Multiple scattering by multiple spheres: a new proof of the Lloyd-Berry formula for the effective wavenumber

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a pre-print.

Metadata Record: https://dspace.lboro.ac.uk/2134/376

Please cite the published version.
MULTIPLE SCATTERING BY MULTIPLE SPHERES:
A NEW PROOF OF THE LLOYD–BERRY FORMULA
FOR THE EFFECTIVE WAVENUMBER*

C. M. LINTON† AND P. A. MARTIN‡

Abstract. We provide the first classical derivation of the Lloyd–Berry formula for the effective
wavenumber of an acoustic medium filled with a sparse random array of identical small scatterers.
Our approach clarifies the assumptions under which the Lloyd–Berry formula is valid. More precisely,
we derive an expression for the effective wavenumber which assumes the validity of Lax’s quasi-
crystalline approximation but makes no further assumptions about scatterer size, and then we show
that the Lloyd–Berry formula is obtained in the limit as the scatterer size tends to zero.

Key words. multiple scattering, effective wavenumber, random media, acoustics

AMS subject classifications. 74J20, 78A45, 78A48

1. Introduction. Suppose that we are interested in the scattering of sound by
many small scatterers; for example, we might be interested in using ultrasound to
determine the quality of certain composites [14], fresh mortar [2], or food products
such as mayonnaise [21]. If we knew the shape, size, and location of every scatterer,
we could solve the multiple-scattering problem by solving a boundary integral equa-
tion, for example. However, usually we do not have this information. Thus, it is
common to regard the volume containing the scatterers as a random medium, with
certain average (homogenized) properties. Here, we are concerned with finding an
effective wavenumber, \(K \), that can be used for modelling wave propagation through
the scattering volume. This is a classical topic, with a large literature: we cite well-
known papers by Foldy [7], Lax [16, 17], Waterman and Truell [25], Twersky [23], and
Fikioris and Waterman [6], and we refer to the book by Tsang et al. [22] for more
information.

A typical problem is the following. The region \(z < 0 \) is filled with a homogeneous
compressible fluid of density \(\rho \) and sound-speed \(c \). The region \(z > 0 \) contains the
same fluid and many scatterers; to fix ideas, suppose that the scatterers are identical
spheres. Then, a time-harmonic plane wave with wavenumber \(k = \omega/c \) (\(\omega \) is the an-
gular frequency) is incident on the scatterers. The scattered field may be computed
exactly for any given configuration (ensemble) of \(N \) spheres, but the cost increases as
\(N \) increases. If the computation can be done, it may be repeated for other configura-
tions, and then the average reflected field could be computed (this is the Monte-Carlo
approach). Instead of doing this, we shall do some ensemble averaging in order to
calculate the average (coherent) field. One result of this is a formula for \(K \).

Foldy [7] considered isotropic point scatterers; this is an appropriate model for
small sound-soft scatterers. He obtained the formula

\[
K^2 = k^2 - 4\pi g n_0 / k,
\]

where \(n_0 \) is the number of spheres per unit volume and \(g \) is the scattering coefficient for
an isolated scatterer. The formula (1.1) assumes that the scatterers are independent

*This work was partially supported by EPSRC (UK) grant GR/S35585/01.
†Department of Mathematical Sciences, Loughborough University, Leicestershire LE11 3TU, UK
(c.m.linton@lboro.ac.uk)
‡Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO
80401 (pamartin@mines.edu)
and that n_0 is small. We are interested in calculating the correction to (1.1) (a term proportional to n_0^2), and this will require saying more about the distribution of the scatterers; specifically, we shall use pair correlations. Thus, our goal is a formula of the form

$$K^2 = k^2 + \delta_1 n_0 + \delta_2 n_0^2,$$

with computable expressions for δ_1 and δ_2. Moreover, we do not only want to restrict our formula to sound-soft scatterers.

There is some controversy over the proper value for δ_2. In order to state one such formula, we introduce the far-field pattern f. For scattering by one sphere, we have $u_{in} = \exp(i\mathbf{k} \cdot \mathbf{r})$ for the incident plane wave, where $\mathbf{k} = \mathbf{k}^0$, $\mathbf{r} = r\hat{r}$, $k = |\mathbf{k}|$ and $r = |\mathbf{r}|$; the angle of incidence, θ_{in}, is defined by $\cos \theta_{in} = \hat{k} \cdot \hat{z}$, where $\hat{z} = (0,0,1)$ is a unit vector in the z-direction. Then the scattered waves satisfy

$$u_{sc} \sim (ikr)^{-1} e^{ikr} f(\Theta) \quad \text{as} \quad kr \to \infty,$$

where $\cos \Theta = \hat{r} \cdot \hat{k}$. Then, Twersky [23] has obtained (1.2) with

$$\delta_1 = -(4\pi i/k) f(0) \quad \text{and} \quad \delta_2 = (4\pi^2/k^4) \sec^2 \theta_{in} \left\{ [f(\pi - 2\theta_{in})]^2 - [f(0)]^2 \right\}.$$

This formula involves θ_{in}, so that it gives a different effective wavenumber for different incident fields. The same formulas but with $\theta_{in} = 0$ (normal incidence) were given by Urick and Ament [24] and by Waterman and Truell [25]:

$$\delta_1 = -(4\pi i/k) f(0) \quad \text{and} \quad \delta_2 = (4\pi^2/k^4) \left\{ [f(\pi)]^2 - [f(0)]^2 \right\}.$$

Other formulas were obtained more recently [13, 27].

In 1967, Lloyd and Berry [19] showed that the formula for δ_2 should be

$$\delta_2 = \frac{4\pi^2}{k^4} \left\{ -[f(\pi)]^2 + [f(0)]^2 + \int_0^\pi \frac{1}{\sin(\theta/2)} \, d\theta \left[f(\theta) \right]^2 \, d\theta \right\},$$

with no dependence on θ_{in}. They used methods and language coming from nuclear physics. Thus, in their approach, which they “call the ‘resummation method’, a point source of waves is considered to be situated in an infinite medium. The scattering series is then written out completely, giving what Lax has called the ‘expanded’ representation. In this expanded representation the ensemble average may be taken exactly [but then] the coherent wave does not exist; the series must be resummed in order to obtain any result at all.” The main purpose of the present paper is to demonstrate that a proper analysis of the semi-infinite model problem (with arbitrary angle of incidence) leads to the Lloyd–Berry formula. Our analysis does not involve “resumming” series or divergent integrals. It builds on a conventional approach, in the spirit of the paper by Fikioris and Waterman [6].

There are two good reasons for giving a new derivation of the Lloyd–Berry formula. First, our analysis clarifies the assumptions that lead to (1.6). Second, erroneous formulas (such as (1.4) or (1.5)) continue to be used widely, perhaps because they are simpler than (1.6) or perhaps because the original derivation in [19] seems suspect. For some representative applications, see [14, 2, 20] and [21, chapter 4].

The paper begins with a brief summary of some elementary probability theory. The pair-correlation function is introduced, including the notion of “hole correction”, which ensures that spheres do not overlap during the averaging process. In §3, we
consider isotropic scatterers, and derive the integral equations of Foldy (independent scatterers, no hole correction) and of Lax (hole correction included). Foldy’s equation is solved exactly. A method is developed in §3.2 for obtaining an expression for K which does not require an exact solution of the integral equation, merely an assumption that an effective wavenumber can be used at some distance from the “interface” at $z = 0$ between the homogeneous region ($z < 0$) and the region occupied by many small scatterers ($z > 0$). The virtue of this method is that it succeeds when the governing integral equation cannot be solved exactly. Thus, in §3.3, we obtain an expression for K from Lax’s integral equation; Foldy’s approximation is recovered when the hole correction is removed. The same method is used in §4 but without the restriction to isotropic scatterers. We start with an exact, deterministic theory for acoustic scattering by N spheres; the spheres can be soft, hard, or penetrable. We combine multipole solutions in spherical polar coordinates with an appropriate addition theorem. This method is well known; for some recent applications, see [15, 9, 11]. The exact system of equations is then subjected to ensemble averaging in §4.3; Lax’s “quasi-crystalline approximation” [17] is invoked. This leads to a homogeneous infinite system of linear algebraic equations; the existence of a non-trivial solution determines K. We solve the system for small n_0 and recover the Lloyd–Berry formula.

An analogous theory can be developed in two dimensions, and leads to a result that is reminiscent of the Lloyd–Berry formula [18]. However, the three-dimensional calculations described below are much more complicated, as they involve addition theorems for spherical wavefunctions and properties of spherical harmonics. Nevertheless, the final results are rather simple.

