The impact of remote and virtual laboratories in engineering education: a workshop

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper that was presented at EE2008. The paper is also available at: http://www.ee2008.info/index.php/papers/

Metadata Record: https://dspace.lboro.ac.uk/2134/4937

Version: Published

Publisher: The Higher Education Academy Engineering Subject Centre and the UK Centre for Materials Education

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
The impact of remote and virtual laboratories in engineering education: A Workshop

ZK Nagy 1 (ZKN), M Abdulwahed 1,2 (MA), RE Blanchard 3 (REB), E Read 4(ER), E Lindsay5(EL)

1 Chemical Engineering Department, Loughborough University, Loughborough, UK
2 Engineering Centre of Excellence in Teaching and Learning, Loughborough University, Loughborough, UK
3 Electrical Engineering Department, Loughborough University, Loughborough, UK
4 Education Innovator, The Royal Academy of Engineering, London, UK
5 Curtin University of Technology, Perth, Australia

Current developments in information and communication technology (ICT) can be successfully embedded in the pedagogical design of engineering laboratories. This can open new horizons in the learning experience and widen participation. The development of virtual and remote laboratories are examples of embedding modern ICT in education which are becoming more and more widely accepted in engineering education. This workshop aims to corroborate the impact of virtual and remote laboratories on the development of knowledge and transferable skills in engineering students. The workshop will commence with introductions to the concepts of remote and virtual laboratories describing the pedagogical framework that supports the applications of these technologies to traditional and non-traditional students (ZKN/REB/ER).

The new concept of ‘TriLab’, a framework that combines real, virtual and remote laboratories to maximize the learning experience of students, is presented. Statistical results will be presented on the impact of the TriLab approach on students’ understanding. The use of the TriLab concept in undergraduate teaching in the Chemical Engineering Department at Loughborough University will be presented with a demonstration of the Process Control TeleLab, which will involve the active participation of the audience with potential for using a remote voting system (MA and ZKN).

Following the participants use of the activities, a presentation on the role of remote experiments for widening participation will be introduced. The system was originally developed to allow remote access to real experimental equipment (ReLOAD) but has the added values that it can also be used to support the learning needs of this diverse student base. ReLOAD was incorporated into two different courses at both UCL and Leeds University both with high proportions of WP students and both the use of the tool and feedback from students was recorded. The tool can also be shown to demonstrate specific support for issues encountered by WP students (ER). Following this, the extremely innovative work on remote laboratories pioneered at Curtin, Perth will be introduced. This will consider the strategic approach to the use of remote labs and the fact that remote labs cannot be considered to be second best (EL). Again there will be a timed opportunity to gain experience using these applications (ER/EL).

The session will close with a round table discussion on the advantages and caveats of remote and virtual laboratories in engineering education (chaired by ZKN and REB).
Outline of the Workshop activities with Timings

<table>
<thead>
<tr>
<th>Topic</th>
<th>Lead</th>
<th>Activity</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Workshop</td>
<td>ZKN</td>
<td>Setting out the agenda for the packed session</td>
<td>0-5 minutes</td>
</tr>
<tr>
<td>Virtual Laboratories for Distance Learning</td>
<td>REB</td>
<td>Introduction to the use of virtual labs in distance learning engineering MSc. Model developed over six years.</td>
<td>5-15 minutes</td>
</tr>
<tr>
<td>Trilab</td>
<td>MA</td>
<td>Introduction to Concept of combining hands-on, virtual and remote laboratories</td>
<td>15-25 minutes</td>
</tr>
<tr>
<td>Trilab and virtual labs</td>
<td>ZKN/REB/MA</td>
<td>Participants make use of remote and virtual laboratories</td>
<td>25-50 minutes</td>
</tr>
<tr>
<td>Widening participation –RE-Load remote laboratory</td>
<td>ER</td>
<td>How remote laboratories could be used to widen access for non traditional students</td>
<td>50-60 minutes</td>
</tr>
<tr>
<td>Making it real</td>
<td>EL</td>
<td>The remote laboratory model at Curtin Perth</td>
<td>60-70 minutes</td>
</tr>
<tr>
<td>Use of remote labs</td>
<td>ER/EL</td>
<td>Participants make use of 2nd set of remote laboratories</td>
<td>70-90</td>
</tr>
<tr>
<td>The opportunities and barriers for virtual and remote laboratories</td>
<td>REB/ZKN</td>
<td>Participants in groups spend time discussing Strengths, issues. Possibly look at one question. How to develop and share resources?</td>
<td>90-110 minutes</td>
</tr>
<tr>
<td>Round up</td>
<td>ZKN</td>
<td>Wrap up</td>
<td>110-120 minutes</td>
</tr>
</tbody>
</table>

Actors
- ZKN – Zoltan Nagy (Lboro)
- REB - Richard Blanchard (Lboro)
- ER – Liz Read (RAE)
- MA - Mahmuod Abdulwahed (Lboro)
- EL – Euan Lindsay (Curtin, Perth)