Innovation and risk-taking in primary design and technology: issues arising from the evaluation of the pilot phase of the curriculum development project ‘Butterflies in My Tummy’

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper.

Metadata Record: https://dspace.lboro.ac.uk/2134/5093

Version: Published

Publisher: © The Design and Technology Association

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Abstract
Developing the ability to innovate is at the heart of design and technology education. Innovation and risk-taking go hand in hand as novice designers have to deal with the uncertainty involved in creating something new. However, there has been little research undertaken into this important area with primary-aged children. This paper reports on the evaluation of a pilot project which sought to combine the teaching of designing skills with Social and Emotional Aspects of Learning (SEAL), an area which currently forms part of the national primary strategy in England. 'Butterflies in My Tummy' was developed by The Design and Technology Association in collaboration with Shropshire primary schools, supported by funding from The National Endowment of Science, Technology and the Arts (NESTA). The pilot stage (2007-8) involved trialling activities and teaching strategies with 506 children aged 8-11 and 18 teachers based in 18 different schools. Data was gathered from teachers and children through questionnaires at the outset of the project and towards the end of the trial period. Follow up interviews with children and teachers were carried out in a sample of 4 schools.

This paper discusses the findings from the evaluation of this project and identifies issues that need to be considered when incorporating specific activities and strategies into curriculum planning to support the development of innovation and risk-taking.

Innovation and risk-taking in primary design and technology
Developing the ability to innovate and take risks when designing is widely acknowledged to be an important element of learning in design and technology (e.g. DFEE, 1999; Howe et al, 2001; Kimbell and Stables, 2008). However, there has also been widespread concern that the actual experience of design and technology for learners in the classroom has not lived up to the creative aspirations of the subject (e.g. Kimbell, 2000; Barlex, 2003; Nicholl and McLe lan, 2007). In the primary phase, the area of designing has frequently been identified as a weakness and has consistently been highlighted as a critical area for development (Ive, 1997; Benson, 2007). There has traditionally been an emphasis on making, rather than designing, for a variety of possible reasons. Designing is a less familiar area to most primary teachers and both teachers and children have been unsure as to the nature of designing and how to develop designs (Mantell, 1999). There is also a strongly perceived need for a finished product and this can make it less likely teachers and children will take risks which might threaten the production of a satisfying outcome. Time constraints also lead to pressure to undertake the making quickly without the designing and planning which might, in fact, support a quicker and better making process. The lack of time for primary design and technology has become a significant issue since the introduction of the national literacy and numeracy strategies (OFSTED, 2002).

Designing combines abstract thinking with modelling in the external world (Kimbell et al, 2001), and there are many ways in which the process can develop and change. It can be challenging for teachers to manage designing sessions where children are discussing, adapting ideas, and modelling without any quick, firm conclusions. Certainly teachers themselves are taking risks during these sessions and need the confidence to manage and support the children in these activities, without feeling the pressure to force the pace and to move on to making as the deadline for finishing the project approaches. Craft and Jeffrey (2008) highlight the tension which exists for teachers in England who are encouraged on the one hand, to innovate, take risks and foster creativity, and on the other are subject to heavy duty accountability played out through the publication of school league tables based on national assessment data, alongside inspection and performance-related career progression. Since the introduction of standardised tests at 7 and 11 years there has been an emphasis on children getting the ‘right answer’ and inevitably this has led to individuals feeling that they should not share ideas. In this climate, children have been unused to taking the risk of exposing their ideas to others and to having their ideas critiqued.
The ‘Butterflies in My Tummy’ Curriculum Development Project

The ‘Butterflies in My Tummy’ Project focused on developing innovation and risk-taking in designing through identifying specific designing activities and related strategies for enhancing Social and Emotional Aspects of Learning (SEAL). SEAL is described as a comprehensive, whole-school approach to promoting social and emotional skills that are thought to underpin effective learning, positive behaviour, regular attendance, and emotional well-being (DfES, 2005). At the time of the project SEAL was used in more than 80% of primary schools across England (Humphrey et al, 2008). The project looked at ways in which children’s innovation and risk-taking could be supported through SEAL strategies to help to create a secure learning environment and positive working relationships, and develop the personal skills and attitudes necessary for risk-taking and innovation.

