Making the mainstream accessible: redefining the game

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: ATKINSON, M.T. ... et al, 2006. Making the mainstream accessible: redefining the game. IN: Proceedings, Sandbox Symposium 2006, ACM SIGGRAPH Symposium on Videogames, Boston, Massachusetts, July 30-31, pp. 21-28

Additional Information:

- © ACM 2006. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings, Sandbox Symposium 2006 ACM SIGGRAPH Symposium on Videogames, Boston, Massachusetts, July 30-31 at: http://doi.acm.org/10.1145/1183316.1183321

Metadata Record: https://dspace.lboro.ac.uk/2134/4431

Version: Accepted for publication

Publisher: © ACM

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

![Creative Commons Licence](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

[Disclaimer](#)

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Making the Mainstream Accessible
Redefining the Game

Matthew Tylee Atkinson
<M.T.Atkinson@lboro.ac.uk>
http://www.agrip.org.uk/

Research School of Informatics
Department of Computer Science
Loughborough University

30th July 2006

1Presentation given as part of a panel session; content and format differ from that delivered.
Outline

Context
 Then
 Now
 Future

Rendering: Defining the User’s Experience
 Signals, Symbols and Earcons
 Auditory Icons and Implicit Accessibility
 User-Centred Flexibility
 Benefits of Multimodality

3D Structure Representation and Modification
 Overview
 Not Just Games

Final Thoughts
 User Survey
 Further Work
 Conclusions
 Acknowledgements

References
This talk concentrates on sight loss but could be applied to other disabilities. Many individuals and some small companies started developing accessible games for disabled people. Suddenly blind people were no longer limited to one genre (Interactive Fiction). Most of the games were conversions of puzzles or classic arcade games. Some developers have been more original. Drawback: Segregation.
This talk concentrates on sight loss but could be applied to other disabilities.
This talk concentrates on sight loss but could be applied to other disabilities

Many individuals and some small companies started developing accessible games for disabled people
This talk concentrates on sight loss but could be applied to other disabilities.

Many individuals and some small companies started developing accessible games for disabled people.

Suddenly blind people were no longer limited to one genre (Interactive Fiction).
This talk concentrates on sight loss but could be applied to other disabilities.

Many individuals and some small companies started developing accessible games for disabled people.

Suddenly blind people were no longer limited to one genre (Interactive Fiction).

Most of the games were conversions of puzzles or classic arcade games.
This talk concentrates on sight loss but could be applied to other disabilities. Many individuals and some small companies started developing accessible games for disabled people. Suddenly blind people were no longer limited to one genre (Interactive Fiction). Most of the games were conversions of puzzles or classic arcade games. Some developers have been more original.
The Past of Accessible Gaming

- This talk concentrates on sight loss but could be applied to other disabilities
- Many individuals and some small companies started developing accessible games for disabled people
- Suddenly blind people were no longer limited to one genre (Interactive Fiction)
- Most of the games were conversions of puzzles or classic arcade games
- Some developers have been more original
- **Drawback:** Segregation
The Present of Accessible Gaming

Ethos of the AGRIP Project

▶ Provide access to not only mainstream games, but their surrounding online community and development tools
▶ Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
▶ An “Accessibility Layer” for Quake (id Software)
▶ A system for playing Internet multiplayer games
▶ A platform for programming modifications
▶ Only possible due to Open Source nature
▶ Provides and promotes inclusion

AGDev and other developments

Context
The Present of Accessible Gaming

Ethos of the AGRIP Project

Provide access to not only mainstream games, but their surrounding online community and development tools

Give people freedom to use and modify the game, support infrastructure and tools

AudioQuake

An "Accessibility Layer" for Quake (id Software)

A system for playing Internet multiplayer games

A platform for programming modifications

Only possible due to Open Source nature

Provides and promotes inclusion

AGDev and other developments
Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools

AudioQuake

An “Accessibility Layer” for Quake (id Software)

A system for playing Internet multiplayer games

A platform for programming modifications

Only possible due to Open Source nature

Provides and promotes inclusion

AGDev and other developments
The Present of Accessible Gaming

Ethos of the AGRIP Project

▶ Provide access to not only mainstream games, but their surrounding online community and development tools
▶ Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake

An "Accessibility Layer" for Quake (id Software)

A system for playing Internet multiplayer games

A platform for programming modifications

Only possible due to Open Source nature

Provides and promotes inclusion

AGDev and other developments
Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

