Temperature stable cold sintered
(Bi0.95Li0.05)(V0.9Mo0.1)O4-
Na2Mo2O7 microwave
dielectric composites

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: WANG, D. ... et al, 2019. Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-
Na2Mo2O7 microwave dielectric composites. Materials, 12 (9), 1370.

Additional Information:

- This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Metadata Record: https://dspace.lboro.ac.uk/2134/37679

Version: Published

Publisher: MDPI © The Authors

Rights: This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Please cite the published version.
Temperature Stable Cold Sintered (Bi$_{0.95}$Li$_{0.05}$)(V$_{0.9}$Mo$_{0.1}$)O$_4$-Na$_2$Mo$_2$O$_7$ Microwave Dielectric Composites

Dawei Wang 1,*, Shiyu Zhang 2, Di Zhou 3, Kaixin Song 1,4,*, Antonio Feteira 5, Yiannis Vardaxoglou 2, Will Whittow 2, Darren Cadman 2 and Ian M. Reaney 1,*

1 Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK; kxsong@hdu.edu.cn
2 Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK; S.Zhang@lboro.ac.uk (S.Z.); J.C.Vardaxoglou@lboro.ac.uk (Y.V.); W.G.Whittow@lboro.ac.uk (W.W.); D.A.Cadman@lboro.ac.uk (D.C.)
3 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China; zhoudi1220@xjtu.edu.cn
4 College of Electronics Information, Hangzhou Dianzi University, Hangzhou 310018, China
5 Christian Doppler Laboratory for Advanced Ferroic Oxides, Sheffield Hallam University, Sheffield S1 1WB, UK; a.feteira@shu.ac.uk
* Correspondence: dawei.wang@sheffield.ac.uk (D.W.); i.m.reaney@sheffield.ac.uk (I.M.R.)

Received: 6 March 2019; Accepted: 25 April 2019; Published: 27 April 2019

Abstract: Dense $(\text{Bi}_{0.95}\text{Li}_{0.05})(\text{V}_{0.9}\text{Mo}_{0.1})\text{O}_4$-$\text{Na}_2\text{Mo}_2\text{O}_7$ ($100-x$) wt.% $(\text{Bi}_{0.95}\text{Li}_{0.05})(\text{V}_{0.9}\text{Mo}_{0.1})\text{O}_4$ (BLVMO)-x wt.% $\text{Na}_2\text{Mo}_2\text{O}_7$ (NMO) composite ceramics were successfully fabricated through cold sintering at $150 \, ^\circ \text{C}$ under at 200 MPa for 30 min. X-ray diffraction, back-scattered scanning electron microscopy, and Raman spectroscopy not only corroborated the coexistence of BLVMO and NMO phases in all samples, but also the absence of parasitic phases and interdiffusion. With increasing NMO concentration, the relative permittivity (ε_r) and the Temperature Coefficient of resonant Frequency (TCF) decreased, whereas the Microwave Quality Factor (Q_f) increased. Near-zero TCF was measured for BLVMO-20wt.%NMO composites which exhibited $\varepsilon_r \sim 40$ and $Q_f \sim 4000$ GHz. Finally, a dielectric Graded Radial INdex (GRIN) lens was simulated using the range of ε_r in the BLVMO-NMO system, which predicted a 70% aperture efficiency at 26 GHz, ideal for 5G applications.

Keywords: cold sintering process; microwave dielectric ceramics; graded radial index lens

1. Introduction

Microwave (MW) dielectrics are used in wireless communication systems as resonators, filters, and capacitors [1]. For miniaturization and reliability, microwave devices are fabricated from Low/Ultra-Low Temperature Co-fired Ceramics (LTCC and ULTCC) due to their compatibility with sustainable and cheap electrodes such as Ag, Cu and Al [2–6]. Typically, MW ceramics have permittivity, $10 < \varepsilon_r < 100$, and quality factor, $2000 < Q_f < 200,000$, depending on the precise application along with near-zero Temperature Coefficient of resonant Frequency (TCF < $\pm 10 \, \text{MK}^{-1}$) [7–12]. Dielectric resonators require ultra-high Q_f (>40,000 GHz) and medium permittivity (20 < ε_r < 50) whereas LTCC typically have low ε_r (~ 10) and require only moderate Q_f (~ 2000) for 3/4G mobile technology [7–12].