The ‘Butterflies in My Tummy Project’ was developed by the Design and Technology Association in collaboration with Shropshire primary schools, supported by funding from The National Endowment of Science, Technology and the Arts (NESTA). The pilot stage (2007-8) involved trialling the activities and SEAL strategies with 506 children aged 8-11 and 18 teachers based in 18 different schools. All the schools, except one, had been involved in the Shropshire Local Authority (LA) SEAL programme, although only half the teachers had received specific training. The teachers had one day of Continuing Professional Development (CPD) during which they took part in a range of activities relating to both designing and SEAL. They had time to think about how they might use their chosen activities in their own schools and create an initial timeline. In addition they had a half day support from an LA adviser to talk through their chosen design and technology unit of work and activities.

The project defined the terms ‘innovation’ and ‘risk-taking’ as follows:

‘Innovation as part of designing:
- involves original thinking (for the pupil, relative to peers, or in an absolute sense);
- has the potential to lead to a fully functional product;
- includes risk-taking.’

‘Risk-taking as part of innovation, includes:
- operating outside a comfort zone (for the pupils, relative to peers, or in an absolute sense)
- a powerful emotional response;
- a high level of uncertainty.’

CRIPT (The Centre for Research and Curriculum Development in Design and Technology) was commissioned to evaluate the pilot project. This paper is based on the findings from this evaluation. The main outcome from the project was a collection of activities for both designing and SEAL that are freely available to download from the primary section of the Design and Technology Association website (www.data.org.uk).

Figure 1 below gives examples of designing activities and SEAL strategies from the project.

<table>
<thead>
<tr>
<th>Examples of designing activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x4 – structured group work to help each member of the team develop an idea further through drawing and/or writing</td>
</tr>
<tr>
<td>Extending the range – children are put in the position of a ‘real’ designer asked to consider an existing range of products</td>
</tr>
<tr>
<td>Random word linking – children use pictures or objects to develop lists of words which are then used as a stimulus to develop their ideas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples of SEAL strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows on the world – asking the children to consider how they see themselves and others in the class and looking at how this can change over the course of an activity or unit of work</td>
</tr>
<tr>
<td>What’s stopping you – helping children to manage the part of them that can inhibit risk-taking and innovation</td>
</tr>
<tr>
<td>Understanding conflict – a mechanism for looking at relationships between the teacher and children, between the children themselves and, where appropriate, how these can be made more productive</td>
</tr>
</tbody>
</table>

Figure 1: Examples of designing activities and SEAL strategies from the ‘Butterflies in My Tummy’ Project
The methodology
This project was not a research study, but one that was set up as an evaluation of a curriculum development project. As evaluators we were evaluating a given initiative, and not one that allows for open-ended, pure research. Cohen et al. (2007) discuss in detail the differences, but also the similarities, of 'blue sky' research and that of evaluative or applied research. Neither of the evaluators was involved in the evaluation to influence political policy-making, but to investigate whether or not the strategies suggested in the project might help teachers and children develop designing skills. The conclusions might lead to ideas for policy-making but by this stage the evaluators would not be in a position to take these forward. Having reviewed the eight steps suggested by Norris (1990), we would agree that evaluation can be viewed as an extension of research, sharing similar skills. Whilst Smith and Glass (1987) identify eight main differences, we would argue that a number, including criteria for judging the study; the intents and purposes of the investigation; the origins of the study; and the uses of the study do not pertain to this piece of research. We agree with Burgess’s view (1993) that in an evaluation such as this, the researcher needs to generate research data whilst meeting the sponsors’ requirements for evaluation.

There was certainly an overlap in the methodology used for data gathering between research and evaluation. Both formal and informal methods were used. Formal data collection methods were selected in order to:
- collect baseline information before the project started;
- gather information about the impact of the training day;
- gather information from all teachers and children to try to ascertain impact across all participants;
- gather more in-depth information about the impact from a sample of schools;
- be realistic within time constraints.

Questionnaires were used with all teachers and children before and after the project, and with teachers at the end of the training day. Four schools were visited and semi-structured interviews conducted with teachers and children. In addition teachers were asked to complete process diary sheets as they finished each session related to designing. Informal methods of data collection included notes from meetings between the evaluators and the delivery team, observations on the training day, phone calls and e-mails.