- AudioQuake

AudioQuake is an "Accessibility Layer" for Quake (id Software), a system for playing Internet multiplayer games, and a platform for programming modifications. Only possible due to Open Source nature, it provides and promotes inclusion.
Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
 - An “Accessibility Layer” for Quake (id Software)
Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
- An “Accessibility Layer” for Quake (id Software)
- A system for playing Internet multiplayer games
The Present of Accessible Gaming

Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
- An “Accessibility Layer” for Quake (id Software)
- A system for playing Internet multiplayer games
- A platform for programming modifications
Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
- An “Accessibility Layer” for Quake (id Software)
- A system for playing Internet multiplayer games
- A platform for programming modifications
- Only possible due to Open Source nature
The Present of Accessible Gaming

Ethos of the AGRIP Project

▶ Provide access to not only mainstream games, but their surrounding online community and development tools
▶ Give people Freedom to use and modify the game, support infrastructure and tools

▶ AudioQuake
 ▶ An “Accessibility Layer” for Quake (id Software)
 ▶ A system for playing Internet multiplayer games
 ▶ A platform for programming modifications
 ▶ Only possible due to Open Source nature
 ▶ Provides and promotes inclusion
The Present of Accessible Gaming

Ethos of the AGRIP Project

- Provide access to not only mainstream games, but their surrounding online community and development tools
- Give people Freedom to use and modify the game, support infrastructure and tools

AudioQuake
- An “Accessibility Layer” for Quake (id Software)
- A system for playing Internet multiplayer games
- A platform for programming modifications
- Only possible due to Open Source nature
- Provides and promotes inclusion

AGDev and other developments
The Future of Accessible Gaming

AGRIP Developments

Implicit Accessibility

Level design

Audiogames and Accessible games gain weight in industry

Definition: “accessible games” vs. “audiogames”

John Carmack’s Keynote point

Potential mobile market

Work of IGDA, AudioGames.net, AGDev and others

Education and Games get together

EA and NESTA study on games in education [NESTA and EA, 2005]

Potential to augment existing practises and assist in teaching
The Future of Accessible Gaming

- AGRIP Developments
AGRIP Developments

“Implicit Accessibility”
AGRIP Developments

- “Implicit Accessibility”
- Level design
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design

- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
 - Potential mobile market
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design

- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
 - Potential mobile market
 - Work of IGDA, AudioGames.net, AGDev and others
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
 - Potential mobile market
 - Work of IGDA, AudioGames.net, AGDev and others
- Education and Games get together
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
 - Definition: “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
 - Potential mobile market
 - Work of IGDA, AudioGames.net, AGDev and others
- Education and Games get together
 - EA and NESTA study on games in education [NESTA and EA, 2005]
The Future of Accessible Gaming

- AGRIP Developments
 - “Implicit Accessibility”
 - Level design
- Audiogames and Accessible games gain weight in industry
 - **Definition:** “accessible games” vs. “audiogames”
 - John Carmack’s Keynote point
 - Potential mobile market
 - Work of IGDA, AudioGames.net, AGDev and others
- Education and Games get together
 - EA and NESTA study on games in education [NESTA and EA, 2005]
 - Potential to augment existing practises and assist in teaching
Signals, Symbols and Earcons
Signals, Symbols and Earcons
Auditory Icons and Implicit Accessibility
- Signals, Symbols and Earcons
- Auditory Icons and Implicit Accessibility
- User-Centred Flexibility
Signals, Symbols and Earcons
Auditory Icons and Implicit Accessibility
User-Centred Flexibility
Benefits of Multimodality
Earcons [Brewster, 1994] are used in AudioQuake

Definition:
Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.

Time-efficiency

Goal:
Fast-paced gameplay

Sound design techniques used to achieve this

Consistency within referent types

Variations across referent types

Natural reference points embedded in the sounds (as in [Holland et al., 2002])
Earcons [Brewster, 1994] are used in AudioQuake
Earcons [Brewster, 1994] are used in AudioQuake

Definition: Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.
Earcons [Brewster, 1994] are used in AudioQuake

- **Definition:** Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.
- **Time-efficiency**
Earcons [Brewster, 1994] are used in AudioQuake

- **Definition:** Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.
- **Time-efficiency**
- **Well-defined structure aids recognition**
Earcons [Brewster, 1994] are used in AudioQuake

- **Definition:** Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.
- **Time-efficiency**
 - Well-defined structure aids recognition
- **Goal:** Fast-paced gameplay
Earcons [Brewster, 1994] are used in AudioQuake

Definition: Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.