Recently, the Cold Sintering Process (CSP) has shown potential to densify ceramics/composites/devices at $<200 \, ^\circ \text{C}$ [13–23]. Kahari et al., densified Li$_2$MoO$_4$ (LMO) ceramics at room temperature by adding water and applying pressure to powders. CSP LMO ceramics exhibited ε_r and Q_f similar
to conventional sintering [13]. Subsequently, CSP was studied by Guo et al., who applied this densification method to many different microwave materials and devices, including MoO$_3$, LMO, Na$_2$MoO$_4$, K$_2$MoO$_4$, (LiBi)$_{0.8}$MoO$_4$, and Na$_2$MoO$_4$ (NMO)-xPTFE composites [17-24]. More recently, Hong et al. investigated the plastic deformation and densification of NaCl at room temperature [20], and Induja et al. densified Al$_2$SiO$_3$ ceramics using CSP with the addition of NaCl [21]. Our recent work has demonstrated that low TCF (−4.7 ppm/°C) and high Q_f (16,000–22,000 GHz) could be achieved in Na$_{0.8}$Bi$_{0.2}$MoO$_4$-Li$_2$MoO$_4$ and magnetodielectric Li$_2$MoO$_4$-BaFe$_{12}$O$_{19}$ composites, respectively [22-24].

Among reported CSP microwave materials, only Na$_{0.8}$Bi$_{0.2}$MoO$_4$-Li$_2$MoO$_4$ composites have been shown to have near zero TCF but with a comparatively low ε_r (17.4) [22]. In the present work, (Bi$_{0.95}$Li$_{0.05}$)(V$_{0.9}$Mo$_{0.1}$)O$_4$ (BLVMO, $\varepsilon_r = 76$, TCF $= +81$ ppm/°C) and Na$_2$MoO$_4$ (NMO, ε_r of 11.6, TCF of −99 ppm/°C) were selected as cold sintering end-members to fabricate a composite series with the anticipation for delivering a medium ε_r (ca. 40–50), zero TCF ceramic suitable for MW applications [25-28]. The potential use CSP composites in a novel graded radial index (GRIN) dielectric lens is discussed.

2. Experimental Section

BLVMO and NMO powders were synthesized separately by solid-state reaction. Raw materials, including V$_2$O$_5$ (>99%, Acros Organics, Fisher Scientific, Waltham, MA, USA), MoO$_3$ (>99%, Acros Organics), Na$_2$CO$_3$ (99.9%, Fisher Scientific, Waltham, MA, USA), Li$_2$CO$_3$ (99.9%, Sigma-Aldrich, St. Louis, MO, USA) and Bi$_2$O$_3$ (99.9%, Acros Organics) were batched and ball-milled in isopropanol for 4 h. Dried powders were calcined at 600 °C and 500 °C for BLVMO and NMO, respectively. To prepare (100–x) wt.% BLVMO-x wt.% NMO (x = 0, 5, 10, 20, 40, 50, 80, 100) composite ceramics, BLVMO and NMO powder was mixed with 5–10 wt.% deionized water. Mixtures were hot-pressed 30 min at 150 °C at 200 MPa and dried 24 h at 120 °C to remove residual moisture. In addition, BLVMO and NMO bulk ceramics were conventionally sintered at 690 and 610 °C, respectively.

Bulk densities of ceramic pellets were calculated by the geometric method. Crystal structure, phase assemblage, microstructures of ceramic pellets were characterised by X-ray powder diffraction (XRD, D2 Phaser, Bruker, Billerica, MA, USA) using CuKα radiation, scanning electron microscopy (SEM, Inspect F, FEI, Hillsboro, OR, USA) and Raman spectroscopy (inVia Raman microscope, Renishaw, Wotton-under-Edge, UK) using a green laser with 514.5 nm at room temperature, respectively. Microwave properties of ceramic pellets were determined by a TE$_{015}$ dielectric resonator method using a vector network analyzer (R3767CH, Advantest Corporation, Tokyo, Japan). A Peltier device heated the cavity to measure the resonant frequency (f) from 25 °C to 85 °C. TCF was calculated according to:

$$\text{TCF} = \frac{f_T - f_{T_0}}{f_T \times (T - T_0)} \times 10^6$$

where the f_T and f_{T_0} were the TE$_{015}$ resonant frequencies at temperature T and T_0, respectively.

