Stability of Ni3P and its effect on the interfacial reaction between electroless Ni-P and molten tin

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: CHEN, K. ... et al, 2005. Stability of Ni3P and its effect on the interfacial reaction between electroless Ni-P and molten tin. IN: IEEE International Symposium on Electronics Materials and Packaging, EMAP 2005, Tokyo, 11-14th December 2005, pp. 107-111

Additional Information:

- This is a conference paper [© IEEE]. It is also available from: http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10650. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Metadata Record: https://dspace.lboro.ac.uk/2134/4185

Version: Published

Publisher: © IEEE

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Stability of Ni$_3$P and its effect on the interfacial reaction between electroless Ni-P and molten tin

K. Chen, C. Liu, D.C. Whalley and D.A. Hutt
Wolfson school of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
K.Chen@lboro.ac.uk

Abstract

The stability of Ni$_3$P and its effect on the reaction with molten tin were evaluated in the present study by comparing the reaction behaviour of Ni-P coatings in the as-plated and heat-treated conditions. It was found that after the solder reaction a dark layer of Ni$_3$P was formed at the interface on Ni-P coatings in both conditions, but its thickness was thinner on heat-treated coatings than on as-plated coatings. From the compositional analysis on the cross-sections, it was found that not all the P ejected from the interfacial reaction between Sn and Ni-P was consumed by the formation of Ni$_3$P, as P was detected in a second layer of interfacial phase which also contained Ni and Sn. The formation of Ni$_3$P was found to be characteristic of a diffusion process, whilst the thickness of Ni-P coating consumed during the reaction was found to be linearly proportional to the reaction time. It is concluded that the Ni$_3$P phase formed during the solder reaction is not stable and therefore cannot act as an effective barrier to reactions with liquid solders.

Introduction

Liquid solder interconnections for use in electronic assemblies exposed to high temperature environments have attracted much interest in recent years [1-3]. The major driving force behind this concept is that the use of a solder chosen such that it regularly becomes molten during normal operation of the equipment can prevent the build up of large thermal stresses in the solder joints and consequently the accumulation of damage due to the inelastic strains normally resulting from thermal cycling. A key issue in the practical implementation of this concept is to slow down the normally rapid interfacial reactions between the molten solder and the component and substrate metallization layers [3]. This may be partly achieved by applying a barrier layer of electroless Ni-P onto these metallizations, as it is well known that electroless Ni-P has a relatively slow reaction rate with solders compared with other common termination materials such as copper.

The interfacial reaction between electroless Ni-P alloys and liquid solders has been the focus of many studies [4-9]. However, the details of the reaction mechanism are still far from clear, as the presence of P complicates the situation. It is generally found that, apart from the formation of Ni$_3$Sn$_4$ intermetallic compounds (IMC) at the interface, a layer of Ni$_3$P phase from the solder reaction-assisted crystallisation of amorphous Ni-P also precipitates adjacent to the IMC [8]. Whether the Ni$_3$P phase thus formed is stable, and what the effect of its precipitation is on the continuing growth of Ni$_3$Sn$_4$, are still in doubt. It has been proposed that Ni$_3$P may decompose to supply Ni atoms for the growth of Ni$_3$Sn$_4$ and that the ejected P atoms then diffuse back towards the Ni-P to form Ni$_3$P [4, 6-8]. However, He et al. [5] ruled out the possibility of Ni$_3$P decomposition based on an analysis of the destination of decomposed P atoms. They also claimed that the formation of Ni$_3$P promoted the diffusion of Ni atoms and accounted for the faster growth of Ni$_3$Sn$_4$ IMCs on electroless Ni-P than on pure Ni, by releasing the reaction heat as well as providing rapid paths for diffusion due to their fine columnar microstructure. However, Hung et al. [6-7] found that Ni$_3$P can act as a barrier layer for Ni diffusion and consequently suppresses the growth of Ni$_3$Sn$_4$, which in turn leads to the cessation of Ni$_3$P growth.