2. Some probability theory. In this section, we give a very brief summary of the probability theory needed. For more information, see [7], [16] or chapter 14 of [12].

Suppose we have N scatterers located at the points r_1, r_2, \ldots, r_N; denote the configuration of points by $\Lambda_N = \{r_1, r_2, \ldots, r_N\}$. Then, the ensemble (or configurational) average of any quantity $F(r|\Lambda_N)$ is defined by

$$\langle F(r) \rangle = \int \cdots \int p(r_1, r_2, \ldots, r_N) F(r|\Lambda_N) \, dV_1 \cdots dV_N,$$

where the integration is over N copies of the volume B_N containing N scatterers. Here, $p(r_1, \ldots, r_N) \, dV_1 \, dV_2 \cdots dV_N$ is the probability of finding the scatterers in a configuration in which the first scatterer is in the volume element dV_1 about r_1, the second scatterer is in the volume element dV_2 about r_2, and so on, up to r_N. The joint probability distribution $p(r_1, \ldots, r_N)$ is normalized so that $\langle 1 \rangle = 1$. Similarly, the average of $F(r|\Lambda_N)$ over all configurations for which the first scatterer is fixed at r_1 is given by

$$\langle F(r) \rangle_1 = \int \cdots \int p(r_2, \ldots, r_N|r_1) F(r|\Lambda_N) \, dV_2 \cdots dV_N,$$

where the conditional probability $p(r_2, \ldots, r_N|r_1)$ is defined by $p(r_1, r_2, \ldots, r_N) = p(r_1)p(r_2, \ldots, r_N|r_1)$. If two scatterers are fixed, say the first and the second, we can define

$$\langle F(r) \rangle_{12} = \int \cdots \int p(r_3, \ldots, r_N|r_1, r_2) F(r|\Lambda_N) \, dV_3 \cdots dV_N,$$

where $p(r_2, \ldots, r_N|r_1) = p(r_2|r_1)p(r_3, \ldots, r_N|r_1, r_2)$.

MUTIPLE SCATTERING BY MANY SPHERES 3
As each of the \(N \) scatterers is equally likely to occupy \(dV \), the density of scatterers at \(\mathbf{r}_1 \) is \(Np(\mathbf{r}_1) = n_0 \), the (constant) number of scatterers per unit volume. Thus
\[
(2.4) \quad p(\mathbf{r}) = n_0/N = |B_N|^{-1},
\]
where \(|B_N| \) is the volume of \(B_N \). For spheres of radius \(a \), the simplest sensible choice for the pair-correlation function is
\[
(2.5) \quad p(\mathbf{r}_2|\mathbf{r}_1) = (n_0/N)H(R_{12} - b), \quad \text{where } R_{12} = |\mathbf{r}_1 - \mathbf{r}_2|
\]
and \(H \) is the Heaviside unit function: \(H(x) = 1 \) for \(x > 0 \) and \(H(x) = 0 \) for \(x < 0 \). The parameter \(b \) (the “hole radius”) satisfies \(b \geq 2a \) so that spheres are not allowed to overlap.

3. Foldy–Lax theory: isotropic scatterers. Foldy’s theory [7] begins with a simplified deterministic model for scattering by \(N \) identical scatterers, each of which is supposed to scatter isotropically. Thus, the total field is assumed to be given by the incident field plus a point source at each scattering center, \(\mathbf{r}_j \):
\[
(3.1) \quad u(\mathbf{r}|\Lambda_N) = u_{\text{in}}(\mathbf{r}) + g \sum_{j=1}^{N} u_{\text{ex}}(\mathbf{r}_j; \mathbf{r}_j|\Lambda_N) h_0(|\mathbf{r} - \mathbf{r}_j|).
\]

Here, \(h_n(w) \equiv h_n^{(1)}(w) \) is a spherical Hankel function, \(g \) is the (assumed known) scattering coefficient, and the exciting field \(u_{\text{ex}} \) is given by
\[
(3.2) \quad u_{\text{ex}}(\mathbf{r}; \mathbf{r}_n|\Lambda_N) = u_{\text{in}}(\mathbf{r}) + g \sum_{j=1}^{N} u_{\text{ex}}(\mathbf{r}_j; \mathbf{r}_j|\Lambda_N) h_0(|\mathbf{r} - \mathbf{r}_j|);
\]

the \(N \) numbers \(u_{\text{ex}}(\mathbf{r}_j; \mathbf{r}_j|\Lambda_N) \) \((j = 1, 2, \ldots, N) \) required in (3.1) are to be determined by solving the linear system obtained by evaluating (3.2) at \(\mathbf{r} = \mathbf{r}_n \).

If we try to compute the ensemble average of \(u \), using (3.1) and (2.1), we obtain
\[
(3.3) \quad \langle u(\mathbf{r}) \rangle = u_{\text{in}}(\mathbf{r}) + gn_0 \int_{B_N} \langle u_{\text{ex}}(\mathbf{r}_1) \rangle_1 h_0(|\mathbf{r} - \mathbf{r}_1|) \, dV_1,
\]
where we have used (2.2), (2.4) and the indistinguishability of the scatterers. For \(\langle u_{\text{ex}}(\mathbf{r}_1) \rangle_1 \), we obtain
\[
(3.4) \quad \langle u_{\text{ex}}(\mathbf{r}) \rangle_1 = u_{\text{in}}(\mathbf{r}) + g(N - 1) \int_{B_N} p(\mathbf{r}_2|\mathbf{r}_1) \langle u_{\text{ex}}(\mathbf{r}_2) \rangle_2 h_0(|\mathbf{r} - \mathbf{r}_2|) \, dV_2,
\]
where we have used (2.3) and (3.2). Equations (3.3) and (3.4) are the first two in a hierarchy, involving more and more complicated information on the statistics of the scatterer distribution. In practice, the hierarchy is broken using an additional assumption. At the lowest level, we have Foldy’s assumption,
\[
(3.5) \quad \langle u_{\text{ex}}(\mathbf{r}) \rangle_1 \simeq \langle u(\mathbf{r}) \rangle,
\]
at least in the neighborhood of \(\mathbf{r}_1 \). When this is used in (3.3), we obtain
\[
(3.6) \quad \langle u(\mathbf{r}) \rangle = u_{\text{in}}(\mathbf{r}) + gn_0 \int_{B_N} \langle u(\mathbf{r}_1) \rangle h_0(|\mathbf{r} - \mathbf{r}_1|) \, dV_1, \quad \mathbf{r} \in B_N.
\]
We call this Foldy’s integral equation for \(\langle u \rangle \). The integral on the right-hand side is an acoustic volume potential. Hence, an application of \((\nabla^2 + k^2)\) to (3.6) eliminates the incident field and shows that \((\nabla^2 + K^2)\langle u \rangle = 0\) in \(B_N\), where \(K^2\) is given by Foldy’s formula, (1.1).

At the next level, we have Lax’s quasi-crystalline assumption (QCA) [17],

\[
\langle u_{ex}(r) \rangle_{12} \simeq \langle u_{ex}(r) \rangle_2.
\]

When this is used in (3.4) evaluated at \(r = r_1 \), we obtain

\[
v(r) = u_{in}(r) + g(N-1) \int_{B_N} p(r_1|r) v(r_1) h_0(k|r - r_1|) \, dV_1, \quad r \in B_N,
\]

where \(v(r) = \langle u_{ex}(r) \rangle_1 \). We call this Lax’s integral equation.

In what follows, we let \(N \to \infty \) so that \(B_N \to B_\infty \), a semi-infinite region, \(z > 0 \).

3.1. Foldy’s integral equation: exact treatment. Consider a plane wave at oblique incidence, so that

\[
u_{in} = \exp(ik \cdot r) = e^{i\alpha z} \exp(ik_T \cdot q)
\]

where \(r = (x, y, z) \), \(q = (x, y, 0) \), \(k = k_T + \alpha \hat{z} \), \(\alpha = (0, 0, 1) \), the wavenumber vector \(k \) is given in spherical polar coordinates by

\[
k = k\hat{k} \quad \text{with} \quad \hat{k} = (\sin \theta_{in} \cos \phi_{in}, \sin \theta_{in} \sin \phi_{in}, \cos \theta_{in}), \quad 0 \leq \theta_{in} < \pi/2,
\]

\(\alpha = k \cos \theta_{in} \) and \(k_T \) is the transverse wavenumber vector, satisfying \(k_T \cdot \hat{z} = 0 \).