3. Results and Discussion

The bulk and relative densities of CSP BLVMO are 4.98 g/cm3 and 73%, respectively, which increase to 6.04 g/cm3 and 98% with the addition of NMO (Figure 1 and Table 1). Following an initial increase for x = 0.05, bulk densities decreased linearly due to a lower theoretical density of NMO compared with BLVMO (6.85 g/cm3 and 3.69 g/cm3 for BLVMO and NMO, respectively) [25-28]. The relative densities of (100–x) wt.% BLVMO-x wt.% NMO ceramics are >90% (except pure BLVMO), attaining 98% for 40 wt.% NMO, confirming that dense (100–x) wt.% BLVMO-x wt.% NMO composites could be readily fabricated by CSP.
15 and 129 different vibrational modes in BLVMO and NMO [26–29], respectively, given as follows:

\[\Gamma_{\text{BLVMO}} = 3A_g + 2A_u + 6B_g + 4B_u \] \hspace{1cm} (2)

\[\Gamma_{\text{NMO}} = 18A_g + 13A_u + 15B_{1g} + 19B_{1u} + 14B_{2g} + 18B_{2u} + 19B_{3g} + 13B_{3u} \] \hspace{1cm} (3)

In BLVMO, nine \(3A_g + 6B_g \) modes are Raman active and six \(2A_u + 4B_u \) modes are IR active [26–28]. In NMO, translations of Na and Mo atoms give \(3A_g + 2A_u + 3B_{1g} + 4B_{1u} + 3B_{2g} + 4B_{2u} + 3B_{3g} + 2B_{3u} \) and \(3A_g + 2A_u + 3B_{1g} + 4B_{1u} + 2B_{2g} + 3B_{2u} + 4B_{3g} + 3B_{3u} \) modes, respectively. Three \(B_{1u} + B_{2u} + B_{3u} \) modes are acoustic active and the remaining \(12A_g + 9A_u + 9B_{1g} + 12B_{1u} + 9B_{2g} + 12B_{2u} + 19B_{3g} + 9B_{3u} \) modes correspond to stretching and bending modes of \(\text{MoO}_4 \) and \(\text{MoO}_6 \) octahedra [29]. The Raman
spectra of (100−x) wt.% BLVMO-x wt.% NMO composites consist of a superposition of the spectral features exhibited by each individual phase, further confirming the coexistence of BLVMO and NMO in composite ceramics. Furthermore, the intensity of the NMO Raman modes increases with increasing NMO concentration. Several Raman bands in NMO (~86, 832, 872, 920 and 937 cm⁻¹) are visible in all (100−x) wt.% BLVMO-x wt.% NMO compositions, confirming the coexistence of BLVMO and NMO in the composites.

Figure 2. X-ray diffraction (XRD) patterns of (100−x) wt.% BLVMO-x wt.% NMO ceramic composites.

Figure 3. Raman spectra of (100−x) wt.% BLVMO-x wt.% NMO ceramic composites.

Back-Scattered Electron (BSE) scanning electron microscope images of fracture surfaces of conventionally-sintered BLVMO, cold-sintered BLVMO-20wt.%NMO and NMO are revealed in Figure 4. Dense microstructures are visible in all three compositions, in agreement with the data presented in Figure 1 and Table 1. The average grain size of BLVMO (1–2 µm, Figure 4a) is smaller than that of NMO (2–5 µm, Figure 4b), consistent with previous reports [25–28]. Figure 4c,d shows the composites to be composed two chemically distinct and discrete phases with EDS confirming the dark and light contrast to be NMO and BLVMO, respectively, in agreement with XRD and Raman (Figures 2 and 3).
The microwave properties of (100−x) wt.% BLVMO-x wt.% NMO as a function x are presented in Figure 5 and also listed in Table I. Low relative density (73%) of CSP BLVMO is observed which gives rise to lower \(\varepsilon_r \) (30) and \(Q_f \) (1300 GHz) than for conventionally-sintered BLVMO, Table 1. \(\varepsilon_r \) and TCF values decrease linearly from 48 and +41 ppm/°C, respectively, for BLVMO-5 wt.%NMO to 12.7 and -99 ppm/°C for NMO. Near-zero TCF (−4 ppm/°C) is obtained for BLVMO-20 wt.%NMO. \(Q_f \) increases from 1300 GHz for BLVMO to 12,000 GHz for NMO, as shown in Figure 5 and Table 1.