In this paper, electroless Ni-P coatings were deposited onto thin copper wires and heat-treated at 500°C for 2 hours before being dipped into a pure molten tin bath. Tin was used as is the major constituent of most solder alloys likely to be used in the applications envisioned for liquid solder joint technology and, due to its high reactivity, is generally the component which takes place in any intermetallic reactions. The purpose of the heat-treatment was to transform the amorphous Ni-P into the equilibrium state, which consists of crystallized Ni and Ni$_3$P, so that the reaction-assisted crystallisation of Ni$_3$P during the solder reaction may be avoided and the interference from its formation heat and fine-grained microstructure will not exist. By comparing the solder reaction behaviours of the Ni-P coatings in the as-plated and heat-treated conditions, the stability of Ni$_3$P and its effects on the solder reaction were investigated.

Experimental procedures

All the electroless Ni-P coatings used in this study were deposited onto thin copper wires (250 µm in diameter) to a thickness of approximately 15 µm. The composition of the Ni-P coatings and the corresponding deposition conditions are given in Table 1.

The heat-treatment of the as-plated electroless Ni-P coatings was carried out under the protection of a flowing gas mixture of N$_2$ and 5% H$_2$ to avoid surface oxidation. The heat-treatment furnace was heated at a rate of 5 °C/min to 500 °C and was held at that temperature for 2 hours. The furnace was then cooled down at 5 °C/min to room temperature. The change in the deposit microstructure as a result of the heat-treatment was characterized by X-ray diffractometry using a Bruker D8 X-ray diffractometer, with Cu Kα radiation (λ=1.5406 Å), in the range of 25-90°, at a scan rate of 0.02°/sec, a voltage of 40 kV, and a current of 40 mA.

The reaction of the Ni-P coatings with molten tin was studied by dipping the coated wires into molten tin (250 g, 99.96 wt% purity) held in a ceramic crucible. The reaction temperature was 250 or 290 °C, whilst the reaction time was 3-28 min. The immersion depth of the samples was about 15 mm.
Before dipping, all samples were coated in a strong flux (ACTIEC 5). Upon completion of the reaction step, the samples were withdrawn slowly from the solder bath to avoid disturbing the reaction products at the interface.

Table 1 Electrolytes and deposition conditions for electrolec Ni-P coatings

<table>
<thead>
<tr>
<th>Composition and conditions</th>
<th>Formulation no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiSO4·6H2O (g/l)</td>
<td>1* 2 3 4 5 6** 7 8</td>
</tr>
<tr>
<td>NaH2PO2·H2O (g/l)</td>
<td>11 11 11 16 16 24 14 16</td>
</tr>
<tr>
<td>pH</td>
<td>8.8 9.5 8.0 10.0 9.0 4.5 8.0 8.0</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>80 80 90 80 90 90 90</td>
</tr>
<tr>
<td>P content in deposits (wt%)</td>
<td>2.0 3.8 5.0 6.5 7.5 10.0 13.0 14.0</td>
</tr>
</tbody>
</table>

* plus 0.6 mg/l thiourea
** plus 28 ml/l lactic acid and 2.2 ml/l propionic acid
All formulations except No 6 also contained 66 g/l Na2C2H3O7·2H2O, 66 g/l NiH2SO4

Following dipping, the samples were mounted in electrically conductive resin and metallographically polished for microstructural characterization and compositional analysis. These were carried out using a field emission gun - scanning electron microscope (FEG-SEM) equipped with energy-dispersive X-ray spectroscopy (EDS).

The thickness measurements of the different phases at the reaction interface, were performed at a randomly chosen location for cross-sections like that shown in Fig. 1a. For cross-sections such as shown in Fig. 1b, the measurement was done along the short axis of the oval, where the distortion of thickness is the least due to an oblique section plane.

