Loughborough University
Browse
Nanofiltration.pdf (367.69 kB)

Nanofiltration: a technology for selective solute removal from fuels and solvents

Download (367.69 kB)
journal contribution
posted on 2009-03-19, 09:45 authored by Steve Tarleton, J.P. Robinson, Jian-Shen Low
This paper describes the principal features of solvent resistant nanofiltration, and in particular its potential in fuel processing. Experimental data for both fuel simulants and a representative petrol fuel are presented to illustrate the salient features. The solute rejection mechanism for low polarity mixtures was size exclusion with a membrane cutoff in the region of 1-2 nm. The extent of solute rejection was dependent on the degree of membrane crosslinking, the membrane swelling induced by the feed and the applied (filtration) pressure. Nanofiltration experiments with the petrol fuel showed a good correlation with the data obtained for the fuel simulants, both in terms of permeate flux and solute rejection. Provided that higher polarity oxygenates were not present in the fuel, it was possible to remove undesirable polynuclear aromatic and organometallic solutes to an extent that was sufficient to reduce valve deposits (by 64%) and emissions gases (by up to 17%) in engine tests. These improvements significantly better the changes in engine performance that are brought about by the more traditional addition of fuel additives such as detergents. The technology provides a method for removing undesirable solutes from mixtures without the need for excessive energy input.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Citation

TARLETON, E.S., ROBINSON, J.P. and LOW, J.S., 2009. Nanofiltration: a technology for selective solute removal from fuels and solvents. Chemical Engineering Research and Design, 87 (3), pp. 271-279

Publisher

Elsevier / © The Institution of Chemical Engineers

Version

  • AM (Accepted Manuscript)

Publication date

2009

Notes

This article was published in the journal, Chemical Engineering Research and Design [© The Institution of Chemical Engineers] and is also available at: http://www.elsevier.com/wps/find/journaldescription.cws_home/713871/description#description

ISSN

0263-8762

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC