Double waves in multi-dimensional systems of hydrodynamic type: the necessary condition for integrability

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Additional Information:

- This is a pre-print.

Metadata Record: https://dspace.lboro.ac.uk/2134/410

Please cite the published version.
Double waves in multi-dimensional systems of hydrodynamic type: the necessary condition for integrability

E.V. Ferapontov and K.R. Khusnutdinova

Department of Mathematical Sciences
Loughborough University
Loughborough, Leicestershire LE11 3TU
United Kingdom

e-mails:
E.V.Ferapontov@lboro.ac.uk
K.Khusnutdinova@lboro.ac.uk

Abstract

The invariant differential-geometric approach to the integrability of (2 + 1)-dimensional systems of hydrodynamic type

$$u_t + A(u)u_x + B(u)u_y = 0$$

is developed. It is argued that the existence of special solutions known as ‘double waves’ is generically equivalent to the diagonalizability of an arbitrary matrix of the two-parameter family

$$(kE + A)^{-1}(lE + B).$$

Since the diagonalizability can be effectively verified by differential-geometric means, this provides a simple necessary condition for integrability.

MSC: 35L40, 35L65, 37K10.

Keywords: Multi-dimensional Systems of Hydrodynamic Type, Riemann Invariants, Haantjes Tensor, Nonlinear Interactions of Planar Simple Waves, Double Waves.
1 Introduction

In the last 20 years there has been a considerable progress in the theory of one-dimensional systems of hydrodynamic type
\[u_t + v(u)u_x = 0 \]
or, in components,
\[u_i^t + v_j^i(u)u_x^j = 0, \quad i, j = 1, \ldots, m. \tag{1} \]

Such systems naturally occur in applications in gas dynamics, fluid mechanics, chemical kinetics, Whitham averaging procedure, differential geometry and topological field theory. We refer to [39, 8, 36, 37, 35, 9] for a further discussion and references. It has been observed that many particularly important examples are diagonalizable, that is, reducible to the Riemann invariant form
\[R^i_t + v^i(R)R^i_x = 0 \tag{2} \]
where the characteristic speeds \(v^i(R) \) satisfy the so-called semi-Hamiltonian property [39] (also known as the ‘richness’ condition [37]),
\[\partial_k \left(\frac{\partial_j v^i}{v^j - v^i} \right) = \partial_j \left(\frac{\partial_k v^i}{v^k - v^i} \right), \tag{3} \]
\(\partial_k = \partial/\partial R^k, \quad i \neq j \neq k \). We emphasize that the semi-Hamiltonian property (3) is usually automatically satisfied for diagonalizable systems of the ‘physical’ origin. For instance, a conservative diagonalizable system is necessarily semi-Hamiltonian, e.g. [35, 32]. Semi-Hamiltonian systems possess infinitely many conservation laws and commuting flows of hydrodynamic type and can be linearized by the generalized hodograph method [39]. Their analytic, differential-geometric and Hamiltonian aspects are well-understood by now.

Remarkably, there exist effective tensor criteria to verify the diagonalizability and the semi-Hamiltonian property without the actual computation of eigenvalues and eigenvectors of the matrix \(v^j_i \). Let us first calculate the Nijenhuis tensor of the matrix \(v^j_i \),
\[N^i_{jk} = v^p_j \partial_{sp} v^i_k - v^p_k \partial_{sp} v^j_i - v^i_j (\partial_{sp} v^p_k - \partial_{kp} v^p_j), \tag{4} \]
(the standard summation convention over repeated indices is adopted) and introduce the Haantjes tensor
\[H^i_{jk} = N^i_{pr} v^p_j v^r_k - N^i_{pr} v^r_j v^p_k - N^p_{rk} v^i_p v^j_k + N^p_{rk} v^j_i v^p_k. \tag{5} \]
For strictly hyperbolic systems the condition of diagonalizability is given by the following theorem.

Theorem 1 [22] A hydrodynamic type system (1) with mutually distinct characteristic speeds is diagonalizable if and only if the corresponding Haantjes tensor (5) is identically zero.

Since components of the Haantjes tensor can be obtained using any computer algebra package, this provides the effective diagonalizability criterion. This criterion has been successfully implemented in [12] to classify isotherms of adsorption for which the equations of chromatography possess Riemann invariants (notice that, since the equations of chromatography are conservative, the semi-Hamiltonian property will be automatically satisfied). The same criterion was applied in [40] to the Whitham equations governing slow modulations of traveling waves of the generalized KdV equation \(u_t + f(u)u_x + u_{xxx} = 0 \). It was demonstrated that the Whitham equations are diagonalizable (and hence semi-Hamiltonian due to their conservative nature) if and only if
\(f''' = 0 \). Although, for conservative systems, the diagonalizability implies the semi-Hamiltonian property, this is not true in general. The tensor object responsible for the semi-Hamiltonian property was introduced in [32] (see the Appendix).

The present paper aims at the discussion of the extent to which the one-dimensional theory carries over to (2 + 1)-dimensional quasilinear systems

\[
\mathbf{u}_t + A(\mathbf{u})\mathbf{u}_x + B(\mathbf{u})\mathbf{u}_y = 0;
\]

here \(\mathbf{u} \) is an \(m \)-component column vector and \(A(\mathbf{u}), B(\mathbf{u}) \) are \(m \times m \) matrices. Systems of this type describe many physical phenomena. In particular, important examples occur in gas dynamics, shallow water theory, combustion theory, general relativity, nonlinear elasticity, magneto-fluid dynamics, etc [26, 6]. Particularly interesting ‘integrable’ systems of the form (6) arise as dispersionless limits of multi-dimensional soliton equations [42], within the method of Whitham averaging applied to ‘integrable’ two-dimensional models [23, 24], and the R-matrix approach [1].

The first natural restriction to impose is that all systems arising as one-dimensional limits of (6), in particular, the systems \(\mathbf{u}_t + A(\mathbf{u})\mathbf{u}_x = 0 \) and \(\mathbf{u}_t + B(\mathbf{u})\mathbf{u}_y = 0 \), are diagonalizable (but not simultaneously, as the matrices \(A \) and \(B \) do not commute in general). Furthermore, applying to (6) an arbitrary linear change of the independent variables,

\[
\begin{align*}
\tilde{t} &= a_{11}t + a_{12}x + a_{13}y, \\
\tilde{x} &= a_{21}t + a_{22}x + a_{23}y, \\
\tilde{y} &= a_{31}t + a_{32}x + a_{33}y,
\end{align*}
\]

we arrive at the transformed system

\[
\mathbf{u}_{\tilde{t}} + \tilde{A}(\mathbf{u})\mathbf{u}_{\tilde{x}} + \tilde{B}(\mathbf{u})\mathbf{u}_{\tilde{y}} = 0
\]

where

\[
\begin{align*}
\tilde{A} &= (a_{11}E + a_{12}A + a_{13}B)^{-1}(a_{21}E + a_{22}A + a_{23}B), \\
\tilde{B} &= (a_{11}E + a_{12}A + a_{13}B)^{-1}(a_{31}E + a_{32}A + a_{33}B),
\end{align*}
\]

and \(E \) is the \(m \times m \) identity matrix. Since we want our approach to be invariant under linear changes of variables, we require that all matrices of the multi-parameter family

\[
(aE + bA + cB)^{-1}(\tilde{a}E + \tilde{b}A + \tilde{c}B)
\]

are diagonalizable and semi-Hamiltonian. We emphasize once again that the corresponding Riemann invariants are not the same for all members of the family (7). These considerations motivate the following definitions:

Definition 2 A (2 + 1)-dimensional system is said to be diagonalizable if an arbitrary matrix of the family (7) is diagonalizable.