The teachers were given guidance on administering the questionnaires to the children to try to ensure parity across all schools. The children could be offered any support they needed, including a scribe if appropriate. The guidance has been trialled in other projects and has been found to be useful.

As with all research studies, there were limitations with the data collected. Whilst all teachers and children returned the baseline questionnaires and those from the training day, only 10 out of 18 teachers returned the post-project questionnaires, together with 9 sets of questionnaires from the children. Out of the 4 case study schools, only 1 class of children had completed their designs at the time of the evaluator visit but all the teachers had trialled their chosen designing and SEAL activities. However, a significant amount of data from the project was collected and analysed systematically. Therefore it was felt that despite the limitations it was possible to draw some tentative conclusions, raise some issues and offer some potential implications for future practice.

Findings and discussion
The impact upon teachers
The teachers involved in the project had a mixed background in terms of design and technology and SEAL. Whatever their previous experience, all the teachers were enthusiastic and felt more confident after the training day in relation to helping their children to innovate and take risks when designing. They all felt more confident about teaching designing, and with one exception, more confident about developing SEAL within their teaching. There was a strong belief among the teachers that this growth in confidence was due to experiencing the activities for themselves, with 3/18 believing that they would not have been able to carry out the activities effectively without the training. Whilst the majority of teachers felt that they had a greater understanding of designing by the end of the day, the majority of comments related to knowledge of specific activities rather than designing skills or processes. The same result was experienced with the SEAL element.

All the teachers who responded to the final questionnaire had enjoyed the project and believed that the children’s designing skills had improved, but few were able to articulate specific examples relating to designing. All the teachers intended to use the designing activities and SEAL strategies again in design and technology, and with one exception, in other subjects too. The teachers also had intentions to spend more time on designing to enable the children to think and to take risks and work things through if they did not go according to plan. Some commented that they would expect the children to be more critical rather than following their first idea.

1See Appendix for examples of the questionnaires
The impact upon children

The great majority of children in 16 out of the 18 schools enjoyed design and technology. In the 2 exceptions there was a relatively high number of ‘not sure’ responses. Many children mentioned their pleasure in making but contrary to the teachers’ expectations, more than half the children valued designing and would not wish to get straight on with making. At the outset of the project a large proportion of children identified a difficulty in coming up with ideas and some felt they were often not given enough time to develop ideas. The children’s positive responses to designing suggest that many of them value the process of designing in order to help them create a successful product and they also enjoy it for its own sake. This is supported by findings from other research (Benson and Lunt, 2007). The children’s negative comments about designing suggest that for some it is a stage they have to get through in order to be permitted to make. An indicative sample of comments is given in the table below.

The teachers who responded to the final questionnaire believed that their children had enjoyed the activities and strategies, particularly the designing activities. With one exception, the children had generated more interesting ideas and all had enjoyed taking risks in designing. All the teachers agreed that more than 80% of their children had developed their confidence through the project. There was a more mixed response when teachers were asked to comment on their children’s ability to cope with both types of activity. Half felt that they had struggled and half felt that they had not. In relation to the children’s desire to get on with making, the teachers’ responses again were very mixed, but 3 commented that although the children just wanted to get on and make, they did understand the importance of taking time over the design.

Most children’s understanding of ‘innovation’ did not appear to develop during the project as their teachers had not discussed the term explicitly. They had however engaged more with the term ‘risk-taking’. When the children described risk-taking in the questionnaires, their responses covered a range of meanings concerned with:

- the risk of physical harm. Before the project a significant number of children felt that risk-taking was linked to a potentially hazardous activity such as working with a saw or electricity;
- the risk that their idea would not work out and their product would not be successful;
- the risk that they would fail in their task. This was concerned with how the children viewed themselves and was linked to a perceived lack of skill and/or knowledge; being unsure of the task; time pressure; inadequate resources; inadequate teacher explanation;
- the risk of embarrassment in front of others. This was because others might see that their product did not work or that they might have to stand up in front of class to show and/or describe their ideas.