For a semi-infinite domain \(B_\infty (z > 0) \), Foldy’s integral equation (3.6) becomes

\[
\langle u(x, y, z) \rangle = u_{in}(x, y, z) + g_n \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \langle u(x + X, y + Y, z_1) \rangle h_0(kq_1) \, dX \, dY \, dz_1,
\]

for \(0 \leq |x| < \infty, 0 \leq |y| < \infty \) and \(z > 0 \), where \(q_1 = \sqrt{X^2 + Y^2 + (z - z_1)^2} \). This equation can be solved exactly. Thus, writing

\[
\langle u(x, y, z) \rangle = U(z) \exp(ik_T \cdot q), \quad 0 \leq |q| < \infty, \quad z > 0,
\]

we obtain

\[
U(z) = e^{i\alpha z} + g_n \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty U(z_1) h_0(kq_1) \exp(ik_T \cdot Q) \, dX \, dY \, dz_1
\]

for \(z > 0 \), where \(Q = (X, Y, 0) \).

In Appendix B, it is shown that

\[
\int_{-\infty}^\infty \int_{-\infty}^\infty h_0(kq_1) \exp(ik_T \cdot Q) \, dX \, dY = \frac{2\pi}{k\alpha} e^{i\alpha|z-z_1|}.
\]

Thus, we see that \(U \) solves

\[
U(z) = e^{i\alpha z} + \frac{2\pi g_n}{k\alpha} \int_0^\infty U(z_1) e^{i\alpha|z-z_1|} \, dz_1, \quad z > 0.
\]

Now, put \(U(z) = U_0 e^{i\lambda z} \), so that (3.13) gives

\[
U_0 e^{i\lambda z} - e^{i\alpha z} = \frac{2\pi g_n}{k\alpha} U_0 \left(\frac{2\alpha e^{i\lambda z}}{\lambda^2 - \alpha^2} - e^{i\alpha z} \frac{\lambda}{\lambda - \alpha}\right),
\]
where we have assumed that \(\text{Im} \lambda > 0 \). If we compare the coefficients of \(e^{i\lambda z} \), we see that \(U_0 \) cancels, leaving

\[
\lambda^2 - \alpha^2 = -4\pi i g_0 / k, \tag{3.14}
\]

which determines \(\lambda \). Then, the coefficients of \(e^{i\alpha z} \) give \(U_0 = 2\alpha / (\lambda + \alpha) \). A similar method can be used to find \(\langle u \rangle \) when \(B_\infty \) is a slab of finite thickness, \(0 < z < h \).

It is natural to define an effective wavenumber vector by

\[
K = K(\sin \vartheta \cos \varphi, \ \sin \vartheta \sin \varphi, \ \cos \vartheta) = K \hat{\mathbf{K}}
= (k \sin \theta_{\text{in}} \cos \phi_{\text{in}}, \ k \sin \theta_{\text{in}} \sin \phi_{\text{in}}, \ \lambda),
\tag{3.15}
\]

whence

\[
\lambda = K \cos \vartheta \quad \text{and} \quad K \sin \vartheta = k \sin \theta_{\text{in}}.
\tag{3.16}
\]

The last equality is recognized as Snell’s law, even though \(K \) and \(\theta \) are complex, with \(\text{Im} K > 0 \). Hence, we see that

\[
\lambda^2 - \alpha^2 = K^2 - k^2,
\tag{3.17}
\]

whence (3.14) reduces to Foldy’s formula (1.1).

3.2. Foldy’s integral equation: alternative treatment

We have seen that Foldy’s integral equation can be solved exactly, and that the solution process has two parts: first find \(\lambda \) (and hence the effective wavenumber) and then find \(U_0 \). In fact, \(\lambda \) can be found without finding the complete solution; the reason for pursuing this is that we cannot usually find exact solutions. Thus, consider (3.13), and suppose that

\[
U(z) = U_0 e^{i\lambda z} \quad \text{for} \ z > \ell,
\]

where \(U_0 \), \(\lambda \) and \(\ell \) are unknown. To proceed, we need say nothing about the solution \(U \) in the “boundary layer” \(0 < z < \ell \). Now, evaluate the integral equation for \(z > \ell \); we find that

\[
U_0 e^{i\lambda z} - e^{i\alpha z} = \frac{2\pi i g_0}{k \alpha} e^{i\alpha z} \int_0^\ell U(t) e^{-i\alpha t} \, dt + \frac{2\pi i g_0}{k \alpha} \int_\ell^\infty U(t) e^{i\alpha |z-t|} \, dt
= A e^{i\lambda z} + B e^{i\alpha z} \quad \text{for} \ z > \ell,
\]

where \(A = -4\pi i g_0 U_0 / [k(\lambda^2 - \alpha^2)] \) and

\[
B = \frac{2\pi i g_0}{k \alpha} \int_0^\ell U(t) e^{-i\alpha t} \, dt + \frac{2\pi i g_0 U_0}{k \alpha (\lambda - \alpha)} e^{i(\lambda - \alpha)\ell}.
\]

Then, setting \(U_0 = A \) gives (3.14) again, without knowing the solution \(U \) everywhere. This basic method will be used again below.

3.3. Lax’s integral equation

Using (2.5) for \(p(r_1|r) \) in (3.8) gives

\[
v(r) = u_{\text{in}}(r) + g_0 \frac{N-1}{N} \int_{B_N^b(r_1)} v(r_1) h_0(kR_1) \, dr_1, \quad r \in B_N,
\tag{3.18}
\]

where \(B_N^b(r) = \{ r_1 \in B_N : R_1 = |r - r_1| > b \} \), which is \(B_N \) with a (possibly incomplete) ball excluded.
Let \(N \to \infty \) and take an incident plane wave, (3.9), giving
\[
v(x, y, z) = e^{i\alpha z} \exp(i k_T \cdot q) = g_{n_0} \int_{z_1 > 0, \, \phi_1 > 0} v(x + X, y + Y, z_1) h_0(k q_1) \, dX \, dY \, dz_1,
\]
for \(0 \leq |q| < \infty \) and \(z > 0 \). As in §3.1, we write
\[
v(x, y, z) = V(z) \exp(i k_T \cdot q), \quad 0 \leq |q| < \infty, \quad z > 0,
\]
giving
\[
V(z) = e^{i\alpha z} + g_{n_0} \int_{z_1 > 0, \, \phi_1 > 0} V(z_1) h_0(k q_1) \exp(i k_T \cdot q) \, dX \, dY \, dz_1,
\]
for \(0 \leq |q| < \infty \) and \(z > 0 \). Then, using (3.12), we see that \(V \) solves
\[
V(z) = e^{i\alpha z} + g_{n_0} \int_{0}^{\infty} V(z_1) \mathcal{L}(z - z_1) \, dz_1, \quad z > 0,
\]
where the kernel, \(\mathcal{L}(z - z_1) \), is given by
\[
(3.22) \mathcal{L}(z) = \frac{2\pi}{k \alpha} e^{i\alpha z} - \int_{0}^{c(z)} h_0(k \sqrt{Q^2 + z^2}) e^{i k Q \sin \theta_m \cos(\Phi - \phi_m)} Q \, d\Phi \, dQ
\]
\[
= \frac{2\pi}{k \alpha} e^{i\alpha z} - 2\pi \int_{0}^{c(z)} h_0(k \sqrt{Q^2 + z^2}) J_0(k Q \sin \theta_m) Q \, dQ
\]
with \(c(Z) = \sqrt{b^2 - z^2} \). Here, \(J_n \) is a Bessel function and we have written the double integral over \(X \) and \(Y \) in (3.20) as an integral over all \(X \) and \(Y \) minus an integral through the cross-section of the ball at \(z \), if necessary.