Definition 3 A diagonalizable (2+1)-dimensional system is said to be semi-Hamiltonian (rich) if an arbitrary matrix of the family (7) is semi-Hamiltonian.

Remarks. One can show that some parameters in (7) are, in fact, redundant: it is sufficient to verify the diagonalizability and the semi-Hamiltonian property for an arbitrary matrix in a smaller family

\[
(kE + A)^{-1}(IE + B)
\]

3
where k and l are arbitrary constants. Indeed, one can simplify the general matrix (7) using the fact that the inversion and the addition of a multiple of the identity matrix do not effect the diagonalizability.

Notice that for many systems (6) the diagonalizability is already sufficiently restrictive and implies the semi-Hamiltonian property. This is the case, for instance, if the original two-dimensional system (6) is conservative. Indeed, all one-dimensional limits of a multi-dimensional conservative system inherit the conservative form, and for one-dimensional conservative systems the diagonalizability is known to imply the semi-Hamiltonian property.

Finally, we should mention that the above definitions generalize to multi-dimensional setting $(3+1, \text{etc})$ in the obvious way.

As an example let us consider the so-called Benney system [42],

$$a_t + (av)_x = 0, \quad v_t + vv_x + w_x = 0, \quad w_y + a_x = 0,$$

which reduces to the shallow water equations in the limit $y = -x$. In matrix form, we have

$$u_x + A(u) u_t + B(u) u_y = 0,$$

where $u = (a, v, w)^t$ or, explicitly,

$$\begin{pmatrix} a \\ v \\ w \end{pmatrix}_x + \begin{pmatrix} 0 & 0 & 0 \\ 1/a & 0 & 0 \\ -v/a & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ v \\ w \end{pmatrix}_t + \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & -v/a \\ 0 & 0 & v^2/a \end{pmatrix} \begin{pmatrix} a \\ v \\ w \end{pmatrix}_y = 0.$$

We have verified that the Haantjes tensor of the corresponding matrix (8) is zero. Since the Benney system possesses four conservation laws

$$a_t + (av)_x = 0, \quad v_t + (v^2/2 + w)_x = 0,$$

$$w_y + a_x = 0, \quad (av)_t + (aw + av^2)_x + (w^2/2)_y = 0,$$

the semi-Hamiltonian property is automatically satisfied (we have verified it independently using the tensor criterion from the Appendix). Further examples of this type are discussed in Sect. 2. The classification of a special class of diagonalizable three-component conservative systems is obtained in Sect. 4.

The alternative approach to the integrability of multi-dimensional hydrodynamic type systems is based on the method of hydrodynamic reductions. The key element of this construction are exact solutions of the system (6) of the form $u(R) = u(R^1, ..., R^n)$ where the Riemann invariants $R^1, ..., R^n$ solve a pair of commuting diagonal systems

$$R^i_t = \lambda^i(R) R^i_x, \quad R^i_y = \mu^i(R) R^i_x;$$

notice that the number of Riemann invariants is allowed to be arbitrary. Thus, the original $(2+1)$-dimensional system (6) is decoupled into a compatible pair of diagonal $(1+1)$-dimensional systems. Solutions of this type are known as multiple waves, or nonlinear interactions of n planar simple waves (also called solutions with a degenerate hodograph: simple waves (double waves) when the number of Riemann invariants equals one (two)). They were extensively investigated in gas dynamics and magnetohydrodynamics in a series of publications [38, 2, 3, 4, 33, 34, 7, 20]. Later, they reappeared in the context of the dispersionless KP and Toda hierarchies [16, 17, 18, 21, 27, 28, 41, 10], the theory of integrable hydrodynamic-type chains [30, 31, 29] and the Laplacian growth problems [25]. In [13], it was suggested to call a multi-dimensional system
integrable if it possesses infinitely many \(n \)-component reductions of the form (9) parametrized by \(n \) arbitrary functions of a single argument. It was shown that this requirement provides the effective classification criterion. Partial classification results were obtained in [13, 14, 15]. It was demonstrated in [11, 15] that the method of hydrodynamic reductions is effective in any dimension: in particular, \((3 + 1)\)- and \((5 + 1)\)-dimensional integrable examples were uncovered. We recall, see [39], that the requirement of the commutativity of the flows (9) is equivalent to the following restrictions on their characteristic speeds:

\[
\frac{\partial_j \lambda^i}{\lambda^j - \lambda^i} = \frac{\partial_j \mu^i}{\mu^j - \mu^i}, \tag{10}\]

\(i \neq j, \partial_j = \partial/\partial R^j\), no summation! Once these conditions are met, the general solution of the system (9) is given by the implicit ‘generalized hodograph’ formula [39]

\[
v^i(R) = x + \lambda^i(R) t + \mu^i(R) y, \tag{11}\]

\(i = 1, ..., n\), where \(v^i(R)\) are characteristic speeds of the general flow commuting with (9), that is, the general solution of the linear system

\[
\frac{\partial_j v^i}{v^j - v^i} = \frac{\partial_j \lambda^i}{\lambda^j - \lambda^i} = \frac{\partial_j \mu^i}{\mu^j - \mu^i}. \tag{12}\]

Substituting \(u(R^1, ..., R^n)\) into (6) and using (9) one arrives at the equations

\[
(A + \mu^i B + \lambda^i E) \partial_t u = 0, \tag{13}\]

(no summation) implying that both \(\lambda^i\) and \(\mu^i\) satisfy the dispersion relation

\[
det(A + \mu B + \lambda E) = 0. \tag{14}\]

Thus, the construction of solutions describing nonlinear interactions of \(n\) planar simple waves consists of two steps:

1. Reduce the initial system (6) to a pair of commuting flows (9) by solving the equations (10), (13) for \(u(R), \lambda^i(R), \mu^i(R)\) as functions of the Riemann invariants \(R^1, ..., R^n\). These equations are highly overdetermined and do not possess solutions in general. However, for integrable systems these reductions depend, modulo reparametrizations \(R^i \rightarrow f_i(R^i)\), on \(n\) arbitrary functions of a single argument. Once a particular reduction of the form (9) is constructed, the second step is fairly straightforward:

2. Solve the linear system (12) for \(v^i(R)\) and determine \(R^1, ..., R^n\) as functions of \(t, x, y\) from the implicit hodograph formula (11). This step provides some extra \(n\) arbitrary functions. Therefore, solutions arising within this scheme depend on \(2n\) essential functions of a single argument.