![Fig. 1 SEM micrographs showing the cross-sections obtained under different conditions: (a) section plane normal to the copper wire; (b) section plane not normal to the wire](image)

Results and Discussion

The X-ray diffraction patterns for the as-plated and heat-treated Ni-P coatings are shown in Fig. 2. The breadth of the Ni XRD peak indicates that in the as-plated condition (Fig. 2a), the low P (2 wt%) coating is mainly nano-crystalline nickel. This is in agreement with results previously reported in the literature [10-12]. With increasing P content, the coating develops a fully amorphous microstructure owing to the increased disturbance from P atoms to the regular arrangement of Ni atoms. This amorphous microstructure can be inferred from the very weak and broadened diffraction peak for the coating with 14 wt% P. After the heat-treatment at 500 °C, it can be seen from Fig. 2b that the diffraction peaks of Ni for the low P coating have become much stronger and sharper than before the heat-treatment, indicating that a grain coarsening process for the Ni has taken place. For coatings with medium (7.5 wt%) and high (14 wt%) P contents, the heat-treatment induced a phase transformation with the formation of well-crystallized Ni and Ni3P phases. Therefore, it is confirmed that after the heat-treatment the Ni3P phase has definitely precipitated from the amorphous matrix. Its stability during the reaction with molten tin can subsequently be assessed. It is necessary to note that the existence of Ni3P in the coating with 2 wt% P, and Ni in the coating with 14 wt% P in the heat-treated state was not revealed by the XRD due to their small volume fractions.

![Fig. 2 X-ray diffraction patterns of Ni-P coatings in (a) the as-plated and (b) the heat-treated states](image)
investigations [4,8]. The light grey layer next to the Ni$_3$P was expected to be the Ni$_3$Sn, IMC. However, the compositional analysis as shown in Fig. 4c indicated that it consisted of Ni, Sn and P. The presence of P in this layer suggests that P was lost into the molten solder side and that not all the P atoms ejected from the reaction between Ni and Sn were consumed by the formation of Ni$_3$P. To our knowledge, this is the first evidence of the loss of P into the solder, which may be enabled by the enhanced diffusion of atoms from the interface region into the bulk of molten tin due to the specific geometry of our thin copper wire samples. From the growth characteristics of the Ni$_3$P phase, Hung et al. [9] has also come to the same conclusion that there was a large loss of P during the reaction of their Ni$_3$P$_{23}$ coatings (approximately 14 wt% P) with molten eutectic Pb-Sn solder, but they didn’t present any direct evidence for this.

For the heat-treated samples (as shown in Fig. 4b), a dark layer of Ni$_3$P also formed at the interface after the dipping experiment, although its thickness is thinner than that shown in Fig. 4a. The formation of such a single phase layer of Ni$_3$P on a two-phased Ni-P coating (i.e. Ni and Ni$_3$P) indicated that, during the reaction with molten tin, the Ni$_3$P phase formed during the heat-treatment prior to the dipping experiment had decomposed. The Ni atoms from the decomposition of Ni$_3$P reacted with molten tin, whilst the P atoms from the decomposition became enriched at the interface forming a new, continuous layer of Ni$_3$P. Therefore this could indicate that the decomposition of Ni$_3$P is possible.

Fig. 5 Micrographs showing the interfacial microstructure of Ni-P coatings with low/medium P contents in different conditions. (a) 7.5 wt% P, as-plated; (b) 7.5 wt% P, heat-treated; (c) 2.0 wt% P, as-plated; (d) 2.0 wt% P, heat-treated

The interfacial microstructure for Ni-P coatings with low/medium P contents is shown in Fig. 5. These interfaces showed a similar multilayered structure to those with 14 wt% P. The decrease in the thickness of Ni$_3$P as a result of heat-treatment is also apparent. For the coating with 2 wt% P in the heat-treated state, no Ni$_3$P was observed to form at the interface during its reaction with molten tin.
Fig. 6 shows the thickness of Ni₃P formed during the solder reaction with different Ni-P coatings at 290 °C for 7 minutes. For the as-plated coatings, the Ni₃P thickness increased with increasing P content until about 8 wt%. A further increase in P content in the deposit didn’t lead to a further increase in the thickness of the Ni₃P phase. For the heat-treated samples, no Ni₃P phase was observed until the P content in the deposit was higher than about 6 wt%. After that a similar trend was observed, although the thickness of Ni₃P was apparently thinner than that formed on as-plated samples.