In some schools the children’s understanding of ‘risk-taking’ developed from being solely associated with physical hazards to a broader meaning. In one of the case studies, which was particularly successful, the children developed a view of risk-taking as being connected with something you tried and did not know how it would turn out. Almost all the children felt

<table>
<thead>
<tr>
<th>Positive comments about designing</th>
<th>Negative comments about designing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designing is:</td>
<td></td>
</tr>
<tr>
<td>‘fun because you can draw and plan your own ideas’</td>
<td>‘the longest part and because I like the making part designing goes on for too long’</td>
</tr>
<tr>
<td>‘fantastic because it gives children a chance to show their idea’</td>
<td>‘boring because I already know what I need to do in my head’</td>
</tr>
<tr>
<td>‘challenging but fun’</td>
<td>‘just for decoration and doesn’t mean anything’</td>
</tr>
<tr>
<td>‘good because I can be free with my ideas’</td>
<td>‘hard because there is a lot of drawing’</td>
</tr>
<tr>
<td>‘when before you make something it helps you see what you’re going to make it like, and I love designing’</td>
<td>‘quite boring – really you just want to start making.’</td>
</tr>
<tr>
<td>‘creative because you can experiment with different ideas but it can be challenging at times’</td>
<td></td>
</tr>
<tr>
<td>‘great fun because it is completely different and I like playing and organising (making is better though).’</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: An indicative sample of children’s comments about designing at the outset of the project
that sharing ideas helped with their own design and they loved telling people about their ideas. Overall some children indicated that they did feel more able to take risks and that it was acceptable to make mistakes; change your mind; listen to and act on ideas from others. In one of the case studies, the children's comments suggested that the on-going ways in which their teacher interacted with them supported them in taking risks:

‘by being calm when you make a mistake’;
‘by explaining things’;
‘by encouraging you to keep trying’;
‘telling us ‘You can do it, don’t give up’;
‘If you try new things, you can see what happens’;
‘by having the confidence to show us things on the board even though she can’t draw herself that well.’

The uncomfortable feelings that children identified in relation to risk-taking in design and technology were associated with uncertainty, fear and anxiety.

- Uncertainty included being unsure of what to do; being unsure that their idea/product would work; and being unsure that they would be able to do it.
- Fear and anxiety were experienced in relation to feelings of embarrassment; being told off by the teacher; being ill-prepared and/or ill-equipped; being rushed and as a result making mistakes/not finishing/having arguments; being in danger of physical harm.

There was insufficient data available to be able to comment on the impact of the activities on the quality of children’s designing.

The designing activities
The designing activities were received very positively by all the teachers. The responses from children were more mixed although overall they were positive. In some instances it depended on how well the individual child was able to see the link between the designing activity and the overall designing and making assignment which was the focus of their particular project. A perceived lack of relevance was a significant issue in cases where the children felt rushed and perceived a lack of time to complete their designing and making successfully. Some children, however, valued the activities because they were fun or helped them to think, regardless of whether or not they related to their designing and making focus:

‘It got us thinking. It got us in the mood for D&T so we could think of ideas.’

In a small number of schools, the teachers had attempted to include too many designing activities and this had taken too long and in some instances had impacted upon the children’s enjoyment of the project. The designing activities selected for the project did not include three-dimensional modelling with materials. This reduced the overall amount of practical work and might also have given the impression that designing only involves discussion or paper-based activities.

The SEAL strategies
The SEAL strategies were received positively by teachers, although slightly less so than the designing activities. In one of the case studies, the teacher was very experienced in SEAL and she was able to adapt the activities to her needs and integrate the strategies effectively into the design and technology unit of work. The children in this class responded very positively and were enthusiastic about the support they felt they had received by working in small groups. In this case, the SEAL activities built on established practice. Children from other schools also made positive comments about the activities, e.g.

‘I felt really good expressing how I felt’
‘You could see how other people feel when they’re designing so may be you could boost their confidence by helping them a bit.’

Some children recognised that the SEAL strategies had helped to improve class behaviour. As with the designing activities, some children found them unnecessary and would have preferred to get on with their designing and making.