Simple waves. For \(n = 1\) we have \(u = u(R)\) (thus, hodographs of these solutions are curves) where the scalar variable \(R = R^1\) solves a pair of first order PDEs

\[
R_t = \lambda(R) R_x, \quad R_y = \mu(R) R_x
\]

which, in one-component situation, are automatically commuting. The hodograph formula (11) takes the form

\[
f(R) = x + \lambda(R)t + \mu(R)y \tag{15}\]
where \(f(R) \) is arbitrary. This formula shows that, in coordinates \(t, x, y \), the surfaces \(R = \text{const} \) are planes so that the solution \(u = u(R) \) is constant along a one-parameter family of planes. Therefore, it is singular along the developable surface which envelopes this one-parameter family. Solutions of this type, known as planar simple waves, exist for all multi-dimensional quasilinear systems and do not impose any restrictions on the matrices \(A \) and \(B \).

Double waves. For \(n = 2 \) we have \(u = u(R^1, R^2) \) so that hodographs of these solutions (known as double waves, or nonlinear interactions of two planar simple waves) are surfaces. Double waves, as well as simple waves, belong to the class of solutions with a ‘degenerate hodograph’. In the context of multi-dimensional gas dynamics, they were extensively investigated in [38]. Notice that each hodograph surface corresponds to infinitely many solutions, indeed, one needs to solve the system (9) for \(R^1, R^2 \) to make a hodograph surface into a solution. This step does not change the hodograph surface, it just specifies the way it is parametrized by \(t, x, y \). The general solution of the corresponding system (9) is given by the implicit hodograph formula

\[
v^1(R) = x + \lambda^1(R)t + \mu^1(R)y, \quad v^2(R) = x + \lambda^2(R)t + \mu^2(R)y.
\]

Setting \(R^1 = \text{const}, R^2 = \text{const} \), one obtains a two-parameter family of lines (or, using the differential-geometric language, a line congruence) in the 3-space of independent variables \(t, x, y \). The corresponding solution \(u = u(R^1, R^2) \) is constant along the lines of this two-parameter family. Therefore, it is singular along the focal surfaces of the congruence.

One can show that any \(2 \times 2 \) system (6) possesses infinitely many two-component reductions of the form (9) parametrized by two arbitrary functions of a single argument. The corresponding double waves depend on 4 arbitrary functions. However, for multi-component systems \((m \geq 3)\) the requirement of the existence of double waves imposes strong restrictions on the matrices \(A \) and \(B \). We propose the following

Conjecture. A \((2+1)\)-dimensional system (6) (whose dispersion relation defines an irreducible algebraic curve) possesses double waves parametrized by 4 arbitrary functions of a single argument if and only if it is diagonalizable, that is, the Haantjes tensor of an arbitrary matrix (8) is zero.

For two-component systems (6) this is automatically true: any such system is diagonalizable and possesses double waves parametrized by 4 arbitrary functions. In Sect. 3 we demonstrate that the diagonalizability is indeed the necessary condition for the existence of double waves. The assumption of the irreducibility of the dispersion relation is crucial here: for instance, the equations of two-dimensional gas dynamics possess potential double waves parametrized by 4 arbitrary functions, however, the system is not diagonalizable. The problem here is that characteristic speeds of commuting flows defining hydrodynamic reductions come from one and the same branch of the dispersion relation, see Sect 5.

Remark. We point out that for \(2 \times 2 \) matrices \(A \) and \(B \) the condition of irreducibility of the dispersion relation (14), which in this case defines a conic, is equivalent to the nondegeneracy of their commutator: \(\det[A, B] \neq 0 \).

The sufficiency part of the conjecture is a non-trivial statement which we were not able to prove in general. In any case, we propose an easy-to-verify necessary condition for the integrability of multi-component multi-dimensional hydrodynamic type systems. It should be emphasized that the condition of diagonalizability is necessary, but not at all sufficient for the integrability. In Sect. 2 we discuss the example of a diagonalizable semi-Hamiltonian \(3 \times 3 \) system in \(2+1 \) dimensions which is not integrable for generic values of parameters (Example 1).

Double waves for two-dimensional gas dynamics are discussed in Sect. 5.
Multiple waves. The requirement of the existence of nontrivial 3-component reductions imposes further constraints on \(A \) and \(B \). These prove to be very restrictive and imply the existence of \(n \)-component reductions for arbitrary \(n \) [13]. This phenomenon is similar to the well-known three-soliton condition in the Hirota bilinear approach which, generically, implies the existence of \(n \)-soliton solutions and the integrability. For two-component systems (6) the full set of constraints imposed on \(A \) and \(B \) by the requirement of the existence of three-component reductions was obtained in [14]. These constraints imply, in particular, that all 2-component integrable systems of the form (6) are necessarily symmetrizable in the sense of [19] (that is, possess three conservation laws of hydrodynamic type). Moreover, they necessarily possess a scalar pseudopotential playing the role of a dispersionless ‘Lax pair’.

We emphasize that, although the method of hydrodynamic reductions provides infinitely many (implicit) solutions parametrised by arbitrarily many functions of a single argument, the question of solving the initial value problem for integrable systems (6) remains open. We believe, however, that solutions describing nonlinear interactions of planar simple waves are locally dense in the space of all solutions of (6) (see [18] for a discussion of this issue in the context of the dispersionless KP equation). A detailed investigation of their breakdown and singularity structure is important for the analysis of the general Cauchy problem for multi-dimensional quasilinear systems. We hope that the combination of the existence results (the Cauchy problem for semi-Hamiltonian systems in one dimension) with the decomposition of an integrable multi-dimensional system into a collection of commuting semi-Hamiltonian flows would lead to a new understanding of the Cauchy problem in many dimensions.

2 Examples

In this section we list some examples of diagonalizable semi-Hamiltonian 3 \(\times \) 3 systems of hydrodynamic type in 2 + 1 dimensions.

Example 1. Let us consider a class of symmetric systems (6) for which \(A \) is a constant diagonal matrix and \(B \) is a Hessian:

\[
\begin{pmatrix}
u \\
w
\end{pmatrix}_t = \begin{pmatrix}a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}
\begin{pmatrix}
u \\
w
\end{pmatrix} + \begin{pmatrix}F_{uu} & F_{uv} & F_{uw} \\
F_{uv} & F_{vv} & F_{vw} \\
F_{uw} & F_{vw} & F_{ww}
\end{pmatrix}
\begin{pmatrix}
u \\
w
\end{pmatrix},
\]

(17)