- Time-efficiency
- Well-defined structure aids recognition

Goal: Fast-paced gameplay

- Sound design techniques used to achieve this
Earcons [Brewster, 1994] are used in AudioQuake

- **Definition:** Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.

- **Time-efficiency**
- **Well-defined structure aids recognition**

- **Goal:** Fast-paced gameplay

- Sound design techniques used to achieve this
 - Consistency within referent types
Earcons [Brewster, 1994] are used in AudioQuake

Definition: Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.

- Time-efficiency
- Well-defined structure aids recognition

Goal: Fast-paced gameplay

Sound design techniques used to achieve this

- Consistency within referent types
- Variations across referent types
Earcons [Brewster, 1994] are used in AudioQuake

- **Definition:** Structured sounds, often obeying musical conventions, that are designed to alert the user to an object or event. They do not “sound like” their referents.
- **Time-efficiency**
- **Well-defined structure aids recognition**

Goal: Fast-paced gameplay

Sound design techniques used to achieve this

- Consistency within referent types
- Variations across referent types
- Natural reference points embedded in the sounds (as in [Holland et al., 2002])
Used by a number of players for fast, accurate gameplay (survey coming up) but there are other possible rendering styles...
Used by a number of players for fast, accurate gameplay (survey coming up)
Used by a number of players for fast, accurate gameplay (survey coming up)

But there are other possible rendering styles...
Auditory Icons and Implicit Accessibility

An opposing rendering style

Auditory Icons

Definition: Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]

Use of special and spacial effects to separate such sounds from in-game events

Increased fun through immersion

Play is more intuitive due to believable audio atmosphere [Röber and Masuch, 2004]

Information supplied by subtle environmental effects – e.g. wind direction in Shades of Doom [GMA Games, 2001]

Rendering: Defining the User’s Experience
An opposing rendering style
An opposing rendering style
- Auditory Icons

Definition: Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]

Use of special and spatial effects to separate such sounds from in-game events

Increased fun through immersion [Röber and Masuch, 2004]

Play is more intuitive due to believable audio atmosphere

Information supplied by subtle environmental effects – e.g. wind direction in Shades of Doom [GMA Games, 2001]
An opposing rendering style

Auditory Icons

Definition: Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]
An opposing rendering style

- **Auditory Icons**
 - **Definition:** Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]
 - Use of special and spacial effects to separate such sounds from in-game events
An opposing rendering style

- Auditory Icons
 - **Definition:** Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]
 - Use of special and spacial effects to separate such sounds from in-game events
- Increased fun through immersion
An opposing rendering style

- **Auditory Icons**
 - **Definition:** Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]
 - Use of special and spacial effects to separate such sounds from in-game events

- **Increased fun through immersion**
 - Play is more intuitive due to believable audio atmosphere [Röber and Masuch, 2004]
An opposing rendering style

- **Auditory Icons**
 - **Definition:** Sounds that map intuitively to the real-world concepts/items they refer to [Mynatt, 1994]
 - Use of special and spatial effects to separate such sounds from in-game events

Increased fun through immersion

- Play is more intuitive due to believable audio atmosphere [Röber and Masuch, 2004]
- Information supplied by subtle environmental effects – e.g. wind direction in Shades of Doom [GMA Games, 2001]
Implementation of this style would make AudioQuake “feel” like other accessible games, but comes at the cost of fast-paced gameplay.

Ongoing research is being carried out into the effects of these opposing schemes.
Implementation of this style would make AudioQuake “feel” like other accessible games, but comes at the cost of fast-paced gameplay.
Implementation of this style would make AudioQuake “feel” like other accessible games, but comes at the cost of fast-paced gameplay.

- Ongoing research is being carried out into the effects of these opposing schemes.
Ideas based on feedback given by users so far

Hybrid rendering schemes, between the above two opposing ones, could be created

Tailoring to specific users’ requirements

“Sound Skins” – Allow choice from predefined sets of earcons and auditory icons for in-game events/objects

Style Selection – Users may choose their preferred rendering style (i.e. explicit vs. implicit) for each major game element

Intelligent Style Selection – Keeping things manageable by allowing the game to determine the best rendering scheme consummate with the user’s preferences, based on current game state
Ideas based on feedback given by users so far
Ideas based on feedback given by users so far
Hybrid rendering schemes, between the above two opposing ones, could be created
User-Centred Flexibility