Issues to consider when developing innovation and risk-taking in primary design and technology
Teaching designing activities and SEAL strategies
The evidence suggests that there are a number of advantages for bringing together designing activities and SEAL strategies to support innovation and risk-taking. These include broadening children’s repertoire of techniques for designing; developing children’s awareness of how their feelings can impact upon their learning and their designing activity; and developing a supportive ethos for innovation and risk-taking. However, it is important that children are clear how these activities support the particular designing and making focus of their project. An appropriate balance between paper-based tasks and three-dimensional designing is also important in maintaining children’s interest and motivation.

The activities from the project have been reviewed and each activity clearly identifies learning objectives and design sub skills that could help children to develop innovative ideas, so it is crucial to choose activities on these criteria and build them into planning. The activities need to be selected to support the development of designing and SEAL skills and understanding. It is vital that users of the web-based materials use the teachers’
guide and take time to understand the way in which the activities might be used and integrated into their planning. Just taking an activity and doing it will almost certainly not have a lasting impact.

Teachers’ understanding of designing and SEAL

If teachers are going to encourage innovation and risk-taking using designing activities and SEAL strategies, they need to have a good understanding of the nature of both designing and SEAL in order to make appropriate links. It was apparent from the evidence of the pilot that the majority of teachers did not have a clear understanding of the nature of design and technology. The idea of user and purpose was often limited or not in evidence at all. The training and the support materials had focused on designing, making assumptions about the teachers’ understanding of design and technology. Although teachers and children talked about ‘innovative/new ideas and work’ as outcomes of the project, there was little actual evidence of innovation. The majority of teachers appeared to equate designing and SEAL with the activities that they had undertaken on the training day.

With the movement towards linking subjects in the primary school with the new National Curriculum, this adds to the argument that it is crucial for teachers to understand the nature of the subjects they are linking in order for the links to be appropriate and well managed.

Terminology

It is crucial to introduce and use the correct terminology with children so they can explore these concepts. As the teachers did not use the term ‘innovation’ with the children, very few children had any idea of its meaning. However, the majority of the children had developed their understanding of ‘risk taking’ as this had been discussed in depth with them. Consideration could be given to discussing more explicitly ideas related to risk and risk management – e.g. going outside the comfort zone, playing safe, minimising risk, having a contingency plan, the fact that learning/designing something new might involve going out of one’s comfort zone.

Role modelling

The classroom ethos plays a crucial part in helping children to feel able to talk about and share their ideas without being criticised in a negative way, as well as developing the skills to critique the work of others in a positive way (Howe et al, 2001). However, teachers will vary according to how comfortable they are with encouraging children to innovate and take risks as this will depend on factors such as personality, teaching style and personal levels of confidence. However in both risk-taking and offering innovative ideas, it is important that the teacher models ways of doing this and critiques them with the children to help them see what risk-taking and innovation means and how they could be achieved. On the training day teachers were given the opportunity to try out for themselves the activities which enabled them to develop their confidence in these approaches. They were also introduced to role models from the professional world of design and innovation.

Time

For risk taking and innovation to be part of the children’s way of working, time must be allowed for them to undertake their designing. Both children and teachers highlighted this. This is supported by research into small group activity and SEAL by Humphrey et al, (2008) where one of their key findings was the importance of allowing time. There is constant pressure on teachers to increase standards in Literacy and maths and to cover many initiatives that have come on stream since the National Curriculum, and therefore the ability of many teachers to step back and give time is limited. However if children are to think reflectively about their ideas, then they do need time and space in which to do it.

Concluding comments

Future research into designing and SEAL would go to strengthen and develop these initial findings. To support this endeavour, consideration needs to be given to the timing of a project. The last part of the summer term with Years 5 and 6 children (9-11 year olds) proved unsuitable for many. More time needs to be allowed to enable children to finish their designs and actually produce their outcomes. It would then be possible to probe the teachers’ and children’s understanding of innovation and risk-taking and the development of the children’s design through the use of some of the activities. What were the ‘real’ developments? For some children in this project it was limited to changing a colour. With more funding, it would be useful to follow up the way in which the teachers continue to develop the activities and their own practice.