We have been unable to solve (3.21) exactly. However, the alternative method described in §3.2 can be used. Thus, let us suppose that
\[
(3.23) V(z) = V_0 e^{i\lambda z} \quad \text{for} \quad z > \ell,
\]
where \(V_0, \lambda \) and \(\ell \) are unknown. Then, consider (3.21) for \(z > \ell + b \), so that the interval \(|z - z_1| < b \) is entirely within the range \(z_1 > \ell \). Using (3.22), (3.21) gives
\[
(3.24) \frac{V_0 e^{i\lambda z} - e^{i\alpha z}}{g_{n_0}} = \frac{2\pi}{k \alpha} e^{i\alpha z} \int_{\ell}^{\ell + b} V(t) e^{-i\kappa t} dt + \frac{2\pi}{k \alpha} \int_{\ell}^{\infty} V(t) e^{i\alpha(z-t)} dt
\]
\[
- 2\pi \int_{z-b}^{z+b} V(t) \int_{0}^{c(z-t)} h_0(k \sqrt{Q^2 + (z-t)^2}) J_0(k Q \sin \theta_m) Q \, dQ \, dt
\]
for \(z > \ell + b \). Equation (3.23) can be used in the second and third integrals. The second integral is elementary, and has the value
\[
\frac{2\pi i V_0}{k \alpha} \left\{ \frac{e^{i(\lambda - \alpha)/\ell}}{\lambda - \alpha} e^{i\alpha z} - \frac{2\alpha}{\lambda^2 - \alpha^2} e^{i\lambda z} \right\}.
\]
Denote the third integral in (3.24) by \(I_3 \); we have
\[
I_3 = -2\pi V_0 \int_{b}^{b} \frac{e^{i\lambda(z+\xi)}}{\sqrt{b^2 - \xi^2}} \int_{0}^{\sqrt{b^2 - \xi^2}} h_0(k \sqrt{Q^2 + \xi^2}) J_0(k Q \sin \theta_m) Q \, dQ \, d\xi
\]
\[
= -2\pi V_0 e^{i\lambda z} \int_{0}^{\pi} \int_{0}^{b} e^{i\lambda r \cos \theta} h_0(k r) J_0(k r \sin \theta \sin \theta_m) r^2 \sin \theta \, dr \, d\theta
\]
\[
= -V_0 e^{i\lambda z} \int_{0}^{2\pi} \int_{0}^{\pi} e^{i\lambda r \cos \theta + k r \sin \theta \sin \theta_m \cos(\phi - \phi_m)} h_0(k r) r^2 \sin \theta \, dr \, d\theta \, d\phi.
\]
Using (3.16), the exponent simplifies to $K \cdot r$, whence

$$I_3 = -V_0 e^{i\lambda z} \int_{r < b} \exp(iK \cdot r) h_0(k|r|) \, dV(r)$$

$$= -2\pi V_0 e^{i\lambda z} \int_0^b \int_0^\pi \frac{e^{ikr \cos \theta}}{ikr} r^2 \sin \theta \, d\theta \, dr$$

$$= \frac{2\pi V_0}{kK} e^{i\lambda z} \int_0^b e^{ikr} (e^{iKr} - e^{-iKr}) \, dr = \frac{4\pi i V_0}{k(K^2 - k^2)} e^{i\lambda z} \{1 - N_0(Kb)\},$$

where $N_0(x) = e^{ikb} \{\cos x - i(kb/x) \sin x\}$. Using these results in (3.24), noting (3.17), we obtain

$$V_0 e^{i\lambda z} - e^{i\alpha z} = A e^{i\lambda z} + B e^{i\alpha z} \quad \text{for } z > \ell + b,$$

where

$$A = \frac{4\pi i g n_0 V_0}{k(k^2 - K^2)} N_0(Kb), \quad B = \frac{2\pi i g n_0}{k\alpha} \int_0^\ell V(t) e^{-i \alpha t} \, dt + \frac{2\pi i g n_0 V_0}{k\alpha(\lambda - \alpha)} e^{i(\lambda - \alpha)\ell}.$$

For a solution, we must have $A = V_0$, whence

$$K^2 = k^2 - 4\pi i g(n_0/k) N_0(Kb),$$

which is a nonlinear equation for K. Notice that this equation does not depend on the angle of incidence, θ_m.

We have $N_0(Kb) \to 1$ as $Kb \to 0$ so that, in this limit, we recover Foldy’s formula for the effective wavenumber, (1.1).

Let us solve (3.25) for small n_0. (We could use the dimensionless volume fraction $\frac{4}{3} \pi a^3 n_0$, but it is customary to use n_0.) Begin by writing

$$K^2 = k^2 + \delta_1 n_0 + \delta_2 n_0^2 + \cdots,$$

where δ_1 and δ_2 are to be found; for δ_1, we expect to obtain the result given by (1.1). It follows that $K = k + \frac{1}{2} \delta_1 n_0/k + O(n_0^2)$ and then

$$N_0(Kb) = N_0(kb) + (Kb - kb) N_0(kb) + \cdots$$

$$= 1 - \frac{1}{8} i k n_0(Kb) \delta_1 d_0(kb) + O(n_0^2),$$

where $d_0(x) = 1 - x^{-1} e^{ix} \sin x$. When this approximation for $N_0(Kb)$ is used in (3.25), we obtain

$$K^2 = k^2 - 4\pi i g n_0/k - 2\pi b g(n_0/k)^2 \delta_1 d_0(kb).$$

Comparison of this formula with (3.26) gives $\delta_1 = -4\pi i g/k$ (as expected) and $\delta_2 = 8\pi i g^2 k^{-3} d_0(kb)$, so that we obtain the approximation

$$K^2 = k^2 - \frac{4\pi i g}{k} n_0 + \frac{8\pi b g n_0}{k^3} \left(1 - e^{ib} \sin kb \frac{kb}{kb}\right).$$

(Recall that a common choice for the hole radius is $b = 2a$.) As far as we know, the formula (3.27) is new. Note that the second-order term in (3.27) vanishes in the limit $kb \to 0$.

4. A finite array of identical spheres: exact theory. Let O be the origin of three-dimensional Cartesian coordinates, so that a typical point has position vector $r = (x, y, z)$ with respect to O. Define spherical polar coordinates (r, θ, ϕ) at O, so that $\mathbf{r} = r \mathbf{r} = r (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. We consider N identical spheres, S_j, $j = 1, 2, \ldots, N$. The sphere S_j has radius a and center O_j at $r = \mathbf{r}_j$. We define spherical polar coordinates $(\rho_j, \theta_j, \phi_j)$ at O_j, so that

$$\rho_j = \rho_j \mathbf{r}_j = \rho_j (\sin \theta_j \cos \phi_j, \sin \theta_j \sin \phi_j, \cos \theta_j).$$

We assume that $\theta_j = 0$ is in the z-direction ($\theta = 0$).

Exterior to the spheres the pressure field is u, where

$$\nabla^2 u + k^2 u = 0.$$

Inside S_j, the field is u_j, where

$$\nabla^2 u_j + \kappa^2 u_j = 0,$$

$\kappa = \omega/c$ and c is the sound speed inside the spheres. The transmission conditions on the spheres are

$$u = u_j, \quad \frac{1}{\rho} \frac{\partial u}{\partial \rho_j} = \frac{1}{\tilde{\rho}} \frac{\partial u_j}{\partial \rho_j} \quad \text{on} \quad \rho_j = a, \quad j = 1, \ldots, N,$$

where $\tilde{\rho}$ is the fluid density inside the spheres.

A plane wave, given by (3.9), is incident on the spheres. The problem is to calculate the scattered field outside the spheres, defined as $u_{sc} = u - u_{in}$. We start with just one sphere, in order to fix our notation.

4.1. Scattering by one sphere. For the incident plane wave, we have

$$u_{in}(\mathbf{r}) = \exp (i \mathbf{k} \cdot \mathbf{r}) = 4\pi \sum_{n,m} i^n \hat{\psi}_n^m(\mathbf{r}) \overline{Y_n^m(\mathbf{k})},$$

where $\hat{\psi}_n^m(\mathbf{r}) = j_n(kr)Y_n^m(\hat{\mathbf{r}})$, $j_n(w)$ is a spherical Bessel function, $Y_n^m(\hat{\mathbf{r}}) = Y_n^m(\theta, \phi)$ is a spherical harmonic (see Appendix A), the overbar denotes complex conjugation and we have used the shorthand notation

$$\sum_{n,m} \equiv \sum_{n=0}^{\infty} \sum_{m=-n}^{n}.$$

With our choice of normalization, the spherical harmonics are orthonormal; see (A.1).