- Ideas based on feedback given by users so far
- Hybrid rendering schemes, between the above two opposing ones, could be created
- Tailoring to specific users’ requirements

Rendering: Defining the User’s Experience
User-Centred Flexibility

- Ideas based on feedback given by users so far
- Hybrid rendering schemes, between the above two opposing ones, could be created
- Tailoring to specific users’ requirements
 - “Sound Skins” – Allow choice from predefined sets of earcons and auditory icons for in-game events/objects
Ideas based on feedback given by users so far

Hybrid rendering schemes, between the above two opposing ones, could be created

Tailoring to specific users’ requirements

- “Sound Skins” – Allow choice from predefined sets of earcons and auditory icons for in-game events/objects
- Style Selection – Users may choose their preferred rendering style (i.e. explicit vs. implicit) for each major game element
Ideas based on feedback given by users so far

Hybrid rendering schemes, between the above two opposing ones, could be created

Tailoring to specific users’ requirements

- “Sound Skins” – Allow choice from predefined sets of earcons and auditory icons for in-game events/objects
- Style Selection – Users may choose their preferred rendering style (i.e. explicit vs. implicit) for each major game element
- Intelligent Style Selection – Keeping things manageable by allowing the game to determine the best rendering scheme consummate with the user’s preferences, based on current game state
Limited bandwidth between computer and user (specifically in audio modality)

Certain heuristics are required to ensure that the user receives important information, but is not overloaded

These principles could be applied in other modalities

The next step for AudioQuake is to apply them to better support vision-impaired users
Limited bandwidth between computer and user (specifically in audio modality)
- Limited bandwidth between computer and user (specifically in audio modality)
- Certain heuristics are required to ensure that the user receives important information, but is not overloaded
- Limited bandwidth between computer and user (specifically in audio modality)
- Certain heuristics are required to ensure that the user receives important information, but is not overloaded
- These principles could be applied in other modalities
Limited bandwidth between computer and user (specifically in audio modality)

Certain heuristics are required to ensure that the user receives important information, but is not overloaded

These principles could be applied in other modalities
 - The next step for AudioQuake is to apply them to better support vision-impaired users
Generalisation for other users

Similarities exist between designing interfaces for "normal" users in extreme situations and designing interfaces for disabled users in normal situations [Newell and Gregor, 1997]

These techniques could improve the gaming experience for many users, especially those using novel input/output devices (PDAs, etc)

Guidelines could be created (similar to WCAG [Web Accessibility Initiative, 1999]) that enable game designers to create more immersive and entertaining experiences for other users, based on ideas such as these
Generalisation for other users

Similarities exist between designing interfaces for “normal” users in extreme situations and designing interfaces for disabled users in normal situations [Newell and Gregor, 1997]. These techniques could improve the gaming experience for many users, especially those using novel input/output devices (PDAs, etc). Guidelines could be created (similar to WCAG [Web Accessibility Initiative, 1999]) that enable game designers to create more immersive and entertaining experiences for other users, based on ideas such as these.
Generalisation for other users

- Similarities exist between designing interfaces for “normal” users in extreme situations and designing interfaces for disabled users in normal situations [Newell and Gregor, 1997]
Generalisation for other users

- Similarities exist between designing interfaces for “normal” users in extreme situations and designing interfaces for disabled users in normal situations [Newell and Gregor, 1997]
- These techniques could improve the gaming experience for many users, especially those using novel input/output devices (PDAs, etc)
Generalisation for other users

- Similarities exist between designing interfaces for “normal” users in extreme situations and designing interfaces for disabled users in normal situations [Newell and Gregor, 1997]
- These techniques could improve the gaming experience for many users, especially those using novel input/output devices (PDAs, etc)
- Guidelines could be created (similar to WCAG [Web Accessibility Initiative, 1999]) that enable game designers to create more immersive and entertaining experiences for other users, based on ideas such as these
The provision of multiple rendering "layers" has further benefits. Some implicit error-correction may be possible [Suhm et al., 2001]. Reinforcement in other modalities of the primary rendering medium (usually graphics) can aid cognition [Röber and Masuch, 2004] and increase immersion and, therefore, enjoyment [Velleman et al., 2004].
The provision of multiple rendering “layers” has further benefits.
The provision of multiple rendering “layers” has further benefits.

Some implicit error-correction may be possible [Suhm et al., 2001]
The provision of multiple rendering “layers” has further benefits.

Some implicit error-correction may be possible [Suhm et al., 2001].

