Surface temperature of tools during the high-pressure die casting of aluminium

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This article has been published in the journal, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [© PEP]. The definitive version is available at: http://journals.pepublishing.com/content/119784

Metadata Record: https://dspace.lboro.ac.uk/2134/4738

Version: Published

Publisher: © IMechE / Professional Engineering Publishing

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Surface temperature of tools during the high-pressure die casting of aluminium

A J Norwood, P M Dickens*, R C Soar, and R A Harris
Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK

The manuscript was received on 22 September 2006 and was accepted after revision for publication on 30 August 2007.

DOI: 10.1243/09544054JEM745

Abstract: The objective of this work was to determine the temperature experienced within a pressure die-casting tool during aluminium part production. It was important to determine the temperature profile of the production process so that an accurate thermal cycle could later be simulated. The research overcame several challenges of this aggressive environment to show that the surface temperature of a die could be obtained from an H13 steel tool running on an aluminium pressure die-casting machine. The results show that the surface of a typical aluminium pressure die-casting tool heats to 400–450 °C within approximately 1 s and cools to 150–200 °C within approximately 20 s.

Keywords: surface temperature, tools, high-pressure die casting, aluminium

1 INTRODUCTION

In cold-chamber die casting, the molten material is forced into the die via a hydraulic plunger–piston in three controlled phases producing high-quality castings. The process can be used with zinc-, magnesium-, aluminium-, and copper-based alloys.

Phase 1 is termed take up and slowly pushes the aluminium towards the die with minimum turbulence.

Phase 2 is the injection phase (filling of the die cavity). The cold-chamber pressure die-casting process typically casts aluminium alloys which are injected at 700–750 °C depending on the die geometry. This phase has to be fast enough to prevent chilling while the alloy is filling the die. The speed of this phase is approximately 10 m/s and typically takes 0.05–0.1 s; however, speeds can be as high as 100 m/s [1]. During this phase, any gases are expelled via machined vents in the die and through the parting line.

Phase 3 is the compaction phase, as the alloy solidifies in the cavity it begins to shrink away from the surface of the die. The force applied to the alloy (50–70 N/mm²) reduces this effect and reduces the size of inclusions and porosity caused by air, trapped during injection.

The die is usually water cooled and the surface sprayed with water-based die lubricant, causing thermal shock.

The most important properties required of materials for die-casting tools are resistance to thermal fatigue and resistance to softening at elevated temperatures. Resistance to softening is required to withstand the erosive action of molten metal under high injection pressures and speeds. The performance of die-casting dies is related to the casting temperature of the work metal, the thermal gradients within the dies, and the frequency of exposure to a high temperature. During the high-pressure die casting of aluminium the die has to withstand severe operating conditions such as high pressure and rapid temperature fluctuations and, over time, tool failure occurs [2, 3]. In actual die casting, the dominant tool failure mechanism is thermal fatigue cracking [4]. Initially molten metal contacts the die and causes the surface temperature to increase above that of the interior of the die [5]. The die face starts to expand; however, the cooler underlying layer resists this expansion, creating a temporary compressive stress layer [6, 7]. When the casting is removed, the die surface starts to cool and, as it does, the surface shrinks or contracts. The surface cools more quickly than the interior of the die; this places the subsurface of the die into residual tensile stress, which is made worse by the application of die lubricant [8]. During further cycling, the die surface is subjected to alternating...
compressive and tensile stresses that result in plastic deformation [9]. Continued cycling reduces the yield strength of the tool, causing increased residual tensile stresses to develop and cracks to initiate. This type of cracking is more prevalent in aluminium and brass die casting because of the higher temperatures and resulting thermal shock by the molten metal.

To understand how a tool material behaves when subjected to thermal fatigue it is important to know the process temperature cycle (heating rate, cooling rate, temperature difference, mean temperature, cycle duration, etc.).

Persson [4, 10] investigated the thermal fatigue temperature profiles and conditions of brass pressure die casting and developed a test method. The die’s surface temperature during casting was measured by four probes in a production die for tube couplings. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.

During the first few cycles (less than 20) the tool ramped up from room temperature to a steady state of 300°C. Persson et al. [11] described a typical die surface temperature cycle as follows: ‘When the 980°C melt makes contact with the tool, the tool material is heated within about 0.35 s from around 300°C to a maximum temperature of around 750°C at a surface depth of 0.25 mm’. ‘Until the tool is opened, cooling occurs by heat conduction into the bulk of the tool. Die opening and simultaneous cast ejection give rise to an additional heat loss through irradiation and convection.’