Figure 4. The SEM and BSE images of (a) conventionally-sintered BLVMO, (b) cold-sintered NMO, and (c,d) cold-sintered BLVMO-20 wt.% NMO samples.

Figure 5. The microwave properties of (100−x) wt.% BLVMO-x wt.% NMO ceramic composites as a function of x (NMO fraction). (a) \(Q_f \), (b) TCF, (c) \(\varepsilon_r \).
Provided there are no chemical reactions between phases, the ε_r in composites may be predicted by different mixing laws, as follows [22]:

\[
\text{parallel mixing law, } \varepsilon = V_1 \varepsilon_1 + V_2 \varepsilon_2 + V_0 \varepsilon_0
\]

(4)

\[
\text{series mixing law, } \frac{1}{\varepsilon} = \frac{1}{V_1 \varepsilon_1} + \frac{1}{V_2 \varepsilon_2} + \frac{1}{V_0 \varepsilon_0}
\]

(5)

\[
\text{logarithmic mixing law, } \varepsilon = \frac{\varepsilon_1 V_1 + \varepsilon_2 V_2 + \varepsilon_0 V_0}{V_1 + V_2 + V_0}
\]

(6)

where ε_1, ε_2 and ε_0 are the ε_r of phase 1, phase 2 and air, respectively, and V_1, V_2 and V_0 ($V_1 + V_2 + V_0 = 1$) are their respective volume fractions. As shown in Figure 5, ε_r for (100–x) wt.% BLVMO-x wt.% NMO composite ceramics is within the range of calculated values for Equations (4) and (5), and close to the values obtained using Equation (6), indicating that ε_r follows a logarithmic mixing law with x. TCF of composites is predicted with a simple mixing rule, which is derived from the Equation (6) [30]:

\[
\text{TCF} = V_1 \text{TCF}_1 + V_2 \text{TCF}_2
\]

(7)

where TCF$_1$ and TCF$_2$ correspond to the TCF of the two phases. TCF is consistent with calculated values using Equations (7), as shown in Figure 5b, suggesting they can be predicted using simple rules of mixture.

Microwave dielectric properties of various cold-sintered microwave dielectric materials are compared in Table 2. Numerous materials ($\rho_r = 83.7\%–100\%$) with a range of dielectric properties (2.1 $\leq \varepsilon_r \leq 48$, 2240 $\leq Qf \leq 135,700$ GHz, −174 $\leq \text{TCF} \leq 184$ ppm/$^\circ$C) can be densified, indicating that CSP is an effective, and energy-saving strategy for the fabrication of microwave devices [31,32]. (100–x) wt.% BLVMO-x wt.% NMO (x = 10–20) exhibits the highest value of ε_r (~48) for near-zero TCFs cold-sintered microwave dielectric materials and is thus attractive for RF applications.

Table 2. Comparison of relative densities, and microwave properties of cold-sintered microwave dielectric materials (* unpublished work, ρ_r = relative density, PTFE = Polytetrafluoroethylene, LMO = Li$_2$MoO$_4$, BF12 = BaFe$_{12}$O$_{19}$, NBMO = Na$_{0.5}$Bi$_{0.5}$MoO$_4$, BLVMO = (Bi$_{0.95}$Li$_{0.05})(V_{0.9}Mo_{0.1})O_4$, NMO = Na$_2Mo_2O_7$).