Reinforcement in other modalities of the primary rendering medium (usually graphics) can...
The provision of multiple rendering “layers” has further benefits.

Some implicit error-correction may be possible [Suhm et al., 2001].

Reinforcement in other modalities of the primary rendering medium (usually graphics) can aid cognition [Röber and Masuch, 2004].
The provision of multiple rendering “layers” has further benefits

Some implicit error-correction may be possible [Suhm et al., 2001]

Reinforcement in other modalities of the primary rendering medium (usually graphics) can

- aid cognition [Röber and Masuch, 2004]
- increase immersion and, therefore, enjoyment [Velleman et al., 2004]
Overview
3D Structure Representation and Modification

- Overview
- Not Just Games
3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society. Techniques described in this paper and other literature go a long way to making these accessible. Little work has been done on allowing blind/vision-impaired people to create 3D environments. A preliminary architecture of an adaptable level description and editing system has been developed (see paper for full details).
3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society.
3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society

Techniques described in this paper and other literature go a long way to making these accessible
3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society.

Techniques described in this paper and other literature go a long way to making these accessible.

Little work has been done on allowing blind/vision-impaired people to create 3D environments.
Overview

- 3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society.
- Techniques described in this paper and other literature go a long way to making these accessible.
- Little work has been done on allowing blind/vision-impaired people to create 3D environments.
- A preliminary architecture of an adaptable level description and editing system has been developed.
3D environments and Collaborative Virtual Environments (CVEs) are of increasing importance in society. Techniques described in this paper and other literature go a long way to making these accessible. Little work has been done on allowing blind/vision-impaired people to create 3D environments. A preliminary architecture of an adaptable level description and editing system has been developed. (see paper for full details)
Features of the Proposed Approach I

Layering – Separation of rendering and UI from the underlying data structures

- Improves accessibility
- Can improve usability for authors (e.g. programs that can test the created structures for errors may be created independently of any particular authoring environment)
- May lead to novel methods of generating/editing maps (by gamecode, based on gamer's progress through the game/application so far, for example)

Format Standardisation

Awareness & Equality Increase
Features of the Proposed Approach I

- Layering – Separation of rendering and UI from the underlying data structures

Format Standardisation

Awareness & Equality Increase
Features of the Proposed Approach I

- Layering – Separation of rendering and UI from the underlying data structures
 - Improves accessibility

Format Standardisation

Awareness & Equality Increase
Layering – Separation of rendering and UI from the underlying data structures

- Improves accessibility
- Can improve usability for authors (e.g. programs that can test the created structures for errors may be created independently of any particular authoring environment)
Layering – Separation of rendering and UI from the underlying data structures

- Improves accessibility
- Can improve usability for authors (e.g. programs that can test the created structures for errors may be created independently of any particular authoring environment)
- May lead to novel methods of generating/editing maps (by gamecode, based on gamer's progress through the game/application so far, for example)
Features of the Proposed Approach 1

Layering – Separation of rendering and UI from the underlying data structures

▶ Improves accessibility
▶ Can improve usability for authors (e.g. programs that can test the created structures for errors may be created independently of any particular authoring environment)
▶ May lead to novel methods of generating/editing maps (by gamecode, based on gamer's progress through the game/application so far, for example)

Format Standardisation
Features of the Proposed Approach I

- **Layering** – Separation of rendering and UI from the underlying data structures
 - Improves accessibility
 - Can improve usability for authors (e.g. programs that can test the created structures for errors may be created independently of any particular authoring environment)
 - May lead to novel methods of generating/editing maps (by gamecode, based on gamer's progress through the game/application so far, for example)

- **Format Standardisation**

- **Awareness & Equality Increase**
Features of the Proposed Approach II

NB: We are not trying to make blind people do something they can't (e.g. texturing, lighting); rather give them the opportunity to do what they can (most likely within a team).
> **NB:** We are not trying to make blind people do something they can’t (e.g. texturing, lighting); rather give them the opportunity to do what they can (most likely within a team)
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users. This includes improving accessibility in other areas such as education and the workplace. It is important to ensure such technology is as accessible as possible to as many potential users as possible before it becomes mainstream.

Problems of existing work environment [Brock et al., 2003] in collaborative navigation ([Yang and Olson, 2002]) is an area of ongoing research for AGRIP.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users, improve accessibility in other areas, permeation of game-like technologies in society; education and the workplace, and importance of ensuring such technology is as accessible as possible to as many potential users as possible before it becomes mainstream. Problems of existing work environment [Brock et al., 2003] collaborative navigation ([Yang and Olson, 2002]) is an area of ongoing research for AGRIP.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users before it becomes mainstream.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users and to improve accessibility in other areas.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users and to improve accessibility in other areas.