For the scattered and interior fields, we can write

$$u_{sc}(\mathbf{r}) = 4\pi \sum_{n,m} i^n A_n^m Z_n \psi_n^m(\mathbf{r}) \quad \text{and} \quad u_{int}(\mathbf{r}) = 4\pi \sum_{n,m} i^n B_n^m j_n(kr) Y_n^m(\hat{\mathbf{r}}),$$

respectively, where $\psi_n^m(\mathbf{r}) = h_n(kr)Y_n^m(\hat{\mathbf{r}})$, the coefficients A_n^m and B_n^m are to be found, and the factor

$$Z_n = \frac{q j_n'(ka) j_n(ka) - j_n(ka) j'_n(ka)}{qh_n'(ka) j_n(ka) - h_n(ka) j'_n(ka)}.$$
with \(q = \frac{\rho \tau}{(\rho c)} \), has been introduced for later convenience. Then, the transmission
conditions on \(r = a \) yield \(A_n^m \) and \(B_n^m \); in particular, we obtain \(A_n^m = -Y_n^m(k) \). Also,
the far-field pattern, defined by (1.3), is given by

\[
(4.6) \quad f(\Theta) = 4\pi \sum_{n,m} Z_n A_n^m Y_n^m(\hat{r}) = - \sum_{n=0}^{\infty} (2n+1) Z_n P_n(\cos \Theta),
\]

where \(\cos \Theta = \hat{r} \cdot \hat{k} \) and we have used (A.3) in order to evaluate the sum over \(m \). Note
that we recover the sound-soft results in the limit \(q \to 0 \), whereas the limit \(q \to 1 \) gives the sound-hard results.

4.2. Scattering by \(N \) spheres. A phase factor for each sphere is defined by

\[
(4.7) \quad u_{in} = I_j \exp(ik \cdot \rho_j) = 4\pi I_j \sum_{n,m} i^n \hat{\psi}_n^m(\rho_j) Y_n^m(k).
\]

We seek a solution to (4.1) and (4.2) in the form

\[
(4.8) \quad u = u_{in} + 4\pi \sum_{j=1}^{N} \sum_{n,m} i^n A_{nj}^m Z_n \hat{\psi}_n^m(\rho_j), \quad u_j = 4\pi \sum_{n,m} i^n B_{nj}^m j_n(\kappa \rho_j) Y_n^m(\hat{\rho}_j),
\]

for some set of unknown complex coefficients \(A_{nj}^m \) and \(B_{nj}^m \).

Now, in order to apply the transmission conditions on each sphere, we shall need
an addition theorem. Thus, given vectors \(a, b \) and \(c = a + b \), we have

\[
(4.9) \quad S_{ln}^{jm}(R) = 4\pi i^{n-m} (-1)^m \sum_{q} i^q \psi_{q}^{m-n}(R) G(n, m; \nu, -\mu; q).
\]

In this formula, \(G \) is a Gaunt coefficient (defined by (A.5)) and the sum has a finite
number of terms; in fact, \(q \) runs from \(|n - \nu| \) to \((n + \nu) \) in steps of 2, so that

\[
(4.10) \quad (q + n + \nu) \text{ is even.}
\]

For more information on the addition theorem, see [3, 9, 10] and references therein.

Let \(R_{sx} = r_s - r_j = \rho_s - \rho_j \) be the position vector of \(O_s \) with respect to \(O_j \).
Then, provided that \(\rho_s < R_{sx} = |R_{sx}| \) for all \(j \), we can write the field exterior to the
sphere \(S_s \) as

\[
(4.11) \quad u = 4\pi \sum_{n,m} i^n \left \{ I_n \hat{\psi}_n^m(\rho_s) Y_n^m(k) + A_n^m Z_n \hat{\psi}_n^m(\rho_s) \right \}
\]

\[
+ 4\pi \sum_{n,m} \hat{\psi}_n^m(\rho_s) \sum_{j=1}^{N} \sum_{\nu, \mu} i^{\nu} A_{\nu j}^\mu Z_{\nu j} S_{ln}^{jm}(R_{sx}).
\]

The geometrical restriction implies that this expression is valid near the surface of
\(S_s \) and so (4.11) can be used to apply the transmission conditions on \(\rho_s = a \). Thus,
after using the orthogonality of the functions $Y_n^m(\hat{\rho}_s)$, (A.1), and then eliminating the coefficients B_{nj}^m, we obtain

$$A_{ns}^m + \sum_{j=1}^{N} \sum_{\nu,\mu \neq s} i^{\nu-n} A_{\nu j}^\mu Z_\nu S_{\nu m}^m(R_{sj}) = -I_1 Y_n^m(k),$$

(4.12)

$s = 1, 2, \ldots, N,$

$n = 0, 1, 2, \ldots,$

$m = -n, \ldots, n,$

an infinite linear system of equations for A_{nj}^m. Note that the quantities $q,$ κ and a only enter the equations through the terms Z_ν.

4.3. Arrays of spheres: averaged equations. The above analysis applies to a specific configuration of scatterers. Now we take ensemble averages. Specifically, setting $s = 1$ in (4.12) and then taking the conditional average, using (2.5), we obtain

$$\langle A_{n1}^m \rangle_1 + n_0 \frac{N-1}{N} \sum_{\nu,\mu} i^{\nu-n} Z_\nu \int_{B_N: R_{12} > b} S_{\nu m}^m(R_{12}) \langle A_{\nu 2}^\mu \rangle_2 dV_2 = -I_1 \overline{Y_n^m(k)},$$

(4.13)

for $n = 0, 1, 2, \ldots$ and $m = -n, \ldots, n$. Then, we let $N \to \infty$ so that B_N becomes the half-space $z > 0$, and invoke Lax’s QCA, (3.7). This implies that $\langle A_{n2}^m \rangle_2 = \langle A_{n2}^m \rangle_2$. Hence, (4.13) reduces to

$$\langle A_{n1}^m \rangle_1 + n_0 \sum_{\nu,\mu} i^{\nu-n} Z_\nu \int_{z_2 > 0, R_{12} > b} S_{\nu m}^m(R_{12}) \langle A_{\nu 2}^\mu \rangle_2 dV_2 = -I_1 \overline{Y_n^m(k)},$$

(4.14)

for $n = 0, 1, 2, \ldots$ and $m = -n, \ldots, n$, where $q_{sj} = q_s - q_j$.

Proceeding as before, suppose that for sufficiently large z (say $z > \ell$) we can write

$$\Phi_n^m(z_1) = F_n^m e^{i\lambda z}.$$

(4.15)

Then if $z_1 > \ell + b$, (4.16) becomes

$$F_n^m e^{i\lambda z_1} + n_0 \sum_{\nu,\mu} (-i)^{\nu-n} Z_\nu \left\{ \int_0^\ell \Phi_n^\mu(z_2) L_{\nu m}^m(z_2) dz_2 + F_\nu^m e^{i\lambda z_1} M_{\nu m}^{\mu m} \right\} = -e^{i\alpha_{z_1}} \overline{Y_n^m(k)},$$

(4.16)

for $n = 0, 1, 2, \ldots$ and $m = -n, \ldots, n$, where $z_{21} = z_2 - z_1$.

$$L_{\nu m}^m(z_{21}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} S_{\nu m}^m(R_{21}) \exp(i k T \cdot q_{21}) dx_2 dy_2,$$

$$M_{\nu m}^{\mu m} = \int_{z_{21} > \ell} S_{\nu m}^m(R_{21}) \exp(i k T \cdot q_{21}) e^{i\lambda z_{21}} dV_2,$$

(4.17)
and we have used \(S_{\mu n}^{m}(r) = (-1)^{n+\nu} S_{\nu m}^{\mu}(r) \), a relation that follows from (4.9). Indeed, because of (4.9), it is sufficient to consider

\[
L_{n}^{m}(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_{n}^{m}(R) \exp(i k_{T} \cdot Q) \, dX \, dY
\]

for \(z < 0 \) and

\[
M_{n}^{m} = \int_{z_{2} > \ell, R_{21} > b} \psi_{n}^{m}(R_{21}) \Psi(R_{21}) \, dV_{2},
\]

where \(\Psi(R) = e^{i \lambda_{2}} \exp(i k_{T} \cdot Q) \) is \exp(iK \cdot R) and \(K = K \hat{K} \) is defined by (3.15).

From (B.5), we have

\[
L_{n}^{m}(z_{21}) = \frac{2\pi i^{n}}{k \alpha} Y_{n}^{m}(\hat{k}) e^{i \alpha(z_{1} - z_{2})} \quad \text{for} \quad z_{1} > z_{2}.
\]

Hence, \(L_{\nu n}^{\mu m} \) is proportional to \(e^{i \alpha(z_{1} - z_{2})} \) and so the integral term in (4.18) is proportional to \(e^{i \alpha z_{1}} \).