Bounds [12] investigated the thermal behaviour of the zinc pressure die-casting process by measuring the temperature of the die to obtain the operating conditions. J-type mineral-insulated thermocouples were positioned 2.5 mm behind the die surface. The probes had a diameter of 16 mm which housed a small cylindrical test disc behind which K-type thermocouples (with thin wires of diameter 0.13 mm) were spot welded to the back of the discs. The thicknesses of the discs were 0.25, 0.5, 2, and 5 mm. The temperature of the molten brass was 980°C and was used with a cycle time of 30 s during which the die was closed for 10 s and opened for 20 s. Water at 20°C circulated continually in the die and the surfaces were lubricated. The shot mass of each casting was 1.6 kg with a peak casting pressure of 164 MPa.
resolved by modifying the alloy in the furnace by degassing. The aluminium was degassed by bubbling nitrogen through the molten alloy. The alloy also required fluxing (Poseco, Coverall 11); this separated the dross from the molten aluminium so that is rose to the surface, creating a protective layer that hydrogen could not penetrate. The dross was only removed at the beginning of the casting process. A sample of molten aluminium was taken in order to test the gas level using a hydrogen gas analyser; it was found to contain 0.15–0.25 cm3 of gas per 500 g, which was within typical casting limits.

The machine used had to be large enough to accommodate the size of the die and the shot mass. A Frech DAK 125 SDV cold-chamber machine was used. The machine parameters are shown in Table 1 with the casting cycle shown in Fig. 3. For consistency of die cooling, the automated die lubricator on the machine was utilized. The die lubricant (release agent) was Acheson DeltaCast 333 release 3, at a temperature much higher than 20–25 $^\circ$C; this was sprayed on to the die surface immediately prior to each shot, through six nozzles for 3 s.

As in production, the die was initially heated to approximately 150 $^\circ$C with a gas lance and 50 shots run through to heat the die to the operating temperature.

Measuring the surface temperature was difficult and several attempts and test adaptations were conducted. An initial attempt to determine the surface temperature of a die resulted in an aluminium blowout, causing considerable loss of time because the die had to be disassembled cleaned, repaired, and reassembled. It was obvious from the first attempt that the thermocouples required relocation, resulting in the machining of the bolster and the insert, to secure two calibrated mineral-insulated K-type endground thermocouples of 0.25 mm diameter by means of a collet. The size of the thermocouples was important because, the smaller the diameter of the wire, the faster is the reaction speed. A compromise had to be made; if the thermocouple is too small, it would be destroyed and, if it is too large, its response rate would be too slow. The thermocouple tips were positioned at the die surface to allow direct contact with the molten aluminium as it entered the die. Temperature-sensitive paints were placed in the biscuit and runner system of the aluminium die cast tool as these areas are typically subjected to the most heat (Fig. 4). However, it was found that, as the aluminium was being forced down the runners, it washed the paints away. The location of the paints was changed to the overflow region of the die, to solve this problem. The thermocouples were connected via a compensating cable to a computer data logger controlled by National Instruments LabVIEW$^\text{TM}$ version 5.1.1 software. It enabled several thermocouples to be connected at once. The data could also be loaded into Microsoft Excel.

![Fig. 1](a) Moving half of the tool; (b) clutch housing casting

![Fig. 2](Computer aided design image of ‘Dyson’ clutch housing)

![Table 1](Casting parameters)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine type</td>
<td>Frech DAK 125 SDV</td>
</tr>
<tr>
<td>Maximum piston velocity (phase 1)</td>
<td>0.15 m/s</td>
</tr>
<tr>
<td>Maximum piston velocity (phase 2)</td>
<td>0.8 m/s</td>
</tr>
<tr>
<td>Start of phase 2</td>
<td>140 mm</td>
</tr>
<tr>
<td>Start of phase 3</td>
<td>270 mm</td>
</tr>
<tr>
<td>Maximum shot chamber length</td>
<td>315 mm</td>
</tr>
<tr>
<td>Maximum die closing force</td>
<td>125 t</td>
</tr>
<tr>
<td>Alloy</td>
<td>LM24</td>
</tr>
<tr>
<td>Pouring temperature</td>
<td>750 $^\circ$C</td>
</tr>
<tr>
<td>Initial temperature of die</td>
<td>180 $^\circ$C</td>
</tr>
<tr>
<td>Die coating material</td>
<td>DeltaCast 333 R3</td>
</tr>
<tr>
<td>Total cycle time</td>
<td>20–24 s</td>
</tr>
<tr>
<td>Piston diameter</td>
<td>50 mm</td>
</tr>
<tr>
<td>In-gate speed</td>
<td>2.48 m/s</td>
</tr>
<tr>
<td>Shot mass</td>
<td>250 g</td>
</tr>
<tr>
<td>System pressure</td>
<td>105 bar</td>
</tr>
</tbody>
</table>
3 RESULTS