Here \(c < b < a \) are constants and the potential \(F(u, v, w) \) is of the form

\[
F = v(\gamma u + \delta w) + f(\gamma u + \delta w)
\]

where the constants \(\gamma \) and \(\delta \) satisfy the constraint \((b - a)\delta^2 + (b - c)\gamma^2 = 0\) and \(f(\cdot) \) is an arbitrary function of a single argument (one can set \(\gamma = 1/\sqrt{b - c}, \ \delta = 1/\sqrt{a - b} \)). Potentials of this type arise in the classification of diagonalizable systems of the form (17) – see Sect. 4. We have verified that the systems (17), (18) are diagonalizable and semi-Hamiltonian. In fact, the semi-Hamiltonian property follows from the conservative nature of (17). In spite of being diagonalizable and semi-Hamiltonian, these systems are not integrable in general (that is, do not possess \(n \)-wave solutions for \(n \geq 3 \)). The integrability conditions impose one extra constraint on the potential (18),

\[
f'''' = \gamma^2 \frac{c - b}{c - a} f''(2f''')^2 - f'' f''''
\]
This ODE can be solved explicitly implying that, up to elementary changes of variables,

\[f'' = \frac{1}{\sqrt{\epsilon}} \cot(\gamma u + \delta w), \quad \epsilon = \gamma^2 \frac{c - b}{c - a}, \quad (19) \]

provided \(f'' \neq 0 \); otherwise the system (17) is linear. Notice that we need \(f'' \) (rather than \(f \) itself) to write down equations (17):

\[
\begin{pmatrix}
 u \\
v \\
w
\end{pmatrix}
t =
\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix} +
\begin{pmatrix}
\gamma^2 f'' & \gamma & \gamma \delta f'' \\
\gamma & 0 & \delta \\
\gamma \delta f'' & \delta & \delta^2 f''
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix} \quad (20)
\]

For \(f'' \) given by (19) this system possesses the scalar pseudopotential

\[
\psi_t = \frac{b u}{\sqrt{\epsilon}} + \frac{a}{\sqrt{\gamma}} \log \sin(\gamma u - p \psi_y) + \frac{c}{\sqrt{\delta}} \log \sin(\delta w + p \psi_y),
\]

\[
\psi_x = \frac{u}{\sqrt{\epsilon}} + \frac{1}{\sqrt{\gamma}} \log \sin(\gamma u - p \psi_y) + \frac{1}{\sqrt{\delta}} \log \sin(\delta w + p \psi_y),
\]

where \(p = \frac{\gamma^2 \sqrt{\epsilon}}{b - a} \) (that is, the system (20) arises from the compatibility condition \(\psi_{tx} = \psi_{xt} \)). Thus, this pseudopotential can be viewed as the dispersionless analogue of the Lax pair. In the \(2 \times 2 \) case, the existence of a scalar pseudopotential is the necessary and sufficient condition for the integrability of a multi-dimensional quasilinear system [14]. This result should be true in a multi-component situation as well, although the proof meets technical difficulties.

Notice that the dispersion relation for the system (20),

\[
det \left(\lambda E - \mu \begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix} - \begin{pmatrix}
\gamma^2 f'' & \gamma & \gamma \delta f'' \\
\gamma & 0 & \delta \\
\gamma \delta f'' & \delta & \delta^2 f''
\end{pmatrix} \right) = 0,
\]

factorises into a line and a conic,

\[
(\lambda - b \mu)[(\lambda - a \mu)(\lambda - c \mu) - (\gamma^2 + \delta^2)(1 + f''(\lambda - b \mu))] = 0.
\]

Thus, the system (20) provides an integrable example from the class discussed in [5].

Below we list some further examples of three-component integrable (2 + 1)-dimensional systems of the form (6) which were constructed in [1] using the classical \(R \)-matrix approach (see also [28]. We have verified that all of them are diagonalizable and semi-Hamiltonian by directly computing the corresponding tensors (5) and (35). In fact, the semi-Hamiltonian property follows from their conservative nature. For each of these examples we present a list of conservation laws of hydrodynamic type and pseudopotentials which play the role of dispersionless Lax pairs.

Example 2. The 3-component system

\[
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix}
t =
\begin{pmatrix}
0 & 2 & 0 \\
-u & 0 & 2 \\
-v/2 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix} +
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1/2 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
u \\
v \\
w
\end{pmatrix} \quad (21)
\]

8
constitutes the ‘second’ commuting flow in the dispersionless KP hierarchy. It possesses four conservation laws of hydrodynamic type,

\[u_t = 2v_x, \]
\[v_t = (2w - u^2/2)_x, \]
\[(2w - u^2/4)_t = u_y - (uv)_x, \]
\[(4uw + 2v^2 - u^3/2)_t = (u^2)_y + (8vw - 3u^2v)_x, \]

and the scalar pseudopotential

\[\psi_t = \frac{1}{2} \psi_x^2 + u, \]
\[\psi_y = \frac{1}{8} \psi_x^4 + \frac{1}{2} u \psi_x^2 + v \psi_x + 2w. \]

The system arises from the compatibility condition \(\psi_{ty} = \psi_{yt} \).

Example 3. The 3-component system

\[
\begin{pmatrix} u \\ v \\ w \end{pmatrix}_t = \begin{pmatrix} 0 & 2 - r & 0 \\ r v & (1 - r)u & 2 - r \\ (1 + r)w & 0 & (1 - r)u \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}_x + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}_y,
\]

\(r = \text{const}, \) possesses four conservation laws

\[u_t = u_y + (2 - r)v_x, \]
\[\left(\frac{w^{2r-1}}{2r-1} \right)_t = (1 - r) \left(\frac{w^{2r-1}}{2r-1} u \right)_x, \]
\[(u^2 + \frac{2(2-r)}{2r-1} v)_t = (u^2)_y + \frac{2(2-r)}{2r-1} ((2 - r)w + ruv)_x, \]
\[\left(\frac{w^{2r-1}}{2r-1} v \right)_t = \left((1 - r)uw \frac{w^{2r-1}}{2r-1} + (1 + r)w^{\frac{2r}{2r-1}} \right)_x. \]

and the scalar pseudopotential

\[\psi_t = (1 - r) \left(u \psi_x + \psi_x^{\frac{2r}{2r-1}} \right), \]
\[\psi_y = (1 - r) \left(u \psi_x + v \psi_x^{\frac{r}{2r-1}} + w \psi_x^{\frac{r+1}{2r-1}} + \psi_x^{\frac{2r}{2r-1}} \right). \]

