Application of the Digraph Method in System Fault Diagnostics

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

• This is a Conference paper. ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Metadata Record: https://dspace.lboro.ac.uk/2134/3665

Publisher: © IEEE

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Application of the Digraph Method in System Fault Diagnostics

Emma M Kelly & Lisa M Bartlett

Department of Aeronautical & Automotive Engineering, Loughborough University, UK.
Overview

- Fault diagnosis is an important facet of engineering applications.
- Introduce the application of the digraph method to determine the likely causes leading to a system malfunction.
- A description of digraphs and their application in fault diagnostics is provided.
- A simple example is used for demonstration purposes.
Introduction to Digraphs

- Qualitative causal model which illustrates the cause and effect behaviour in a system.

- Digraphs comprise:
 i. Set of nodes, representing system process variables.
 ii. Nodes are connected by edges (lines) illustrating the inter-relationships which exist between process variables.
Examples of process variables include:

- Mass flow.
- Pressure.
- Signals from sensors.
- Temperature.

Process variable deviations are represented through one of five discrete values:

- +10/-10: large high / large low.
- +1/-1: moderate high / moderate low.
- 0: normal.
An Example of a Simple Digraph

- M1: mass flow at location 1 - independent variable.
- M2: mass flow at location 2 - dependant variable.
- Two arcs:
 - ‘+1’ signed - normal.
 - ‘0: V1 closed’ signed - conditional.
Digraph Development

1) Define system to be analysed.

2) Compile list of system component failures.

3) Separate system into sub-units.

4) Identify control loops, if present.

5) Generate digraph models for the sub-units.

6) Form system digraph by connecting any common variables from the sub-unit models.
The Water Tank System

- Three valves: V1, V2, V3.
- Two level sensors: S1, S2.
- Two control units: C1, C2.
- Six pipe sections: P1, P2, P6, P7, P8, P9.
The Water Tank System

- System information obtained from the flow sensors, VF1-3 and tray sensor, SP1.
- Flow sensors detect flow or no flow.
- Tray sensor detects presence or absence of water.
- Two operating modes are specified.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>VF1</th>
<th>VF2</th>
<th>VF3</th>
<th>SP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>Flow</td>
<td>Flow</td>
<td>No Flow</td>
<td>No Water</td>
</tr>
<tr>
<td>DORMANT</td>
<td>No Flow</td>
<td>No Flow</td>
<td>No Flow</td>
<td>No Water</td>
</tr>
</tbody>
</table>
- Sixteen scenarios developed from the potential sensor readings.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>VF1</th>
<th>VF2</th>
<th>VF3</th>
<th>SP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>W</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NW</td>
</tr>
<tr>
<td>3</td>
<td>NF</td>
<td>F</td>
<td>F</td>
<td>W</td>
</tr>
<tr>
<td>4</td>
<td>NF</td>
<td>F</td>
<td>F</td>
<td>NW</td>
</tr>
<tr>
<td>5</td>
<td>NF</td>
<td>NF</td>
<td>F</td>
<td>W</td>
</tr>
<tr>
<td>6</td>
<td>NF</td>
<td>NF</td>
<td>F</td>
<td>NW</td>
</tr>
<tr>
<td>7</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>W</td>
</tr>
<tr>
<td>8</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
<td>NW</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>F</td>
<td>NF</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>F</td>
<td>NF</td>
<td>F</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>13</td>
<td>NF</td>
<td>F</td>
<td>F</td>
<td>NF</td>
</tr>
<tr>
<td>14</td>
<td>NF</td>
<td>F</td>
<td>NF</td>
<td>NF</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>NF</td>
<td>NF</td>
<td>NF</td>
</tr>
<tr>
<td>16</td>
<td>F</td>
<td>NF</td>
<td>NF</td>
<td>NW</td>
</tr>
</tbody>
</table>
Component Failure Modes

- Failure modes considered which could affect the functionality of the water tank system.