<table>
<thead>
<tr>
<th>Compound</th>
<th>ρ_r (%)</th>
<th>ε_r</th>
<th>Qf (GHz)</th>
<th>TCF (ppm/$^\circ$C)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE</td>
<td>100</td>
<td>2.12</td>
<td>135,700</td>
<td>+60</td>
<td>*</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>100</td>
<td>2.53</td>
<td>24,320</td>
<td>−5</td>
<td>*</td>
</tr>
<tr>
<td>Al$_2$SiO$_3$-NaCl</td>
<td>/</td>
<td>4.52</td>
<td>22,350</td>
<td>−24</td>
<td>[21]</td>
</tr>
<tr>
<td>KCl</td>
<td>98</td>
<td>4.74</td>
<td>7738</td>
<td>−149</td>
<td>*</td>
</tr>
<tr>
<td>LMO</td>
<td>95.5</td>
<td>5.1–5.61</td>
<td>10,200-30,500</td>
<td>−170</td>
<td>[13–19,22]</td>
</tr>
<tr>
<td>NaCl</td>
<td>97–99</td>
<td>5.22–5.55</td>
<td>12,000-49,600</td>
<td>−100</td>
<td>[20,21]</td>
</tr>
<tr>
<td>LMO-15%BF12</td>
<td>94.1</td>
<td>5.8</td>
<td>17,430</td>
<td>−</td>
<td>[23]</td>
</tr>
<tr>
<td>K$_2$MoO$_4$</td>
<td>100</td>
<td>6.37</td>
<td>26,500</td>
<td>−70</td>
<td>*</td>
</tr>
<tr>
<td>AgNaMoO$_4$</td>
<td>90.8</td>
<td>9.3</td>
<td>7078</td>
<td>−120</td>
<td>*</td>
</tr>
<tr>
<td>K$_2$Mo$_2$O$_7$</td>
<td>94.1–96</td>
<td>9.35–9.8</td>
<td>12,000-16,000</td>
<td>−63</td>
<td>[17], *</td>
</tr>
<tr>
<td>Mo$_3$O$_7$</td>
<td>83.7</td>
<td>9.91</td>
<td>11,800</td>
<td>−39</td>
<td>[24]</td>
</tr>
<tr>
<td>Na$_2$Mo$_2$O$_7$</td>
<td>93.7–95</td>
<td>12.7–13.4</td>
<td>12,000-14,900</td>
<td>−99</td>
<td>[17], *</td>
</tr>
<tr>
<td>NBMO-20%LMO</td>
<td>93.6</td>
<td>17.4</td>
<td>7470</td>
<td>−4.7</td>
<td>[22]</td>
</tr>
<tr>
<td>NBMO-10%LMO</td>
<td>92.6</td>
<td>24.1</td>
<td>2240</td>
<td>+15</td>
<td>[22]</td>
</tr>
<tr>
<td>(LiBi)$_{0.5}$MoO$_4$</td>
<td>88</td>
<td>33.7–37</td>
<td>1700–2300</td>
<td>+180</td>
<td>[18]</td>
</tr>
<tr>
<td>BLVMO-20%NMO</td>
<td>96</td>
<td>40</td>
<td>4000</td>
<td>+4</td>
<td>this work</td>
</tr>
<tr>
<td>BLVMO-10%NMO</td>
<td>95</td>
<td>48</td>
<td>3959</td>
<td>+20</td>
<td>this work</td>
</tr>
</tbody>
</table>

The low sintering temperature and absence of lateral shrinkage suggest that (100–x) wt.% BLVMO-x wt.% NMO composites have the potential for many novel RF applications including antennas, temperature stable capacitors, LTCC substrates and GRaded INdex (GRIN) dielectric lenses.
A GRIN lens is an antenna component for transforming a spherical to a planar wavefront, and enables highly directive antennas and shaped beams. A lightweight, flat lens may be used in the proximity of the feed to realise a compact system that is desired by 5G applications. For practical fabrication, the index profile of a flat lens is usually graded to several tight-fitted rings with radially reduced \(\varepsilon_r \). GRIN lenses may be fabricated from concentric dielectric cylindrical rings with graded \(\varepsilon_r \), Figure 6a. The simulated electric field of a ceramic GRIN lens is displayed in Figure 6b, transforming a spherical to a planar wavefront at 26 GHz.