Example 4. The 3-component system

\[
\begin{pmatrix} u \\ v \\ w \end{pmatrix}_t = \begin{pmatrix} (r - 1)v & (2 - r)u & 0 \\ rw & 0 & (2 - r)u \\ 1 + r & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}_x + \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}_y,
\]
\(r = \text{const.}, \) possesses four conservation laws
\[
\frac{\partial \lambda^i}{\lambda^j - \lambda^i} = \frac{\partial \mu^i}{\mu^j - \mu^i},
\]
along with the relations (13),
\[
(A + \mu^i B + \lambda^j E) \partial_i u = 0,
\]
here \(i, j = 1, 2 \) and \(u = u(R^1, R^2) \). The last condition implies the dispersion relation
\[
det(A + \mu^i B + \lambda^j E) = D(\mu^i, \lambda^j) = 0
\]
which is assumed to define an irreducible algebraic curve. Let us also assume for simplicity that \(u, \mu^i, \lambda^j \) are \(3 \times 3 \) matrices and \(u = u(R^1, R^2) \) is a 3-component vector. The relations (13) imply
\[
\partial_1 v = M(\mu^1, \lambda^1) \partial_1 u, \quad \partial_2 v = M(\mu^2, \lambda^2) \partial_2 u,
\]
\[
\partial_1 w = N(\mu^1, \lambda^1) \partial_1 u, \quad \partial_2 w = N(\mu^2, \lambda^2) \partial_2 u
\]
where \(M(\mu, \lambda) \) and \(N(\mu, \lambda) \) are rational functions of \(\mu, \lambda \) whose coefficients are functions of \(u \) determined by \(A \) and \(B \). Applying the differentiation \(\partial_j, \ j \neq i, \) to the dispersion relation \(D(\mu^i, \lambda^j) = 0, \) taking into account (21) and the commutativity conditions (10), one obtains the expressions
\[
\frac{\partial_2 \mu^1}{\mu^2 - \mu^1} = \frac{\partial_2 \lambda^1}{\lambda^2 - \lambda^1} = P(\mu^1, \mu^2, \lambda^1, \lambda^2) \partial_2 u, \quad \frac{\partial_1 \mu^2}{\mu^1 - \mu^2} = \frac{\partial_1 \lambda^2}{\lambda^1 - \lambda^2} = P(\mu^2, \mu^1, \lambda^2, \lambda^1) \partial_1 u
\]
where, again, \(P \) is rational in its arguments. Finally, the consistency conditions for the equations (21), \(\partial_1 \partial_2 v = \partial_2 \partial_1 v \) and \(\partial_1 \partial_2 w = \partial_2 \partial_1 w \), imply two (a priory different) expressions for \(\partial_1 \partial_2 u \):
\[
\partial_1 \partial_2 u = R(\mu^1, \mu^2, \lambda^1, \lambda^2) \partial_1 u \partial_2 u, \quad \partial_1 \partial_2 u = S(\mu^1, \mu^2, \lambda^1, \lambda^2) \partial_1 u \partial_2 u.
\]
Thus, the condition of the existence of double waves is

\[R(\mu_1^1, \mu_2^1, \lambda_1^1, \lambda_2^1) = S(\mu_1^1, \mu_2^1, \lambda_1^1, \lambda_2^1) \mod D(\mu_1^1, \lambda_1^1) = D(\mu_2^1, \lambda_2^1) = 0. \]

Since coefficients of the rational expressions \(R \) and \(S \) depend on the first derivatives of matrix elements of \(A \) and \(B \), this constitutes a set of nontrivial first order constraints for \(A \) and \(B \).

In particular, all of the above formulas possess the specialization \(\lambda^i = k + l\mu^i \), \(k, l = \text{const} \). The dispersion relation reduces to \(\text{det}(kE + A + \mu^i(lE + B)) = 0 \), while the relation (13) takes the form \((kE + A + \mu^i(lE + B)) \triangledown \mathbf{u} = 0 \). Thus, \(\partial_1 \mathbf{u} \) and \(\partial_2 \mathbf{u} \) are the eigenvectors of the matrix \((lE + B)^{-1}(kE + A)\) corresponding to the eigenvalues \(\mu^1 \) and \(\mu^2 \). Since the surface \(\mathbf{u}(R^1, R^2) \) is tangential to both eigenvectors, the two-dimensional distribution spanned by them is automatically holonomic. Since this is true for any two eigenvectors of the matrix \((lE + B)^{-1}(kE + A)\), it is diagonalizable.

4 A class of diagonalizable Godunov’s systems

In this section we discuss a class of conservative \(3 \times 3 \) systems

\[\mathbf{u}_t + A(\mathbf{u})\mathbf{u}_x + B(\mathbf{u})\mathbf{u}_y = 0 \]

where \(\mathbf{u} = (u^1, u^2, u^3)^t \), \(A \) is a constant diagonal matrix and \(B \) is a Hessian:

\[
A = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}, \quad B = \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix};
\]

here \(c < b < a \) are constants, \(F_{ij} = \partial^2 F / \partial u^i \partial u^j \). These systems belong to the class considered by Godunov in [19]. In the \(2 \times 2 \) case the classification of integrable systems of this type was given in [14]. Here we concentrate on the diagonalizability aspect (which is automatically satisfied in the \(2 \times 2 \) case). Calculating the Haantjes tensor \(H^I_{jk} \), for the matrix \((kE + A)^{-1}(lE + B)\) and equating it to zero one arrives at an over-determined system of third order PDEs for the potential \(F \). The simplest way to obtain these equations is the following. One first calculates the components \(H^I_{ij} \) (two of the indices coincide) and writes each of them with common denominator. Numerators thereof are polynomials in \(k \) and \(l \) which are required to be identically zero. Setting successively \(k = -a, k = -b \) and \(k = -c \) in the expressions for these polynomials one arrives at the first set of relations,

\[
F_{123} = 0,
\]

\[
F_{111}(b - c) = F_{122}(c - a) + F_{133}(a - b),
\]

\[
F_{222}(c - a) = F_{112}(b - c) + F_{332}(a - b),
\]

\[
F_{333}(a - b) = F_{113}(b - c) + F_{223}(c - a),
\]

\[
F_{111}F_{23} = (F_{12}F_{13})_1, \quad F_{222}F_{13} = (F_{21}F_{23})_2, \quad F_{333}F_{12} = (F_{31}F_{32})_3, \tag{23}
\]

\[
F_{111} = ((c - a)(F_{12}^2)_1 + (a - b)(F_{13}^2)_1)/\triangle,
\]

\[
F_{222} = ((b - c)(F_{12}^2)_2 + (a - b)(F_{23}^2)_2)/\triangle,
\]

\[
F_{333} = ((b - c)(F_{13}^2)_3 + (c - a)(F_{23}^2)_3)/\triangle,
\]
where $\Delta = (b - c)F_{11} + (c - a)F_{22} + (a - b)F_{33}$. Before proceeding we point out that the system (23) possesses two integrals, one quadratic and one fourth order,

$$I = \Delta^2 + 4(c - a)(c - b)F_{12}^2 + 4(b - a)(b - c)F_{13}^2 + 4(a - b)(a - c)F_{23}^2,$$

$$J = (c - b)F_{12}^2F_{13}^2 + (b - a)F_{13}^2F_{23}^2 + (a - c)F_{12}^2F_{23}^2 + F_{12}F_{13}F_{23}\triangle;$$

both I and J are constant by virtue of (23). The further analysis splits into two cases.

Case 1. At least one of the expressions

$$(a - c)F_{12}^2 + (a - b)F_{13}^2, \quad (b - a)F_{23}^2 + (c - b)F_{21}^2, \quad (c - a)F_{32}^2 + (c - b)F_{31}^2$$

equals zero (these expressions appear as denominators when one solves the system (23) for the third derivatives of F). Let us suppose, for definiteness, that $(b - a)F_{23}^2 + (b - c)F_{21}^2 = 0$ (notice that, since $c < b < a$, the other two possibilities lead to complex-valued solutions).