Figure 5 shows the results obtained from the first test. Unfortunately the thermocouple in the runner failed when the die was warmed to 250 °C as it was directly next to the gas lance. The thermocouple in the hottest area (biscuit) survived and the test continued showing that the surface temperature of the die reached 350 °C and cooled to between 150 °C and 200 °C with a typical cycle time of 20–24 s. However, the paints suggested that the surface temperature was between 399 °C and 454 °C. It was clear that the reaction time of the thermocouples was too slow because of the large wire diameter and the insulation. Hence, the results obtained were not representative of the surface temperature in an aluminium pressure die-casting cycle because the thermocouples were not able to measure the temperature sufficiently rapidly.

To overcome the problem in the previous experiment, several fibreglass-insulated K-type open-ended thermocouples, with a wire diameter of 0.3 mm, were stuck to the surface of the die. These thermocouples have a faster reaction time since they are open ended. However, a question over their ability to survive the conditions long enough to enable a temperature reading to be obtained.

An additional problem was that the die could not be preheated as before since the thermocouples were fixed to the surface of the die with tape. However, a few shots were run through the die to increase the temperature prior to applying the thermocouples.

The results showed that on occasion the die temperature reached over 450 °C but was typically between 400 °C and 450 °C (Fig. 6). The paints verified this.

Unfortunately the cooling profile could not be obtained using the small thermocouples as they failed upon opening the die. However, the cooling profile could be approximated from Fig. 5. Cooling occurred over a longer period of time (much longer than 20 s), allowing the thermocouples to respond. This allowed the aluminium pressure die-casting thermal cycle shown in Fig. 7 to be determined.

4 DISCUSSION

Using thermocouples and temperature paints it was possible to obtain the temperature profile of an aluminium pressure die-casting tool.

The results of this work showed that the surface temperature of the die reached between 400 °C and 450 °C and cooled to between 150 °C and 200 °C. Persson’s [4] research was on brass pressure die-casting and not aluminium. Persson recorded that the surface temperature of the die reached 980 °C but cooled rapidly to 750 °C in 0.35 s and then cooled to approximately 300 °C over the remainder of the cycle (much longer than 29.65 s). Despite the fact that Persson used brass, it was clear that there are similarities between the die temperature profile of a brass die and an aluminium die with the only difference being the higher temperatures (brass has a higher casting temperature than aluminium). Both experience rapid cooling as the molten metal hits the die surface and they have similar cooling profiles over the cycle time. Persson, however, did estimate that the surface of an aluminium die would reach 520 °C. Srivastava [6] also stated that an aluminium pressure die-casting tool surface reached a maximum temperature of 457 °C and cooled to 107 °C. These suggestions are in keeping with the tool temperature results of this work (450–150 °C).

In addition, the profile shown in Fig. 7 is believed to be correct as research [13] has shown a shot sleeve to reach an internal surface temperature of 480–500 °C with a significant amount of heat being lost by the molten metal (typically poured at 700 °C) prior to injection. In turn, the tool surface temperature was recorded to reach 400–450 °C. Research has shown that, as molten aluminium contacts the surface of the
die, a thin layer freezes instantaneously and the die never reaches the temperature of the molten material \[14, 15\]. The mass of the die draws the heat away rapidly during solidification. Upon die opening, ejection, mould spray, etc., the die surface begins to cool more rapidly, as shown in Fig. 7.

5 CONCLUSIONS

This work highlights the difficulty of determining the surface temperature of a tool during aluminium die casting. However, it has clearly shown the temperature at the surface of a typical aluminium pressure die-casting tool and revealed that the surface heats to 400–450°C within approximately 1 s and cools to 150–200°C within approximately 20 s.

6 FUTURE WORK

Subsequent work will be to use these results in a new fatigue test and then to proceed to evaluate tooling materials for die casting.
REFERENCES