The volume integral \(M_{n}^{m} \) can be evaluated readily using Green’s theorem. We have \(\psi_{n}^{m} \nabla^{2} \Psi - \Psi \nabla^{2} \psi_{n}^{m} = (k^{2} - K^{2}) \psi_{n}^{m} \Psi \). It follows that

\[
M_{n}^{m} = \frac{1}{k^{2} - K^{2}} \int_{\partial B} \left[\psi_{n}^{m} \frac{\partial \Psi}{\partial n} - \Psi \frac{\partial \psi_{n}^{m}}{\partial n} \right] \, dS_{2},
\]

where \(\partial B \) consists of two parts, the plane \(z_{2} = \ell \) and the sphere \(R_{12} = b \). Now, on \(z_{2} = \ell \), \(\partial / \partial n = -\partial / \partial z_{2} \) and so we have

\[
- \int_{z_{2} = \ell} \left[\psi_{n}^{m} \frac{\partial \Psi}{\partial z_{2}} - \Psi \frac{\partial \psi_{n}^{m}}{\partial z_{2}} \right] \, dx_{2} \, dy_{2} = \frac{2\pi}{k \alpha} e^{i(\alpha - \lambda)(z_{1} - \ell)} Y_{n}^{m}(\hat{k}),
\]

using (B.8). Thus, the plane part of \(\partial B \) contributes a term to \(M_{\nu n}^{\mu m} \) proportional to \(e^{i(\alpha - \lambda)z_{1}} \), which in turn gives a contribution to (4.18) proportional to \(e^{i \alpha z_{1}} \).

Next, from (4.4), we have

\[
\Psi = \exp(i K \cdot R) = 4\pi \sum_{\nu, \mu} i^{\nu} j_{\nu}(KR) Y_{\nu}^{\mu}(\hat{R}) Y_{\nu}(\hat{K}).
\]

Then, the contribution from the sphere \(R_{12} = b \) is

\[
- \int_{\Omega} \left[\psi_{n}^{m} \frac{\partial \Psi}{\partial R} - \Psi \frac{\partial \psi_{n}^{m}}{\partial R} \right]_{R = b} b^{2} \, d\Omega
\]

\[
= 4\pi b^{2} \sum_{\nu, \mu} i^{\nu} Y_{\nu}^{\mu}(\hat{K}) \{ k j_{\nu}(Kb) h'_{\nu}(kb) - K j'_{\nu}(Kb) h_{\nu}(kb) \} \int_{\Omega} Y_{\nu}^{m} Y_{\nu}^{m} \, d\Omega
\]

\[
= 4\pi b^{2} \sum_{\nu, \mu} i^{\nu} Y_{\nu}^{m}(\hat{K}) \{ k j_{\nu}(Kb) h'_{\nu}(kb) - K j'_{\nu}(Kb) h_{\nu}(kb) \},
\]

which is independent of \(z_{1} \); here, \(\Omega \) is the unit sphere and we have used (A.1).

Collecting up our results, we find that (4.18) can be written as

\[
A_{n}^{m} e^{i \lambda z_{1}} + B_{n}^{m} e^{i \alpha z_{1}} = -e^{i \alpha z_{1}} Y_{n}^{m}(k),
\]

(4.19)
for $n = 0, 1, 2, \ldots, m = -n, \ldots, n$ and $z_1 > \ell + b$, where

$$
(4.20) \quad \mathcal{A}_n^m = F_n^m + \frac{(4\pi)^2}{k} \sum_{\nu, \mu} Z_{\nu} F_{\nu}^\mu \sum_q Y_q^{\nu-m}(\hat{K}) \mathcal{N}_q(Kb) \mathcal{G}(n, m; \nu, -\mu; q),
$$

and we have used (4.4) to remove a factor of $(-1)^{q+n+\nu}$. In particular, we note that \mathcal{N}_0 appeared in §3.3 during our analysis of Lax’s integral equation.

From (4.19), we immediately obtain $\mathcal{A}_n^m = 0$ for $n = 0, 1, 2, \ldots, m = -n, \ldots, n$. These equations yield an infinite homogeneous system of linear algebraic equations for F_n^m. The existence of a non-trivial solution to this system determines K.

It is worth noting that even though the solution of the system $\mathcal{A}_n^m = 0$ can depend on θ_m via K (see (3.15)), the effective wavenumber itself, K, should not depend on θ_m.

4.4. Approximate determination of K for small n_0. The only approximation made in the derivation of the system $\mathcal{A}_n^m = 0$ is the QCA, which is expected to be valid for small values of the scatterer concentration ($n_0 a^2 \ll 1$). We now assume (as in §3.3) that $n_0 b / k^2$ is also small and write $K^2 = k^2 + \delta_1 n_0 + \delta_2 n_0^2 + \ldots$. Then

$$
(4.22) \quad \mathcal{N}_n(Kb) = 1 - \frac{1}{2} i b n_0 / k \delta_1 d_n(kb) + O(n_0^2),
$$

where

$$
(4.23) \quad d_n(x) = x j_n'(x) [x h_n'(x) + h_n(x)] + [x^2 - n(n + 1)] j_n(x) h_n(x),
$$

and so

$$
(4.24) \quad \frac{\mathcal{N}_n(Kb)}{k^2 - K^2} = -\frac{1}{\delta_1 n_0} + \frac{i b d_n(kb)}{2k} + \frac{\delta_2}{\delta_1^2} + O(n_0^2).
$$

If (4.24) is substituted in $\mathcal{A}_n^m = 0$, with \mathcal{A}_n^m defined by (4.20), and $O(n_0^2)$ terms neglected, we obtain

$$
(4.25) \quad F_n^m = \frac{(4\pi)^2 i}{k \delta_1} (-1)^m \left(1 - \frac{n_0 \delta_2}{\delta_1}\right) \sum_{\nu, \mu} Z_{\nu} F_{\nu}^\mu W_{\nu\nu}^{\mu\mu} + \frac{(4\pi)^2 n_0}{2k^2} (-1)^m \sum_{\nu, \mu} Z_{\nu} F_{\nu}^\mu X_{\nu\nu}^{\mu\mu},
$$

where

$$
(4.26) \quad W_{\nu\nu}^{\mu\mu} = \sum_q Y_q^{\nu-m}(\hat{K}) \mathcal{G}(n, m; \nu, -\mu; q),
$$

$$
(4.27) \quad X_{\nu\nu}^{\mu\mu} = \sum_q Y_q^{\nu-m}(\hat{K}) \mathcal{G}(n, m; \nu, -\mu; q) d_q(kb).
$$

The Gaunt coefficients appear in the linearisation formula for spherical harmonics, (A.4). Replacing μ by $-\mu$ and ν by $\hat{\nu}$ in the complex conjugate of (A.4), we obtain

$$
W_{\nu\nu}^{\mu\mu} = Y_{\nu\nu}^{\mu}(\hat{K}) Y_{\nu\nu}^{\mu}(\hat{K})
$$

So, at leading order, (4.25) gives

$$
F_n^m = \frac{(4\pi)^2 i}{k \delta_1} Y_{\nu\nu}^{\mu}(\hat{K}) \sum_{\nu, \mu} Z_{\nu} F_{\nu}^\mu Y_{\nu\nu}^{\mu}(\hat{K}),
$$

where

$$
(4.28) \quad Y_{\nu\nu}^{\mu}(\hat{K}) = \sum_q Y_q^{\nu-m}(\hat{K}) \mathcal{G}(n, m; \nu, -\mu; q) d_q(kb).
$$

The effective wavenumber K can now be determined via an iterative procedure (4.19).
for \(n = 0, 1, 2, \ldots \) and \(m = -n, \ldots, n \). Put \(F_n^m = \overline{Y_n^m(\mathbf{K})} \tilde{F}_n^m \), whence
\[
\tilde{F}_n^m = \frac{(4\pi)^2 i}{k \delta_1} \sum_{\nu, \mu} Z_{\nu} \tilde{F}_{\nu}^\mu \overline{Y_{\nu}^\mu(\mathbf{K})} \overline{Y_{\nu}^\mu(\mathbf{K})},
\]
for \(n = 0, 1, 2, \ldots \) and \(m = -n, \ldots, n \). But the right-hand side of this equation does not depend on \(n \) or \(m \), so that \(\tilde{F}_n^m = \tilde{F} \), say. Hence
\[
(4.28) \quad \delta_1 = \frac{(4\pi)^2 i}{k} \sum_{\nu} (2\nu + 1) Z_{\nu} = -\frac{4\pi i}{k} f(0),
\]
where \(f \) is the far-field pattern, given by (4.6).