The design parameters of a lens are shown in Tables 3 and 4. The dielectric lens is comprised of six concentric rings; the outermost has the lowest effective \(\varepsilon_r \) (12.7), while the centre has the highest \(\varepsilon_r \) (48). The high \(\varepsilon_r \) ceramic reduces the thickness of the lens (miniaturises) compared with low \(\varepsilon_r \) materials such as polymers.

Table 3. Designed parameters of a 3D-printed lens.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>(R = 12.5 \text{ mm})</td>
</tr>
<tr>
<td>Focal length</td>
<td>(F = 12.5 \text{ mm})</td>
</tr>
<tr>
<td>Thickness</td>
<td>(T = 1.53 \text{ mm})</td>
</tr>
</tbody>
</table>

Table 4. Dielectric constant values of the concentric dielectric rings.

<table>
<thead>
<tr>
<th>Ring No.</th>
<th>(\varepsilon_r)</th>
<th>Ring Outer Radius(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>4.9</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>7.8</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
<td>8.8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>11.5</td>
</tr>
<tr>
<td>6</td>
<td>12.7</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Lens performance was simulated using CST Microwave Studio. An open-ended Ka-band waveguide (7.112 mm × 3.556 mm) was used to illuminate the lens. The boresight directivity is increased across the whole frequency range from 26 to 40 GHz. The relative increase compared to the case with no lens is between 4.6 and 8.5 dB. The aperture efficiency of the lens is \(~70\%\) at 26 GHz. The simulated E-plane (i.e., the plane containing the electric field vector) and H-plane (the plane containing the magnetic field vector, normal to the E-plane) radiation patterns of the lens are illustrated in Figure 7.
As x increased, TCF and ε_r decreased, while Q_f increased. Near-zero TCF $\sim +4$ ppm/$^\circ$C was measured for BLVMO-20wt%NMO with $\varepsilon_r \sim 40$ and $Q_f \sim 4000$ GHz. A dielectric GRIN lens was designed and simulated exhibiting 70% aperture efficiency at 26 GHz, which we propose may be fabricated using $(100-x)$ wt.% BLVMO-x wt.% NMO composites.

Author Contributions: Experiments and writing-original draft preparation, D.W.; Lens design and simulation, (100−x) wt.% BLVMO-x wt.% NMO ceramics with relative density of 92%–98% were fabricated by cold sintering process at 150 $^\circ$C/30 min/200 MPa. No evidence of chemical interaction was observed in composites, except BLVMO and NMO phases, by means of SEM, XRD and Raman spectroscopy. As x increased, TCF and ε_r decreased, while Q_f increased. Near-zero TCF $\sim +4$ ppm/$^\circ$C was measured for BLVMO-20wt%NMO with $\varepsilon_r \sim 40$ and $Q_f \sim 4000$ GHz. A dielectric GRIN lens was designed and simulated exhibiting 70% aperture efficiency at 26 GHz, which we propose may be fabricated using $(100-x)$ wt.% BLVMO-x wt.% NMO composites.

Funding: We acknowledge the EPSRC grants, EP/N010493/1 and EP/L017563/1, “Synthesizing 3D Metamaterials for RF, Microwave and THz Applications” and “Sustainability and Substitution of Functional Materials and Devices” supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

11. Ma, J.L.; Fu, Z.F.; Liu, P.; Zhao, L.P.; Guo, B.C. Ultra-low-fired Li$_2$Mg$_3$TiO$_6$–Ca$_{0.8}$Sr$_{0.2}$TiO$_3$ composite ceramics with temperature stable at microwave frequency. *J. Alloys Comp.* 2017, 709, 299–303. [CrossRef]

27. Zhou, D.; Pang, L.X.; Qu, W.G.; Randall, C.A.; Guo, J.; Qi, Z.M.; Shao, T.; Yao, X. Dielectric behavior, band gap, in situ X-ray diffraction, Raman and infrared study on (1-x)BiVO₄-x(Li₀.5Bi₀.5)MoO₄ solid solution. *RSC Adv.* **2013**, *3*, 5009–5014. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).