High redundancy in actuation

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: STEFFEN, T. ... et al, 2009. High redundancy in actuation. Presented at SET for Britain, House of Commons, 9th March 2009

Additional Information:

- The poster was presented at at SET for Britain in the Parliament 9th March 2009 (http://www.setforbritain.org.uk/) by Thomas Steffen, representing the six members of staff from the Control Systems Group. This poster is also available at: http://www-staff.lboro.ac.uk/elts2/tmp/set-poster250.png

Metadata Record: https://dspace.lboro.ac.uk/2134/4337

Version: Published

Publisher: Loughborough University

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
High Redundancy in Actuation
Set for Britain, House of Commons, 9th Mar 2009 Department of Electronic and Electrical Engineering

Q: What keeps aircraft flying when something goes wrong?

A: It is not a "bolt on" parachute, but integrated design for safety using redundancy!

The design of safe systems (or high integrity systems) is a well established discipline. Risk cannot be completely eliminated, but engineers try to keep it to an acceptable level. This project tries to improve upon traditional methods by introducing higher degrees of redundancy. The goal is to provide a superior level of safety at higher efficiency and no additional cost.

High Redundancy Actuation

Like a muscle generates a strong force by combining many fibres, the HRA works by engaging a lot of actuation elements. Faults in individual elements have only a minor influence.

1. Basic (Simplex)
 + cheap
 + easy
 - not reliable

2. Normal Redundancy (Triplex)
 + redundancy
 + reliability
 - cost, weight

3. High Redundancy
 + reliability
 + efficiency
 - may lock-up

4. Grid Configuration (Series/Parallel)
 + redundancy
 + reliability
 + lock-up free

The idea is applicable to a range of actuation technologies:
Actuation Technology
Electro-Magnetic
Electro-Mechanical
Piezo-Electric
Hydraulic

Reliability Analysis
In words:
even if one out of 100 elements is faulty,
a 50x50 HRA will only fail on one in 8 billion aircraft.

Passive fault tolerant control
(without reconfiguration)

Robust Control
Simple Controller
- single measurement
- plus load adjustment
Control Structure
- robust PID
- 2 degree of freedom
- state feedback Results with an optimised controller:
Controller Design
- sensitivity based
- H_{∞} design
- optimisation
- adaptive control

Active fault tolerance
(with reconfiguration)

Multi-Agent Systems (MAS) deal with complexity by using several cooperating agents for individual functions.

Agent Structure
each agent
is independent
communicates with neighbours

Agent Tasks
fault detection
fault response
multi-model control

Prof. Roger Goodall, Principal Investigator
Fellow of Royal Academy of Engineering, the IET and the IMechE
Research Interests:
- advanced control in electro-mechanical systems
- railway vehicle suspension systems and diagnosis
- state estimation for aircraft flight control systems

Dr. Roger Dixon, Senior Lecturer
Chartered Engineer and Member of the IMechE
Research Interests:
- fault detection and health monitoring
- smart electro-mechanical actuation
- active dampers for vibration suppression

Dr. Argyrios Zolotas, Senior Lecturer
Member of IEEE and SIAM
Research Interests:
- advanced control and optimization techniques
- H \infty and robust control
- fault tolerant control, especially sensor placement

Dr. Thomas Steffen, Research Associate
Dipl.-Ing., Member of VDI
Research Interests:
- fault tolerant control
- state space methods and the geometric approach
- structure methods and systems engineering

Jessica Davies, PhD Student
Research Interests:
- modelling and identification
- Multi-Agent Systems (MAS)
- software simulation

Dr. Xinli Du, former PhD Student
(now at Aston University Birmingham)
Research Interests:
- fault tolerant control
- optimal control
- mechanical actuation

This project is funded by the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/D078350/1 (2007-2009). It is performed together with our two industrial partners BAE Systems and SMAC UK ltd.
Systems Engineering Innovation Centre

see www.lboro.ac.uk/departments/el/research/scg/ and www-staff.lboro.ac.uk/~elts2/hra/