<table>
<thead>
<tr>
<th>Code</th>
<th>Component Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiB(1-2, 3-4, 5-6)</td>
<td>Pipe Pi is blocked</td>
</tr>
<tr>
<td>ViFC(1 ≤ i ≥3)</td>
<td>Valve Vi fails closed</td>
</tr>
<tr>
<td>CiFH (1 ≤ i ≥2)</td>
<td>Controller Ci fails high</td>
</tr>
<tr>
<td>SiFH (1 ≤ i ≥2)</td>
<td>Sensor Si fails high</td>
</tr>
<tr>
<td>TR</td>
<td>Water tank ruptured</td>
</tr>
<tr>
<td>NMWS</td>
<td>No mains water supply</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Component Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>PiR(1-2, 3-4, 5-6)</td>
<td>Pipe Pi is ruptured</td>
</tr>
<tr>
<td>ViFO(1 ≤ i ≥3)</td>
<td>Valve Vi fails open</td>
</tr>
<tr>
<td>CiFL (1 ≤ i ≥2)</td>
<td>Controller Ci fails low</td>
</tr>
<tr>
<td>SiFL (1 ≤ i ≥2)</td>
<td>Sensor Si fails low</td>
</tr>
<tr>
<td>TL</td>
<td>Water tank leaks</td>
</tr>
<tr>
<td>WOST</td>
<td>Water in overspill-tray</td>
</tr>
</tbody>
</table>
Three assumptions:

i. Given a pipe rupture, flow sensor registers no flow.

ii. Tank rupture volume loss >> tank leakage.

iii. System is in steady state.

Unit digraph models developed for the three water tank valves.

Each unit digraph considers:

- Component functions.
- Effects of failure modes.
Water Tank System Unit Digraphs
Water Tank System Digraph
Diagnostics is based on comparing retrieved sensor readings with those expected.

Given the presence of a deviation, diagnosis involves:
- Noting the location of the given deviation.
- Determine the component failure modes which may have contributed to the deviation.

Fault diagnosis is conducted through a process of back-tracing.
Deviation noted after valve. Expect flow, no flow registered.
Commence back-tracing from noted large, negative disturbance:
- M2(-10) → P2B.
- M2(-10) → M1(-10) → P1B.
Two methods considered:

1) Analyst is required to fully back-trace through the digraph until a point is reached where no further back-tracing can be conducted.

2) Non-deviating sections are flagged. Back-tracing from a deviating node ceases once a flagged section is reached.
Diagnostics of a Faulty Scenario

- Example used to demonstrate diagnostic capability of water tank system digraph.

- Water tank assumed to be in the ACTIVE mode.

- Sensor readings retrieved reveal scenario ‘FS16’.

<table>
<thead>
<tr>
<th>Operating Mode</th>
<th>VF1</th>
<th>VF2</th>
<th>VF3</th>
<th>SP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVE</td>
<td>Flow</td>
<td>Flow</td>
<td>No Flow</td>
<td>No Water</td>
</tr>
<tr>
<td>‘FS16’</td>
<td>Flow</td>
<td>No Flow</td>
<td>No Flow</td>
<td>No Water</td>
</tr>
</tbody>
</table>
Fault Diagnostics of ‘FS16’

- Deviation only noted by VF2, flag sections of system digraph incorporating:
 - V1 and control loop one.
 - V3 and control loop two.
 - Overspill tray.
Fault Diagnostics of ‘FS16’

- Node M7 addressed – represents status of mass flow exiting V2.
- M7 is ‘marked’ on the system digraph.
- Determine the failure modes leading to large negative disturbance i.e. -10.
- -10 represents registered ‘no flow’ status.
- Back-tracing commences from M7(-10); reveals five component failure modes.
Fault Diagnostics of ‘FS16’

- $M7(-10) \rightarrow V2FC, P7B, P7R.$
- $M7(-10) \rightarrow M6(-10) \rightarrow P6B, P6R.$
- $M7(-10) \rightarrow M6(-10) \rightarrow L4(-10)$, back-tracing ceases.
- Five component failure mode results: Valve 2 failed closed, Pipe 7 blocked or ruptured, Pipe 6 blocked or ruptured.
Conclusions

- Component failure mode results are consistent with recorded sensor readings.

- Flagging of non-deviating sections removes conflicting results, also reduces number of determined fault combinations.

- Method 2 advised method since results displaying inconsistencies between sensor readings are removed.

- Digraph suitable method for steady state analysis.
Future Research

- Implications for dynamic behaviour – preliminary results are positive.
- Investigation into computational optimisation of back-tracing enabling real-time analysis.
- Scalability – it is necessary to apply method to larger, more complex, system to ensure industrial validity.
Summary

- Digraphs clearly illustrate the information flow in a cause-effect relationship.

- Closely reflect the physical structure of the system under investigation.

- Conduct diagnostics through back-tracing from a known deviation \(\rightarrow \) introduce flagging of non-deviating sections.

- Valid diagnostic results determined for steady state.
Thank you for your attention.

Contact:
Emma Kelly: E.M.Kelly@lboro.ac.uk
Dr. L. Bartlett: L.M.Bartlett@lboro.ac.uk