Permeation of game-like technologies in society; education and the workplace; importance of ensuring such technology is as accessible as possible to as many potential users as possible before it becomes mainstream.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users to improve accessibility in other areas.

Permeation of game-like technologies in society; education and the workplace.

Importance of ensuring such technology is as accessible as possible to as many potential users as possible before it becomes mainstream.
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users to improve accessibility in other areas.

Permeation of game-like technologies in society; education and the workplace.

Importance of ensuring such technology is as accessible as possible to as many potential users as possible before it becomes mainstream problems of existing work environment [Brock et al., 2003].
A major goal of the AGRIP project, as with other literature, is to develop generally applicable techniques to improve the experience for all users and to improve accessibility in other areas.

Permeation of game-like technologies in society; education and the workplace.

Importance of ensuring such technology is as accessible as possible to as many potential users as possible before it becomes mainstream.

- problems of existing work environment [Brock et al., 2003]
- collaborative navigation ([Yang and Olson, 2002]) is an area of ongoing research for AGRIP.
Final Thoughts

- User Survey
Final Thoughts

- User Survey
- Further Work
Final Thoughts

- User Survey
- Further Work
- Conclusions
This survey covered 20 users of AudioQuake.
Further Work

- Improve existing techniques
- Generalisation & relation to other current research
- Application to other types of user
- Application to academic and other non-game material
- Increasing inclusion in education
- Accessible map editing extensions
Further Work

- Improve existing techniques
Further Work

▶ Improve existing techniques
▶ Generalisation & relation to other current research
Further Work

- Improve existing techniques
- Generalisation & relation to other current research
 - Application to other types of user

Final Thoughts
Further Work

- Improve existing techniques
- Generalisation & relation to other current research
 - Application to other types of user
 - Application to academic and other non-game material
Further Work

- Improve existing techniques
- Generalisation & relation to other current research
 - Application to other types of user
 - Application to academic and other non-game material
 - Increasing inclusion in education
Further Work

▶ Improve existing techniques
▶ Generalisation & relation to other current research
 ▶ Application to other types of user
 ▶ Application to academic and other non-game material
 ▶ Increasing inclusion in education
▶ Accessible map editing extensions
Conclusions

What accessible (and audio) games are

How mainstream (even time-critical) games may be rendered in an accessible way

Different rendering styles and how they may be of use to a wider range of users

Experience gained from other literature, user feedback

Our ideas for future work

Potential benefits for other users and in other areas
Conclusions

- What accessible (and audio) games are
Conclusions

- What accessible (and audio) games are
- How mainstream (even time-critical) games may be rendered in an accessible way
Conclusions

- What accessible (and audio) games are
- How mainstream (even time-critical) games may be rendered in an accessible way
- Different rendering styles and how they may be of use to a wider range of users
Conclusions

- What accessible (and audio) games are
- How mainstream (even time-critical) games may be rendered in an accessible way
- Different rendering styles and how they may be of use to a wider range of users
- Experience gained from other literature, user feedback
Conclusions

- What accessible (and audio) games are
- How mainstream (even time-critical) games may be rendered in an accessible way
- Different rendering styles and how they may be of use to a wider range of users
- Experience gained from other literature, user feedback
- Our ideas for future work
Conclusions

- What accessible (and audio) games are
- How mainstream (even time-critical) games may be rendered in an accessible way
- Different rendering styles and how they may be of use to a wider range of users
- Experience gained from other literature, user feedback
- Our ideas for future work
- Potential benefits for other users and in other areas
Acknowledgements

- id Software
Acknowledgements

- id Software
- The Quake & QuakeWorld community
Acknowledgements

- id Software
- The Quake & QuakeWorld community
- The AGRIP community
Acknowledgements

- id Software
- The Quake & QuakeWorld community
- The AGRIP community
- The Grundy Educational Trust
Thanks for listening!
Any Questions?

GMA Games (2001). *Shades of Doom.*

Human computer interfaces for people with disabilities.

Auditory game authoring.

Multimodal error correction for speech user interfaces.

3d shooting games, multimodal games, sound games and more working examples of the future of games for the blind.
Lecture Notes in Computer Science, 3118:257–263.