Aircraft fuel system diagnostics using digraphs

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper

Metadata Record: https://dspace.lboro.ac.uk/2134/3712

Publisher: Luleå University Press

Please cite the published version.
This item was submitted to Loughborough's Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Aircraft Fuel System Diagnostics Using Digraphs

Emma Kelly & Lisa Bartlett

Department of Aeronautical & Automotive Engineering, Loughborough University, UK.
Overview

- Aim of Research.
- Diagnostic method - Digraphs.
- Application - Aircraft Fuel System.
- Results.
- Conclusions.
Aim of Research

- Method to deal with key characteristics: DIGRAPHS.

- Qualitative causal model which illustrates the cause and effect behaviour in a system.

- Digraphs comprise:
 i. Set of nodes, representing system process variables.
 ii. Edges (lines) illustrating the inter-relationships which exist between process variables.
 iii. Deviations: 0, +/-1, +/-5, +/-10.
An Example of a Simple Digraph

- M1: mass flow at location 1 - independent variable.
- M2: mass flow at location 2 - dependant variable.
- Two arcs:
 - ‘+1’ signed - normal.
 - ‘0: V1 closed’ signed - conditional.
1) Define system to be analysed.

2) Compile list of system component failures.

3) Separate system into sub-units.

4) Identify control loops, if present.

5) Generate digraph models for the sub-units.

6) Form system digraph by connecting any common variables from the sub-unit models.
Fuel System

- Represents aircraft fuel system.
- Active supply tanks: main, wing and collector.
- Engine tank treated as ‘tanker’.
- System behaviour:
 - 7 flow transmitters.
 - 6 pressure transmitters.
 - 4 level transmitters.
Main Tank Schematic

Operating Modes: Dormant & Active

Component Failure Modes: 43
Fuel System Digraph

- The unit model for main tank:
 - 242 nodes
 - 43 process variables
 - 199 component failure modes
 - 140 of 199 being pipe failures

- Full system digraph:
 - 3 tanks combined.
 - 842 nodes;
 - 151 are process variable nodes
 - 691 are component failure mode nodes
1) Diagnostics is based on comparing retrieved sensor readings with those expected.

2) Given the presence of a deviation, diagnosis involves:
 - Noting the location of the given deviation.
 - Noting the location of non-deviations.
 - Back-trace to find deviation causes.

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>LT0110</th>
<th>FT0100</th>
<th>FT0110</th>
<th>PT0110/PT0120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieved</td>
<td>>PSO</td>
<td>No flow</td>
<td>Flow</td>
<td>Pressure</td>
</tr>
<tr>
<td></td>
<td>>PSO</td>
<td>No flow</td>
<td>No flow</td>
<td>Pressure</td>
</tr>
</tbody>
</table>
- PFT110(-10) \Rightarrow M117(-10) \\
 \Rightarrow P117B, P117R.

- M117(-10) \\
 \Rightarrow M108(-10) AND M116(-10).

- M108(-10) \\
 \Rightarrow P108B/R, BP110B/C.

- 83 failure mode options: \\
 - 2 single order. \\
 - 81 second order.
Component failure mode results are consistent with recorded sensor readings.

Flagging of non-deviating sections removes conflicting results, also reduces number of determined fault combinations.

Digraph suitable method for steady state diagnostic analysis for fuel tank system.

Future work: Specific fault identification, dynamics.