Returning to (4.25), we now put
\[
F_n^m = \overline{Y_n^m(\mathbf{K})} \tilde{F} + n_0 G_n^m,
\]
and then the \(O(n_0) \) terms give
\[
(4.30) \quad G_n^m = \overline{Y_n^m(\mathbf{K})} V + \frac{(4\pi)^2 b}{2k^2} (-1)^m \tilde{F} \sum_{\nu, \mu} Z_{\nu} \overline{Y_{\nu}^\mu(\mathbf{K})} X_{n\nu}^{m\mu},
\]
where
\[
(4.31) \quad V = \frac{(4\pi)^2 i}{k \delta_1} \sum_{\nu, \mu} Z_{\nu} G_{n\nu}^{m\mu} \overline{Y_{\nu}^\mu(\mathbf{K})} - \frac{\delta_2}{\delta_1} \tilde{F}.
\]
Note that \(V \) does not depend on \(n \) or \(m \). Substituting for \(G_{n\nu}^{m\mu} \) from (4.30) in (4.31), making use of (4.28), gives a formula for \(\delta_2 \):
\[
(4.32) \quad \delta_2 = \frac{(4\pi)^2 b}{2k^3} \sum_{n, m, \nu, \mu} (-1)^m Z_n Z_{\nu} \overline{Y_n^m(\mathbf{K})} \overline{Y_{\nu}^\mu(\mathbf{K})} X_{n\nu}^{m\mu}.
\]

So far we have not made any assumptions about the size of \(ka \) or \(kb \) (though clearly \(kb \geq 2ka \)). Now we will assume that \(kb \) is small. In the limit \(x \to 0 \), we have \(d_n(x) \sim in/x \). Using this approximation simplifies \(X_{n\nu}^{m\mu} \), defined by (4.27). Hence,
\[
(4.33) \quad \delta_2 \sim -\frac{1}{2} (4\pi/k)^4 \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty} Z_n Z_{\nu} K_{n\nu}(\mathbf{K}) \text{ as } kb \to 0,
\]
where
\[
(4.34) \quad K_{n\nu}(\mathbf{K}) = \sum_{m=\nu}^{n} \sum_{\mu=\nu}(-1)^m Y_n^m(\mathbf{K}) \overline{Y_{\nu}^\mu(\mathbf{K})} \sum_{q} Y_q^{\mu-m}(\mathbf{K}) \mathcal{G}(n, m; \nu, \mu; q).
\]
From (A.5) and \(\int_0^{2\pi} e^{im\phi} \, d\phi = 2\pi \delta_{0m} \), we have

\[
Y^\mu_{q}\(\mathbf{K}\) \mathcal{G}(n, m; \nu, -\mu; q) = (-1)^m \sum_M Y^\mu_M(\mathbf{K}) \int_{\Omega} Y^m_M Y^\mu_M d\Omega
\]

\[
= (-1)^m \frac{2q + 1}{4\pi} \int_{\Omega} Y^m_m(\hat{r}) Y^\mu_0(\hat{r}) P_q(\hat{r} \cdot \mathbf{K}) d\Omega(\hat{r}),
\]

using (A.3). Hence, using (A.3) two more times, we obtain

\[
K_{n\nu}(\mathbf{K}) = \frac{(2n + 1)(2\nu + 1)}{(4\pi)^3} \sum_q q(2q + 1) \int_{\Omega} P_n(\hat{r} \cdot \mathbf{K}) P_\nu(\hat{r} \cdot \mathbf{K}) P_q(\hat{r} \cdot \mathbf{K}) d\Omega(\hat{r})
\]

\[
= \frac{\sqrt{(2n + 1)(2\nu + 1)}}{(4\pi)^{3/2}} \sum_q q \sqrt{2q + 1} \mathcal{G}(n, 0; \nu, 0; q),
\]

where we have used \(Y^0_0 = \sqrt{(2n + 1)/(4\pi)} P_n \) and (A.5). When this formula for \(K_{n\nu} \) is substituted in (4.33), we obtain complete agreement with the formula of Lloyd and Berry [19]; see Appendix C.

In conclusion, we note that if we were to replace (2.5) with the (clearly unreasonable)

\[
p(r_2|r_1) = (u_0/N) H(|z_2 - z_1| - a),
\]

a similar analysis to that given above yields Twersky’s erroneous expression for \(\delta_2 \), as given in (1.4). We omit the details of this calculation, but see [19] for a related discussion and [18] for analogous calculations in two dimensions.

Appendix A. Spherical harmonics. We define spherical harmonics \(Y^m_n \) by

\[
Y^m_n(\hat{r}) = Y^m_n(\theta, \phi) = (-1)^m \sqrt{\frac{2n + 1}{4\pi}} \sqrt{\frac{(n - m)!}{(n + m)!}} P^m_n(\cos \theta) e^{im\phi},
\]

where \(P^m_n \) is an associated Legendre function. We have orthonormality,

\[
\int_{\Omega} Y^m_n Y^\nu_m d\Omega = \delta_{nm} \delta_{m\nu},
\]

where \(\Omega \) is the unit sphere. Also, \(Y^{m-n}_n = (-1)^m Y^m_{-n} \).

For \(0 \leq m \leq n \), we have the expansion

\[
\frac{P^m_n(t)}{(1 - t^2)^{m/2}} = \frac{1}{2^n n!} \frac{d^{m+n}}{dt^{m+n}} (t^2 - 1)^n = \sum_{l=0}^{[n-m]/2} B^{n,m}_{l} t^{n-m-2l},
\]

where \([n]\) denotes the integer part of \(n \). The coefficients \(B^{n,m}_l \) are known explicitly, but we shall not need them.

We shall make use of Legendre’s addition theorem, namely,

\[
P_n(\hat{r}_1 \cdot \hat{r}_2) = \frac{4\pi}{2n + 1} \sum_{m=-n}^n Y^m_n(\hat{r}_1) \overline{Y^m_n(\hat{r}_2)},
\]

where \(P_n(t) \) is a Legendre polynomial.
The linearisation formula for spherical harmonics is
\[Y_n^m(\hat{r}) Y_{\nu}^{\mu}(\hat{r}) = \sum_q Y_q^{m+\mu}(\hat{r}) \mathcal{G}(n, m; \nu, \mu; q), \]
where \(\mathcal{G} \) is a Gaunt coefficient. Note that \(\mathcal{G} \) is real. Making use of (A.1), we obtain
\[\mathcal{G}(n, m; \nu, -\mu; q) = (-1)^m \int_{\Omega} Y_n^m Y_q^{m+\mu} \overline{Y_q^{-m}} \, d\Omega. \]

Appendix B. Some integrals. Consider the integral
\[L(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_0(kR) \exp(ik_T \cdot Q) \, dX \, dY, \]
where \(R = |R|, R = (X, Y, z) \) and \(Q = (X, Y, 0) \). Put \(Q = Q(\cos \Phi, \sin \Phi, 0) \) so that \(k_T \cdot Q = kQ \sin \theta_m \cos(\Phi - \phi_m) \). Hence, as \(dX \, dY = Q \, dQ \, d\Phi \), we can integrate over \(\Phi \), giving
\[L(z) = 2\pi \int_0^{\infty} h_0(k \sqrt{Q^2 + z^2}) J_0(kQ \sin \theta_m) Q \, dQ. \]

We have
\[Q h_0(k \sqrt{Q^2 + z^2}) = \frac{Q e^{ik \sqrt{Q^2 + z^2}}}{ik \sqrt{Q^2 + z^2}} = \frac{1}{(ik)^2} \frac{d}{dQ} e^{ik \sqrt{Q^2 + z^2}}, \]
so that an integration by parts (using \(J_0 = -J_1 \)) gives
\[L(z) = 2\pi k^{-2} \{ e^{ikz} - \hat{L}(z) \}, \]
where
\[\hat{L}(z) = k \sin \theta_m \int_0^{\infty} J_1(kQ \sin \theta_m) e^{ik \sqrt{Q^2 + z^2}} \, dQ. \]

