single work shift due to working in heat stress conditions was 0·7°C (0·4–1·0°C; table). 14 studies of 691 workers were included in meta-analysis six. The average urine specific gravity during a work shift in thermoneutral conditions was 1·0214, in line with reference values of 1·013 to 1·029 for healthy adults. 38 The average increase due to working in heat stress conditions was 0·0031 (0·0014–0·0048; table; appendix), which is equal to a 14·5% (6·5–22·4) increase.

The variety of populations, exposures, and occupations used in the six meta-analyses provided a wide adoption of evidence synthesis, but resulted in large heterogeneity with an average I^2 of 80% (table). For meta-analyses one to four, GRADE analysis (appendix) revealed that the true effect is likely to be close to the estimate of the effect, but it is possibly substantially different (moderate confidence). For meta-analyses five and six, GRADE analysis revealed that the true effect is likely to be substantially different from the estimate of effect (very low confidence). Most (68%) of the included studies incorporated low risk for selection bias, with the remaining studies presenting selection bias that was non-applicable (10%), unclear (16%), or in some cases, high risk (6%) due to across-group variation in inclusion or exclusion criteria, and across-group differences in participant recruitment or selection. Most (61%) of the included studies incorporated low risk for confounding factors bias, with the remaining studies presenting confounding factor bias that was unclear (16%) or high risk (23%) due to unknown or unmeasured factors.
non-reporting of limitations or no attempt to balance reallocation between groups or variables. However, most (85%) of the included studies incorporated unclear risk of detection bias since almost all included valid and reliable measures, but assessors in only one study were masked to the measurements. Finally, attrition bias was not applicable in 97% of the included studies as most of them were cross-sectional.

Discussion

Our systematic evaluation shows that the effects of occupational heat strain on workers’ health and productivity outcomes have been studied heavily across continents and in many different occupations for more than six decades. The quality of studies on this topic is high because most of the included studies incorporated low risk of bias for performance (97%) and selective outcome (93%). Two large-scale epidemiological studies on heat-related illness and mortality (which were not included in our meta-analyses) reported that workplace environmental heat stress is responsible for 13–36 deaths per year in the USA alone. It is important to note that severe[151,152] of the 47 studies excluded in our meta-analyses showed no effect of workplace environmental heat stress on the prevalence of heat-related illness or health outcomes.

Most of the 111 studies included in this systematic review suggest that working in hot environments (WGBT >22°C for very intense work; WGBT >25°C for most occupations) increases the likelihood of experiencing occupational heat strain, with significant detrimental effects on health and productivity. We attempted to quantify these effects by extracting data from 64 of these studies for use in six meta-analyses. Our results showed that individuals working in heat stress conditions were four times more likely to experience occupational heat strain during or at the end of a work shift compared with individuals working in thermoneutral conditions. Indeed, working a shift in thermoneutral conditions did not lead to physiological or clinical effects on core temperature, which, on average, remained at 36-9°C (SD 0–3). However, individuals who worked a single shift in heat stress conditions showed average core temperature of 37.6°C estimated for individuals working a shift under heat stress is considered borderline hyperthermia or pyrexia. While core temperature thresholds for hyperthermia, fever, and heat injury vary across individuals, those who are older, obese, unfit, have chronic disease, or experience acute illness or infection are at a high risk for heat-induced pathologies (eg, heat cramps, heat exhaustion, and heat stroke). We used the standard definitions of kidney disease and acute kidney injury proposed by the KDIGO clinical practice guidelines[153] and found that 15% of individuals working in heat stress have these conditions, which is markedly higher than the prevalence rates reported for kidney disease (10%) and acute kidney injury in high-income (2%) and low-income (3–9%) countries. Taken together, these results raise serious concerns for the kidney function of individuals who typically or frequently work in heat stress conditions, because even a single episode of acute kidney injury can lead to chronic kidney disease, with substantial socioeconomic and public health outcomes.

The present systematic review and meta-analysis includes various populations, exposures, and occupations to allow the synthesis of a broad range of evidence. While this approach allowed us to form a meaningful conclusion instead of narrowing down our research question, it resulted in large heterogeneity in our meta-analyses. We addressed this issue by implementing a GRADE analysis, which revealed moderate confidence in the results of our meta-analyses one to four and very low confidence in the results of our meta-analyses five and six, which was largely because 23.5% of studies in five and 28.5% of studies in six were funded by industry.
Overall, this study included over 447 million workers from more than 40 different occupations across 30 countries around the globe, including countries from all continents, relevant climate zones, and WHO regions. The countries included comprise 77% of the world gross domestic product, 65% of the global labour force, and 60% of the world population (figure 2). We did not limit our search based on language, population characteristics, region, date, and occupation, and we adopted standardised and comprehensive search approaches for the identification, screening, and extraction of evidence. This approach, and the fact that we pooled all available data from the included studies, mitigates threats to good quality systematic reviews and meta-analyses and increased the total number of cases in our qualitative and quantitative data synthesis. However, our analysis is not without its limitations. First, some studies included in the meta-analyses for the prevalence of occupational heat strain, kidney disease, and productivity loss used self-reported tools to assess symptoms or productivity loss and, therefore, are susceptible to reporting and recall bias. Therefore, our reported prevalence rates might be overestimated or underestimated. Yet, these studies included representative and large samples, which limits the potential for error in their estimates. Second, the devices and methods used to assess core temperature and urine specific gravity vary across the included studies. However, the adopted methods are well accepted, which minimises this bias. Third, many of the analysed studies did not provide exact WBGT or air temperature values as thresholds for occupational heat strain. To address this issue, we report the ranges of WBGT or air temperature for all the studies in which such data are provided. Fourth, the studies included in our meta-analyses were typically regionally confined and were done in cases where a high prevalence or effect was expected. Therefore, the effects reported in this study might not apply in cold regions, seasons, and jobs that are not associated with occupational heat strain or workplace heat exposure. Nonetheless, this study used the best available data and provides working estimates on the effects of occupational heat strain on workers’ health and productivity outcomes across 30 countries and many occupations. These data provide useful indicators of the public health burden of occupational heat strain and provide a basis for health and safety policy and for relevant prevention initiatives. Our findings show that occupational heat strain, a fully preventable condition, has important health and productivity outcomes and should be recognised as a public health problem. Concerted international action is needed to mitigate the effects of occupational heat strain, particularly in light of climate change and the anticipated rise in environmental heat stress. The presented evidence shows the urgent need to establish a surveillance system to monitor prevalence of occupational heat strain throughout the world. At the same time, increased efforts should be made to educate workers and employers about the health and performance effects of occupational heat strain, and appropriate screening protocols should be incorporated within health and safety legislation. Importantly, physicians and other health-care providers can play a crucial part in the primary prevention and management of occupational heat strain.

Contributors
ADF, LN, GH, GPK, and TK led the conception of the study, ADF, PCD, LG1, and LN led the design of the study. ADF, PCD, and LG1 led the data collection, quality assessment, and data extraction and analysis. All authors contributed to data interpretation. ADF led the manuscript writing, PCD, LG1, GH, and GPK contributed to writing the manuscript. All authors contributed to the revision and final formulation of the manuscript.

Declaration of interests
We declare no competing interests.

Acknowledgments
This work was funded by the EU Horizon 2020 research and innovation programme (no.668786).

References

75 Kalkowsky B, Kampman B. Physiological strain of miners at hot working places in German coal mines. Ind Health 2006; 44: 465–73.

