A patient-centred evaluation of thermal resilience practices in temperature-sensitive people with Multiple Sclerosis

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a conference abstract.

Metadata Record: https://dspace.lboro.ac.uk/2134/38234

Version: Accepted for publication

Publisher: MS Society UK

Rights: This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the published version.
A patient-centred evaluation of thermal resilience practices in temperature-sensitive people with Multiple Sclerosis

Aikaterini Christogianni 1, Jasmine O’Garro1, Richard Bibb2, Nikos Evangelou3, Davide Filingeri1

1THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough University, Loughborough, UK
2Loughborough Design School, Loughborough University, Loughborough, UK
3Queens Medical Centre, University of Nottingham, Nottingham, UK

Introduction: Multiple sclerosis (MS) is a neurodegenerative disease characterized by temperature sensitivity, where changes in body temperature induce transient symptoms worsening. There is no pharmacological intervention for this condition and patients often develop their own thermal resilience practices. The aim of the study was to survey the experience of temperature sensitivity and the strategies used to combat it, in MS.

Method: 458 people with MS (58.7% relapsing-remitting; 20.7% secondary-progressive; 14% primary-progressive; 6.6% unknown) completed an anonymous online survey. The questionnaire comprised sections aimed at characterizing participants’ general medical history; the symptoms worsening as a result of heat or cold, and thermal resilience techniques for heat and cold sensitivity.

Results: Overall, 53% of responders reported suffering from heat sensitivity, 15% from cold sensitivity, and 32% from both. Fatigue (79%), weakness (60%) and balance difficulties (56%) were prominent heat-induced symptoms. Muscle cramps (43%), fatigue (40%) and poor walking (36%) were prominent cold-induced symptoms. Participants reported exercise (91%) and long periods of inactivity (92%) as the greatest triggers of heat and cold sensitivity, respectively, that affects their MS symptoms. The most common thermal resilience practices in the heat were wearing lightweight, breathable clothes (95%) and using fans (91%) (p<0.01), whereas wearing layers of clothes (93%) and staying in a heated environment (91%) (p<0.01) were commonly adopted to combat cold sensitivity.

Conclusions: Temperature sensitivity in MS worsens quality of life and disease management. The patient-centred information presented here will help guiding evidence-based interventions and investigations that are individually tailored to the specific experiences of temperature-sensitive people with MS.