Now, from \([8, \text{eqn. 6.637(1)}]\) (with \(\nu = 1 \) therein), we have
\[\int_0^{\infty} \frac{e^{-a \sqrt{x^2 + \beta^2}}}{\sqrt{x^2 + \beta^2}} J_1(\gamma x) \, dx = I_{1/2}(X_-) K_{1/2}(X_+), \]
where \(X_\pm = \frac{1}{2} \beta \{ \sqrt{a^2 + \gamma^2} \pm a \}, \text{Re} \, a > 0, \text{Re} \, \beta > 0 \) and \(\text{Re} \, \gamma > 0 \). From \([1, 10.2.13 \text{and} 10.2.17]\), the modified Bessel functions are given by
\[I_{1/2}(w) = \{ 2/(\pi w) \}^{1/2} \sinh w \quad \text{and} \quad K_{1/2}(w) = \{ \pi/(2w) \}^{1/2} e^{-w} \]
so that
\[I_{1/2}(X_-) K_{1/2}(X_+) = (\beta \gamma)^{-1} \left\{ e^{-a \beta} - e^{-\beta \sqrt{a^2 + \gamma^2}} \right\}. \]
Then, differentiating (B.2) with respect to \(a \) gives
\[\gamma \int_0^{\infty} J_1(\gamma x) e^{-a \sqrt{x^2 + \beta^2}} \, dx = e^{-a \beta} - \frac{a}{\sqrt{a^2 + \gamma^2}} e^{-\beta \sqrt{a^2 + \gamma^2}}. \]
The calculations leading to (B.3) are certainly valid for \(\Re a > 0, \Re \beta > 0 \) and \(\Re \gamma > 0 \). We want to use it for \(\beta = z \); as the left-hand side of (B.3) is an even function of \(\beta \), we can replace \(\beta \) by \(|\beta| \) on the right-hand side. We also want to substitute \(a = -ik \) and \(\gamma = k \sin \theta_{in} \), so that \(\sqrt{a^2 + \gamma^2} = \pm ik \cos \theta_{in} \). To determine the sign, we note that (from [8, eqns. 6.671(1) and 6.671(2)])

\[
\gamma \int_0^\infty J_1(\gamma x) e^{ikx} \, dx = 1 - \frac{k}{\sqrt{k^2 - \gamma^2}} \quad \text{for } k > \gamma,
\]

implying that we should take \(\sqrt{a^2 + \gamma^2} = -ik \cos \theta_{in} \). (Alternatively, we note that the right-hand side of (B.3) is an analytic function of \(a \) in a cut plane; we can take the cut between \(a = i \gamma \) and \(a = -i \gamma \) (\(\gamma \) real and positive), and we choose the branch so that the right-hand side of (B.3) is real when \(a \) is real and positive. This leads to \(\sqrt{a^2 + \gamma^2} = -i\sqrt{k^2 - \gamma^2} \) when \(a = -ik \) with \(k > \gamma > 0 \).) Hence,

\[
\hat{L}(z) = e^{ik|z|} - e^{ik|z|} \cos \theta_{in} \sec \theta_{in}
\]

and so (B.1) gives

\[
(B.4) \quad L(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_0(kR) \exp(ik_T \cdot Q) \, dX \, dY = \frac{2\pi}{k^2 \cos \theta_{in}} e^{ik|z|} \cos \theta_{in}.
\]

This formula generalizes. Thus, let

\[
L^{m}_n(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^{m}_n(R) \exp(ik_T \cdot Q) \, dX \, dY,
\]

with \(\psi^{m}_n(r) = h_n(kr)Y^{m}_n(r) \). Then,

\[
(B.5) \quad L^{m}_n(z) = \frac{2\pi i^n}{k^2 \cos \theta_{in}} Y^{m}_n(\hat{k}) e^{-ikz \cos \theta_{in}} \quad \text{for } z < 0,
\]

with a similar formula for \(z > 0 \) (which we shall not need). When both \(m = 0 \) and \(\theta_{in} = 0 \), (B.5) reduces to a result obtained in [24].

To prove (B.5), begin by assuming that \(0 \leq m \leq n \). Let

\[
O^{m}_n(r) = h_n(kr) P^n_{m}(\cos \theta) e^{im\phi}.
\]

(\(\psi^{m}_n(r) \) is a normalized form of \(O^{m}_n(r) \).) Then, we have [5, 26, 4]

\[
O^{m}_n(r) = \mathcal{Y}^{m}_n h_0(kr),
\]

where the Erdélyi operator \(\mathcal{Y}^{m}_n \) is defined by

\[
\mathcal{Y}^{m}_n = (D_{xy})^n \sum_{l=0}^{[(n-m)/2]} (-1)^l B^{n,m}_l (D_z)^{n-m-2l}, \quad D_{xy} = -\frac{1}{k} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)
\]

and \(D_z = -k^{-1} \partial/\partial z \); the coefficients \(B^{n,m}_l \) appear in the expansion (A.2). Hence,

\[
O^{m}_n(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Omega^{m}_n(R) \exp(ik_T \cdot Q) \, dX \, dY = \sum_{l} (-1)^l B^{n,m}_l (D_z)^{n-m-2l} \mathcal{T}^{m}_l(z),
\]
where the sum is from \(l = 0 \) to the integer part of \((n - m)/2\), and
\[
I_m(z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp(ik_T \cdot Q) (D_{XY})^m h_0(kR) \, dX \, dY
\]
\[
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_0(kR) (-D_{XY})^m \exp(ik_T \cdot Q) \, dX \, dY = i^m \sin^m \theta_{in} e^{im\phi_{in}} L(z).
\]
Hence, substituting for \(L(z) \) from (B.4), and carrying out the differentiations with respect to \(z \), we obtain
\[
O_n^m(z) = \frac{2 \pi i^n}{k^2 \cos \theta_{in}} P_n^m(\cos \theta_{in}) e^{im\phi_{in}} e^{-ikz \cos \theta_{in}}
\]
for \(z < 0 \). The result (B.5) follows after multiplication by the appropriate normalisation constant. It can be shown that the same result is also true for \(n \geq m \).

Next, we consider an integral required in \(x_{4.3} \). We have
\[
Z_{z_2}^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Psi \frac{\partial \Omega_n^m}{\partial z_2} \, dx_2 \, dy_2
\]
where \(\Psi = \exp(iK \cdot R_{21}) \). Using
\[
D_2 \Omega_n^m = (2n + 1)^{-1} \{(n - m + 1) \Omega_{n+1}^m - (n + m) \Omega_{n-1}^m \}
\]
and (B.7) thrice gives the integral’s value as
\[
\frac{2 \pi}{k \alpha} e^{i(n - l - \alpha)} n^{-1}(n + \alpha) P_n^m(\cos \theta_{in}) e^{im\phi_{in}},
\]
where we have also used \((2n + 1)tP_n^m(t) = (n - m + 1)P_{n+1}^m(t) + (n + m)P_{n-1}^m(t)\).

Appendix C. The Lloyd–Berry formula. Recall the formula (1.6). From (4.6) and \(Y_n^0(\bar{r}) = \sqrt{(2n + 1)/(4\pi)}P_n(\cos \theta) \), we obtain
\[
f(\theta) = -\sqrt{4\pi} \sum_{n=0}^{\infty} \sqrt{2n + 1} Z_n Y_n^0.
\]
Then, the linearisation formula (A.4) gives
\[
[f(\theta)]^2 = \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty} \sum_q T(n, \nu; q) P_q(\cos \theta),
\]
where
\[
T(n, \nu; q) = \sqrt{4\pi(2n + 1)(2\nu + 1)(2q + 1)} Z_n Z_\nu G(n, 0; \nu, 0; q).
\]
Hence,
\[
-[f(\pi)]^2 + [f(0)]^2 = \sum_{n=0}^{\infty} \sum_{\nu=0}^{\infty} \sum_q T(n, \nu; q) \{1 - (-1)^q\}.
\]
For the integral term in (1.6), we use (C.1) and (C.3)

\[\int_0^\pi \frac{1}{\sin(\theta/2)} \frac{d}{d\theta} P_q(\cos \theta) \, d\theta = - \int_{-1}^1 \sqrt{1-x} P'_q(x) \, dx = (-1)^q - 1 - 2q. \]

(The last equality was obtained as follows. From [8, eqn. 7.225(1)], we have

\[\frac{2}{2n+1} \frac{1}{\sqrt{1+x}} \{ T_n(x) + T_{n+1}(x) \} = \int_{-1}^x \frac{1}{\sqrt{x-t}} P_n(t) \, dt \]

\[= 2(-1)^n \sqrt{1+x} + 2 \int_{-1}^x \sqrt{x-t} P'_n(t) \, dt, \]

after an integration by parts, where \(T_n(\cos \theta) = \cos n\theta \) is a Chebyshev polynomial and we have used \(P_n(-1) = (-1)^n \). Now, differentiate this formula with respect to \(x \) and then let \(x \to 1 \), using \(T_n(1) = 1 \) and \(T'_n(1) = 2n \). Substituting (C.1), (C.2) and (C.3) in (1.6) gives

\[\delta_2 = \frac{8\pi^2}{k^4} \sum_{n=0}^\infty \sum_{\nu=0}^\infty \sum_q q T(n, \nu; q), \]

which is the same as (4.33).

REFERENCES