Differentiating this constraint by u^1 and u^3 and taking into account (23) one obtains $F_{112} = F_{233} = 0$. The substitution into (23) implies $F_{220} = 0$. The further integration of the system (23) shows that, up to elementary transformations of variables, one has the following expression for F:

$$F = u^2(\gamma u^1 + \delta u^3) + f(\gamma u^1 + \delta u^3);$$

here the constants γ and δ satisfy the relation $(b - a)\delta^2 + (b - c)\gamma^2 = 0$ and f is an arbitrary function of the indicated argument. We refer to the Example 1 of Sect. 2 for a detailed discussion of this case.

Case 2. All expressions (25) are nonzero. In this case one can solve the relations (23) for the third derivatives of F. Calculating the remaining components H_{ij}^k, $i \neq j \neq k$, of the Haantjes tensor for the matrix $(kE + A)^{-1}(IE + B)$ and equating them to zero one arrives at the three cases:

2a. All third order derivatives of F equal to zero. This corresponds to linear systems.

2b. The integral J equals zero. This case can be eliminated by the further consistency analysis.

2c. The integrals I and J satisfy the relation

$$I^2 + 64(a - b)(b - c)(c - a)J = 0. \quad (26)$$

Notice that solutions constructed in Case 1 satisfy this constraint. We will show that there exists no other solutions in this class. First of all we point out that the general (real-valued) solution to the first four equations (23) (which are linear in F) is given by the formula

$$F = g(z) + \bar{g}(\bar{z}) + p(\alpha) + q(\alpha + z + \bar{z} + \alpha) + s(\alpha + z) + \bar{s}(\alpha + \bar{z}) + T$$

where

$$z = \frac{u^1}{\sqrt{(b - c)}} + i \frac{u^2}{\sqrt{(a - c)}}, \quad \bar{z} = \frac{u^1}{\sqrt{(b - c)}} - i \frac{u^2}{\sqrt{(a - c)}}, \quad \alpha = - \frac{u^1}{\sqrt{(b - c)}} - \frac{u^3}{\sqrt{(a - b)}}$$

and T is an arbitrary quadratic form in u^1, u^2, u^3. Without any loss of generality one can assume $T = 2e (u^1)^2$. Substituting this ansatz for F into (24) and keeping in mind the relation (26) one arrives at the following set of functional equations for the functions $G = g''$, $P = p''$, $Q = q''$, $S = s''$:

$$\left(G(z) + \bar{G}(\bar{z}) + P(\alpha) + Q(z + \bar{z} + \alpha) + S(\alpha + z) + \bar{S}(\alpha + \bar{z}) + 2e \right)^2 - \left(G(z) - \bar{G}(\bar{z})\right)^2 - (P(\alpha) - Q(z + \bar{z} + \alpha))^2 - (S(\alpha + z) - \bar{S}(\alpha + \bar{z}))^2 = I/4, \quad (27)$$
general family (8). In particular, the Haantjes tensor of the matrix $u = \begin{pmatrix} p \\ A \end{pmatrix}$, where p is an arbitrary matrix from the linear pencil $(\alpha - z_1, \alpha - z_2, \ldots, \alpha - z_n)$, gives rise to double waves. These solutions have been extensively investigated in [38], see also references.

Nevertheless, equations of gas dynamics possess double waves of special type, namely, potential waves. The equations of two-dimensional isentropic gas dynamics are of the form

$$
\rho_t + (\rho u)_x + (\rho v)_y = 0, \quad u_t + uu_x + vu_y + p_x/\rho = 0, \quad v_t + uv_x + vv_y + p_y/\rho = 0,
$$

where $p = p(\rho)$ is the equation of state. In matrix form, one has $u_t + Au_x + Bu_y = 0$ where $u = (\rho, u, v)^t$ and

$$
A = \begin{pmatrix}
u & \rho & 0 \\
c^2/\rho & u & 0 \\
0 & 0 & u
\end{pmatrix}, \quad B = \begin{pmatrix} v & 0 & \rho \\
0 & v & 0 \\
c^2/\rho & 0 & v
\end{pmatrix}.
$$

These functional equations can be solved explicitly as follows. Imposing the constraint $G(z) = \bar{G}(\bar{z})$ in the second equation (28) one obtains

$$
(P(\alpha) - Q(z + \bar{z} + \alpha))^2 (S(\alpha + z) - S(\alpha + \bar{z}))^2 + 2 (G(z) - \bar{G}(\bar{z})) (P(\alpha) - Q(z + \bar{z} + \alpha)) (S(\alpha + z) - S(\alpha + \bar{z})) \times (G(z) + \bar{G}(\bar{z}) + P(\alpha) + Q(z + \bar{z} + \alpha) + S(\alpha + z) + \bar{S}(\alpha + \bar{z}) + 2\epsilon) = I^2/64.
$$

This simple functional equation implies that $G(z) = \bar{G}(\bar{z})$ in the first equation (27) we have

$$
(G(z) + \bar{G}(\bar{z}) + P(\alpha) + Q(z + \bar{z} + \alpha) + S(\alpha + z) + \bar{S}(\alpha + \bar{z}) + 2\epsilon)^2 =

(P(\alpha) - Q(z + \bar{z} + \alpha))^2 + (S(\alpha + z) - \bar{S}(\alpha + \bar{z}))^2 + I^2/4 =

(P(\alpha) - Q(z + \bar{z} + \alpha) + S(\alpha + z) - \bar{S}(\alpha + \bar{z}))^2
$$

by virtue of (29). Thus,

$$
G(z) + \bar{G}(\bar{z}) + P(\alpha) + Q(z + \bar{z} + \alpha) + S(\alpha + z) + \bar{S}(\alpha + \bar{z}) + 2\epsilon =

-P(\alpha) + Q(z + \bar{z} + \alpha) - S(\alpha + z) + \bar{S}(\alpha + \bar{z})
$$

(9)

This simple functional equation implies that $G, \bar{G}, P, S, \bar{S}$ are linear functions:

$$
G(z) = cz + \mu, \quad \bar{G}(\bar{z}) = c\bar{z} + \bar{\mu}, \quad P(\alpha) = c\alpha + \nu, \quad S(\alpha + z) = -c(\alpha + z) + \eta, \quad \bar{S}(\alpha + \bar{z}) = -c(\alpha + \bar{z}) + \bar{\eta}.
$$

However, the substitution of these expressions into (27) readily implies $c = 0$. Thus, G, S and P are constants. This brings us back to the Case 1 considered above.