At a time when the primary curriculum is under review, the findings from the project are timely. All teachers emphasised the importance of the face to face contact in developing their understanding and confidence and stated that they would have found difficulty in using just web based resources to support the new ideas. How much should support for new curriculum developments be just web based? The project has shown the appropriateness of links across the curriculum and this will undoubtedly be a feature in any future primary curriculum. Finally, all the resources that are on the D&T Association website were modified in the light of the formal evaluation and an informal ‘end to the project’ day with the teachers and they
do provide a rich resource if used in the way that the teacher
guide indicates.

References

Appendix

Children’s baseline questionnaire

‘Butterflies in my tummy’

<table>
<thead>
<tr>
<th>School:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 5</td>
<td>Year 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boy</td>
<td>girl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>agree</th>
<th>disagree</th>
<th>not sure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. I enjoy d&t.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Sometimes I find it hard to come up with ideas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. I would prefer to get on and make, not to design.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Sometimes I worry that my idea might not work.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. I always have lots of ideas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. I prefer to work with someone else so we can share ideas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. I usually have to design on my own.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. I feel best when I get one idea quickly and use that for my making.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. I like it best when the teacher tells me how to design.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. I don’t mind if I am not sure if my ideas will work out.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. I love telling other people about my ideas.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. In D&T, I get butterflies in my tummy when …</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. I think designing is …</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. I think you take a risk in D&T when …</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extract from teachers’ post-questionnaire

3. Perceptions of your practice

3.1 I now feel more confident in teaching designing.
 Agree 1 2 3 4 5 6 Disagree

3.2 I am more familiar with a variety of designing strategies.
 If yes, which ones did you find particularly effective and why?:
 Agree 1 2 3 4 5 6 Disagree

3.3 I now feel more confident in teaching aspects of SEAL.
 Agree 1 2 3 4 5 6 Disagree

3.4 I am more familiar with a variety of strategies for supporting SEAL.
 If yes, which ones did you find particularly effective and why?:
 Agree 1 2 3 4 5 6 Disagree

3.5 I will use or adapt some of the designing activities and use them again in d&t.
 Agree 1 2 3 4 5 6 Disagree

3.6 I will use or adapt some of the SEAL strategies and use them again in d&t.
 Agree 1 2 3 4 5 6 Disagree

3.7 I will use or adapt some of the designing activities and use them again in other subjects.
 Agree 1 2 3 4 5 6 Disagree

3.8 I will use or adapt some of the SEAL strategies and use them again in other subjects.
 Agree 1 2 3 4 5 6 Disagree

4. Perceptions of your children

4.1 The children enjoyed the project overall.
 Agree 1 2 3 4 5 6 Disagree

4.2 The children enjoyed the designing activities.
 Agree 1 2 3 4 5 6 Disagree

4.3 The children were actively engaged in the designing activities.
 Agree 1 2 3 4 5 6 Disagree

4.4 The children enjoyed the SEAL element of the activities.
 Agree 1 2 3 4 5 6 Disagree

4.5 The children were actively engaged in the SEAL element of the activities.
 Agree 1 2 3 4 5 6 Disagree

4.6 The children had more interesting ideas than usual.
 Agree 1 2 3 4 5 6 Disagree

4.7 The children enjoyed taking risks when designing.
 Agree 1 2 3 4 5 6 Disagree
5. Advice on dissemination

5.1 What advice would you give to other teachers introducing activities like these to children of this age group? Please identify 3 key points.

5.2 What advice would you give to other teachers introducing activities like these to younger children in Key Stage 2? Please identify 3 key points.

5.3 What did you find the most helpful in this project for developing your practice? Please identify 3 key points.

<table>
<thead>
<tr>
<th>4.8 A significant number of the children struggled with the designing activities.</th>
<th>Agree 1 2 3 4 5 6 Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9 A significant number of the children struggled with the SEAL element of the activities.</td>
<td>Agree 1 2 3 4 5 6 Disagree</td>
</tr>
<tr>
<td>4.10 A significant number of the children were impatient to get on with making.</td>
<td>Agree 1 2 3 4 5 6 Disagree</td>
</tr>
<tr>
<td>4.11 A significant number of children appeared to develop their confidence through the project.</td>
<td>Agree 1 2 3 4 5 6 Disagree</td>
</tr>
</tbody>
</table>