Fig. 6 Effect of the P content in the deposit and the heat-treatment on the thickness of Ni₃P formed at the interface

The effect of the P content in the deposit and the heat-treatment on the thickness of Ni-P coatings consumed during 7 minutes of solder reaction at 290 °C is shown in Fig. 7. The thickness of Ni-P coatings consumed during the reaction is defined as the thickness difference between the original Ni-P coating and the un-reacted Ni-P coating left underneath the Ni₃P layer after the dipping experiment. As can be seen from Fig. 7, Ni-P coatings after heat-treatment seemed to become more reactive with molten tin, whilst coatings with lower P contents seemed to be less resistant to the solder reaction.

Fig. 7 Effect of the P content in the deposit and the heat-treatment on the thickness of Ni-P coatings consumed during the reaction with molten tin at 290 °C for 7 minutes

It was found that the reaction rate between the electroless coatings and the molten tin at 290 °C was too fast to enable time dependent measurements. The whole coating (approximately 15 μm thick), and even the whole copper wire for most of the samples prepared in this study, were completely dissolved into the molten tin bath in less than 15 minutes. The reaction temperature was therefore reduced to 250 °C in the following studies which took place using a fresh molten tin bath. The variation with the reaction time of the thickness of Ni₃P formed during the reaction at this temperature is shown in Fig. 8. For both as-plated and heat-treated coatings, the thickness of Ni₃P increases rapidly at the beginning of the reaction. With an increase in the reaction time, the growth rate slows down and eventually there is no significant further increase in the Ni₃P thickness. This implies that the formation of Ni₃P is characteristic of a diffusion process.

Fig. 8 Variation of Ni₃P thickness with reaction time for Ni-P coatings with different P contents. (a) 2.0 wt% P, as-plated; (b) 2.0 wt% P, heat-treated; (c) 7.5 wt% P, as-plated; (d) 7.5 wt% P, heat-treated; (e) 14 wt% P, as-plated; (f) 14 wt% P, heat-treated

The thickness of the Ni-P coatings consumed during the solder reaction at 250 °C is shown in Fig. 9. No matter whether the coating is in the as-plated or the heat-treated state, the thickness of the coating consumed is linearly proportional to the reaction time. For the coatings with 2.0 wt% and 7.5 wt% P contents, their consumed thickness was much thicker in the heat-treated state than in the as-plated state. However, for the coating with 14 wt% P, the consumed thickness after the same reaction time was slightly thinner for the heat treated samples. However, considering the experimental error during the thickness measurement, this small difference may not be significant. Therefore the heat-treatment for the coating with high P content may not have a significant effect on its reaction rate with molten tin, although it has been found to promote the reaction between Ni-P coatings with low and medium P contents and molten tin, as shown in Fig. 9a and 9b.
The linear relationship between the thickness of the Ni-P coating consumed during the solder reaction and the reaction time implies that the reaction was under kinetic rather than diffusion control. The existence of a layer of Ni$_3$P at the interface didn't slow down the reaction rate at all. With reference to the decomposition of Ni$_3$P at the interface as stated earlier, it can be seen that Ni$_3$P couldn't act as an effective barrier for the reaction with molten tin.

Conclusions

It has been found that during the reaction of Ni-P coatings on thin copper wires with molten tin, P was lost to the solder side and not all the P was consumed by the formation of Ni$_3$P. The loss of P was more significant for Ni-P coatings in the as-plated state than for those after a heat-treatment prior to the solder reaction. The Ni$_3$P phase, either formed during the interfacial reaction or pre-existing as a result of the heat-treatment, was not stable. It decomposed to supply nickel atoms for the interfacial reaction with molten tin. Therefore Ni$_3$P couldn't act as an effective barrier for the liquid solder reaction. As a result, the consumption rate of the Ni-P coatings was not slowed down, although the thickness of Ni$_3$P increased with increasing reaction time.

References