5 Double waves for two-dimensional gas dynamics

The equations of two-dimensional isentropic gas dynamics are of the form

$$
\rho_t + (\rho u)_x + (\rho v)_y = 0, \quad u_t + uu_x + uu_y + p_x/\rho = 0, \quad v_t + uv_x + vv_y + p_y/\rho = 0,
$$

where $p = p(\rho)$ is the equation of state. In matrix form, one has $u_t + Au_x + Bu_y = 0$ where $u = (\rho, u, v)^t$ and A, B are given by

$$
A = \begin{pmatrix} u & \rho & 0 \\
c^2/\rho & u & 0 \\
0 & 0 & u
\end{pmatrix}, \quad B = \begin{pmatrix} v & 0 & \rho \\
0 & v & 0 \\
c^2/\rho & 0 & v
\end{pmatrix}.
$$

Here $c^2 = p'(\rho)$ is the sound speed. We have verified that, although the Haantjes tensor of an arbitrary matrix from the linear pencil $A + kB$ equals zero, this is not the case for the general family (8). In particular, the Haantjes tensor of the matrix $A^{-1}B$ does not vanish. Nevertheless, equations of gas dynamics possess double waves of special type, namely, potential double waves. These solutions have been extensively investigated in [38], see also references.
Parametrising from the first two equations and substituting them into the third, one arrives at the dispersion
\(i = 1 \)
\(u \)
The equations for \(\rho \) use the ansatz parametrized by four arbitrary functions of a single argument. To construct these solutions we there exist potential flows describing nonlinear interaction of two sound waves which are locally parametrized by four arbitrary functions of a single argument. To construct these solutions we use the ansatz \(\rho = \rho(R_1, R_2), u = u(R_1, R_2), v = v(R_1, R_2) \) where the Riemann invariants \(R_1, R_2 \) solve a pair of diagonal systems
\[
R_x^i = \lambda^i(R)R_t^i, \quad R_y^i = \mu^i(R)R_t^i, \quad (30)
\]
i = 1, 2. The substitution implies the relations
\[
(1 + \lambda^i u + \mu^i v) \partial_i u + \frac{2}{p} \lambda^i \partial_i \rho = 0,
\]
\[
(1 + \lambda^i u + \mu^i v) \partial_i v + \frac{2}{p} \mu^i \partial_i \rho = 0,
\]
\[
(1 + \lambda^i u + \mu^i v) \partial_i \rho + \rho(\lambda^i \partial_i u + \mu^i \partial_i v) = 0,
\]
i = 1, 2, \(\partial_i = \partial/\partial R_i \). In what follows we assume \(1 + \lambda^i u + \mu^i v \neq 0 \). Expressing \(\partial_i u \) and \(\partial_i v \) from the first two equations and substituting them into the third, one arrives at the dispersion relation for sound waves,
\[
(1 + \lambda^i u + \mu^i v)^2 - c^2((\lambda^i)^2 + (\mu^i)^2) = 0.
\]
Parametrising \(\lambda^i \) and \(\mu^i \) in the form \(\lambda^i = s^i \cos \varphi^i, \mu^i = s^i \sin \varphi^i \), we obtain \(1 + \lambda^i u + \mu^i v = cs^i \) so that \(s^i = 1/(c - u \cos \varphi^i - v \sin \varphi^i) \). Thus,
\[
\lambda^i = \frac{\cos \varphi^i}{c - u \cos \varphi^i - v \sin \varphi^i}, \quad \mu^i = \frac{\sin \varphi^i}{c - u \cos \varphi^i - v \sin \varphi^i}. \quad (31)
\]
The equations for \(u \) and \(v \) take the form
\[
\partial_1 u + \frac{\xi}{\rho} \cos \varphi^i \partial_i \rho = 0, \quad \partial_2 u + \frac{\xi}{\rho} \cos \varphi^2 \partial_2 \rho = 0,
\]
\[
\partial_1 v + \frac{\xi}{\rho} \sin \varphi^i \partial_i \rho = 0, \quad \partial_2 v + \frac{\xi}{\rho} \sin \varphi^2 \partial_2 \rho = 0. \quad (32)
\]
Notice that since \(\mu^i \partial_i u = \lambda^i \partial_i v \) one has \(u_y = v_x \). Thus, solutions describing nonlinear interaction of two sound waves are necessarily potential. Writing out the commutativity conditions \(\partial_j \lambda^i/(\lambda^i - \lambda^j) = \partial_j \mu^i/(\mu^j - \mu^i), i, j = 1, 2, i \neq j \), and the consistency conditions \(\partial_1 \partial_2 u = \partial_2 \partial_1 u, \partial_1 \partial_2 v = \partial_2 \partial_1 v \), one arrives at the following system for \(\varphi^1, \varphi^2, \rho \):
\[
\partial_2 \varphi^1 = \cot \frac{\varphi^2 - \varphi^1}{2} \left(\frac{\varphi'}{c} + \frac{1}{\rho} \cos (\varphi^1 - \varphi^2) \right) \partial_2 \rho,
\]
\[
\partial_1 \varphi^2 = \cot \frac{\varphi^1 - \varphi^2}{2} \left(\frac{\varphi'}{c} + \frac{1}{\rho} \cos (\varphi^1 - \varphi^2) \right) \partial_1 \rho,
\]
\[
\partial_1 \partial_2 \rho = \frac{\partial_1 \rho \partial_2 \rho}{\sin^2 \frac{\varphi^1 - \varphi^2}{2}} \left(\frac{\varphi'}{c} \cos (\varphi^1 - \varphi^2) + \frac{1}{4 \rho} (3 + \cos 2(\varphi^1 - \varphi^2)) \right). \quad (33)
\]
Up to reparametrizations $R^1 \to f^i(R^1)$, the general solution of this system depends on two arbitrary functions of a single argument. For any solution $\varphi^i(R^1, R^2)$, $\rho(R^1, R^2)$ one reconstructs the hodograph surface of the corresponding double wave by solving the equations (32) for $u(R^1, R^2)$ and $v(R^1, R^2)$ (which are automatically consistent). Each of these surfaces can be made into a solution of the gas dynamics equations by solving the equations (30) for $R^1(t, x, y)$ and $R^2(t, x, y)$; here the characteristic speeds λ^i, μ^i are given by (31). Notice that since the general solution of (30) depends on two arbitrary functions of a single argument, each hodograph surface corresponds to infinitely many solutions.

Remark. Any hodograph surface defined parametrically in the form $u(R^1, R^2)$, $v(R^1, R^2)$, $\rho(R^1, R^2)$ can be parametrized explicitly as $\rho = \rho(u, v)$. Using the relations (32), (33) one can show that the function $\rho(u, v)$ satisfies the second order PDE

$$\frac{1}{2} \left(\frac{d^2}{d\varphi} \right) (\rho_u^2 + \rho_v^2) - \frac{d^2}{d\varphi} \left(\frac{\varphi^3}{c^2} (\rho_u^2 + \rho_v^2) + 2 \frac{\varphi}{c} - (\rho_u^2 + \rho_v^2)/\rho \right) = 0,$$

(34)

here $c^2 = p'$ where $p(\rho)$ is the equation of state and $' \equiv d/d\rho$. For a polytropic gas, $p = \rho^{\gamma}/\gamma$, the equation (34) simplifies to

$$(3 - \gamma)\rho^{2 - \gamma}(\rho_u^2 + \rho_v^2) - 2\rho^{5 - 2\gamma} = \rho^{3 - \gamma}(\rho_uu + \rho_vv) - \rho_u^2\rho_uu + 2\rho_u\rho_v\rho_{uv} - \rho_u^2\rho_{vv}$$

which takes the form

$$(1 + \varphi_{uv})(\varphi^2 - (\gamma - 1)\varphi) - 2\varphi_u\varphi_v\varphi_{uv} + (1 + \varphi_{uv})(\varphi^2 - (\gamma - 1)\varphi) = 0$$

after the substitution $\varphi = \rho^{\gamma-1}/(\gamma - 1)$. In this form the equation for double waves appears in [38], §8.

It is unlikely that the system (33) can be integrated in a closed form, even for Chaplygin’s equation of state $p(\rho) = b - a/\rho$, $a, b = const$, in which case it simplifies to

$$\partial_2 \varphi^1 = \frac{\partial \rho}{\rho} \sin (\varphi^1 - \varphi^2), \quad \partial_1 \varphi^2 = \frac{\partial \rho}{\rho} \sin (\varphi^2 - \varphi^1),$$

$$\partial_1 \partial_2 \rho = 2 \frac{\partial \rho \partial_\rho}{\rho} \sin^2 \frac{\varphi^1 - \varphi^2}{2}.$$

However, some particular solutions can be easily constructed. Let us consider the polytropic case, $p(\rho) = \rho^\gamma$, so that $\varphi' = \frac{\varphi^2 - 1}{2\rho}$. One can verify that

$$\varphi^1 = R^1 - R^2, \quad \varphi^2 = R^1 - R^2 + \frac{\pi}{2}, \quad \rho = \exp -\frac{\pi}{2\gamma}(R^1+R^2)$$

solve the system (33). The corresponding equations (32) imply

$$u = \frac{\sqrt{\pi}}{1 - \gamma} (\cos(R^1 - R^2) - \sin(R^1 - R^2)) \exp^{-(R^1+R^2)},$$

$$v = \frac{\sqrt{\pi}}{1 - \gamma} (\cos(R^1 - R^2) + \sin(R^1 - R^2)) \exp^{-(R^1+R^2)}.$$

Excluding R^1 and R^2 one arrives at the explicit hodograph surface, $\frac{(1 - \gamma)^2}{2\gamma} (u^2 + v^2) \rho^{1 - \gamma} = 1$, or, equivalently, $(1 - \gamma)^2 (u^2 + v^2) = 2c^2$. To make this surface into a solution one has to solve the
equations (30) where the characteristic speeds are given explicitly by (31):

\[
\lambda_1 = \frac{\gamma - 1}{\gamma} \cos(R^1 - R^2) \exp^{R^1 + R^2}, \quad \lambda_2 = -\frac{\gamma - 1}{\gamma} \sin(R^1 - R^2) \exp^{R^1 + R^2},
\]

\[
\mu_1 = \frac{\gamma - 1}{\gamma} \sin(R^1 - R^2) \exp^{R^1 + R^2}, \quad \mu_2 = \frac{\gamma - 1}{\gamma} \cos(R^1 - R^2) \exp^{R^1 + R^2},
\]

The general solution \(R^1(t, x, y), \ R^2(t, x, y) \) of the corresponding system (30) is given by the implicit formula

\[
v^1(R) = t + \lambda_1(R)x + \mu_1(R)y, \quad v^2(R) = t + \lambda_2(R)x + \mu_2(R)y
\]

where \(v^1, v^2 \) are the characteristic speeds of the general flow commuting with (31). They satisfy the linear equations

\[
\frac{\partial v^1}{\partial t} = \frac{\partial v^1}{\partial x} = \frac{\partial v^1}{\partial y} = -1
\]

\[
\frac{\partial v^2}{\partial t} = \frac{\partial v^2}{\partial x} = \frac{\partial v^2}{\partial y} = -1.
\]

A detailed analysis of these solutions is beyond the scope of this paper.

6 Appendix: the semi-Hamiltonian property

For diagonalizable one-dimensional systems (1) there exists a tensor object responsible for the semi-Hamiltonian property. We emphasize that the method does not require the actual transformation to the diagonal form (2): it is sufficient to verify that the corresponding Haantjes tensor (5) is zero. After that one computes the (1, 3)-tensors \(M \) and \(K \),

\[
M_{ijk}^l = N_{kp_l}^{k^p}N_{qj}^{p^q}N_{ij}^{q^q} + N_{pq}^{k^p}N_{ik}^{p^q}N_{ij}^{q^q} - N_{pq}^{k^p}N_{ik}^{p^q}N_{ij}^{q^q} - N_{kp}^{k^p}N_{ij}^{q^q} - N_{kp}^{k^p}N_{qj}^{l^q}
\]

and

\[
K_{ijk}^l = b_k^p\partial_{ab}N_{ij}^{p^q} - b_k^p\partial_{ab}N_{ij}^{p^q} + N_{kj}^{q^q}\partial_{ab}N_{ij}^{p^q} - N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q} + N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q} + N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q}
\]

\[
+ b_k^p\partial_{ab}N_{ij}^{p^q} - b_k^p\partial_{ab}N_{ij}^{p^q} + N_{kj}^{q^q}\partial_{ab}N_{ij}^{p^q} - N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q} + N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q} + N_{kq}^{q^q}\partial_{ab}N_{ij}^{p^q}
\]

here \(b = v^2 \), that is, \(b_j = v_j^i v_i^p \). Using \(M \) and \(K \) one defines the (1, 3)-tensor \(Q \) as

\[
Q_{kij} = v^p_kK_{pqj}v^q_i + v^p_kK_{pqj}v^q_i - v^p_qK_{pqj}v^q_i - K_{kqj}v^p_i - K_{kqj}v^p_i + 4v^p_kM_{kij}^l - 2M_{kij}^l - 2M_{kipj}^l
\]

Finally, one introduces the tensor \(P \),

\[
P_{kij} = v^p_kQ_{kqj}v^q_i + v^p_kQ_{kqj}v^q_i - v^p_qQ_{kqj}v^q_i - Q_{kqj}v^p_i - Q_{kqj}v^p_i
\]

Theorem 4 [32] A diagonalizable hydrodynamic type system (1) with the matrix \(v^i(u) \) with mutually distinct eigenvalues is semi-Hamiltonian if and only if the corresponding tensor \(P \) is identically zero.

Note that these objects can be obtained using computer algebra.

16
Acknowledgements

We thank M.V. Pavlov and S.P. Tsarev for useful discussions.

References

19-24.

[18] J. Gibbons and S. P. Tsarev, Conformal maps and reductions of the Benney equations,

[20] A. Grundland and R. Zelazny, Simple waves in quasilinear hyperbolic systems. I, II. Rie-
2305-2328.

[23] I.M. Krichever, Spectral theory of two-dimensional periodic operators and its applications,

[25] M. Manas, L. Martinez Alonso and E. Medina, Reductions and hodograph solutions of the

[26] M. Manas, S-functions, reductions and hodograph solutions of the r-th dispersionless mod-

[27] L. Martinez Alonso and A.B. Shabat, Hydrodynamic reductions and solutions of a universal

[29] M.V. Pavlov, Classification of the integrable Egorov hydrodynamic chains, Theor. and

