Filter design software (FDS) for filter process simulation

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: TARLETON, E.S. and WAKEMAN, R.J., 2006. Filter design software (FDS) for filter process simulation. Filtration, 6 (2), pp. 103-107.

Additional Information:

- This article was published in the journal, Filtration [© Filtration Society]: http://www.lboro.ac.uk/departments/cg/research/filtration/journal.htm. It was also presented at Improving Process Efficiency Through Filter Scale-up and Evaluation Conference, 2005, The Filtration Society, Runcorn, UK and Filtech 2005 Conference, pp.14-20, Filtech Exhibitions, Wiesbaden, Germany.

Metadata Record: https://dspace.lboro.ac.uk/2134/5323

Version: Accepted for publication

Publisher: © Filtration Society

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
FILTER DESIGN SOFTWARE (FDS) FOR FILTER PROCESS SIMULATION

E.S. Tarleton (e.s.tarleton@lboro.ac.uk) and R.J. Wakeman
Advanced Separation Technologies Group, Department of Chemical Engineering, Loughborough University, Loughborough, Leics., LE11 3TU, UK.

ABSTRACT

This paper details Filter Design Software® (FDS), new Windows® software for the selection and simulation of solid/liquid separation equipment as well as the analysis of test data. FDS has been developed in collaboration with multi-national companies spanning a wide range of industrial sectors to provide a comprehensive calculation, education and training tool that maintains a balance between ease of use, level of knowledge conveyed and comprehensibility.

The selection module of the FDS compares up to 7 user-defined selection criteria with information contained in databases to produce a numerically ranked list of potentially suitable equipment. The FDS allows access to text and pictorial descriptions of more than 70 equipment types and hyperlinks provide more specific equipment manufacturer details via the internet.

The data analysis module facilitates interactive analysis of leaf filtration, jar sedimentation and piston press test data. Calculations are performed in a hierarchical manner using the available information, if some data are not measured then the FDS performs the best possible analysis using approximations. The results of an analysis can be used to refine (shorten) a list of selected equipment or provide scale-up information for equipment simulation.

The two equipment simulation modules provide calculation sequences for more than 20 types of vacuum and pressure filters, potentially involving combinations of cake formation, compression, gas deliquoring and washing. The user is able to input filter cycle data in their preferred units and guidance is given as to suitable numeric ranges for the type of filter being simulated. Results are presented on-screen in graphical and tabular forms and a mass balance is given for the solid, liquid and dissolved solute components present. The results are also made available in data sheet form which can subsequently be imported into a spreadsheet.

KEYWORDS

Equipment selection; Software; Solid/liquid separation; Simulation; Analysis of filtration data; Process design.

INTRODUCTION

The specification of filters is generally performed through rules-of-thumb (or heuristics) rather than by applying fundamental theoretical relationships. Equipment is rarely specified without recourse to extensive laboratory and pilot scale tests, and the data produced can lead to erroneous specification and scale-up of separators unless care and consistency are observed. The lack of a standard approach can lead to the poor specification and sizing of filters with the result that required production rates may not always be achieved and unforeseen difficulties arise in filter cycle operations.

Progressive developments have facilitated a combined theoretical and experimental approach to the use of computer software in filter specification and simulation1-3. The philosophy considers that with the present state of knowledge of suspensions, and their behaviour in separators, it is most appropriate to have interactive computer software that forms an integral part of an experimental program (Figure 1). Within this context, the Filter Design Software3 (FDS), designed to run under Windows®, has been developed.

The FDS is a sequence of interlinked modules that can be used independently from one another. The full set of FDS modules offers many capabilities, including:

- A catalogue and explanation of the main operational and design features of 70+ equipment types and a procedure for ranked equipment selection
- Full analysis capabilities for leaf filter, jar sedimentation and expression test results to give the parameters required for scale-up and simulation of solid/liquid separation equipment
- Comparison of data sets from a range of tests or trials
- Simulation of 20+ types of vacuum and pressure filters
- The ability to import data files from other software (e.g. spreadsheets)
- Web access to equipment suppliers.

EQUIPMENT SELECTION AND EQUIPMENT CATALOGUE MODULE

The general procedure developed by Purchas1, and the use of ranking indices, provide the basic functionality for the equipment selection module of the FDS. Figure 2 shows a typical screen display.

When the software starts only the ‘Specifications’ box in the top left hand corner of the screen is displayed. The available entries allow the user to select up to 7 items from drop down lists. These define the Duty, which must be specified, and the Settling and Filtration characteristics which are optional entries. In the example, an item in each drop down list has been chosen indicating that experimental data are available. If equipment selection is performed by specifying only the items for Duty then a longer list of equipment is likely to result. Choosing the ‘Select’ command button displays the ‘Selected equipment list’ box towards the top right of the screen where the user specifications have been compared against the FDS database of separation equipment. Choosing an equipment item subsequently displays the text and pictorial information toward the bottom of the display. Additional features of the module functionality include:

- ‘Selected Equipment List’: Ranked listing of solid-liquid separation equipment that matches the specifications. The five indices shown for each equipment type range between 0 and 9 where the latter indicates best possible performance. The listing can be prioritised according to solids dryness, liquid clarity etc. and equipment that is a marginal choice is noted.
- ‘Equipment Descriptions’: General and detailed technical and design information about the chosen equipment
• ‘Equipment Schematic etc.’: Schematic diagrams and photographs of the chosen equipment. Additional information which can help to eliminate equipment from the ranked list is available as is a customisable display of equipment suppliers. The ability to ‘cut and paste’ the web address of a supplier to an on-line browser is provided.

In addition to the Equipment Selection procedure an Equipment Catalogue can be accessed by the user. The display is broadly similar to that in Figure 2, but the FDS equipment database is categorised according to 11 classes (e.g. continuous vacuum filter, gravity sedimentation) and arranged in the form of a reference manual in order to provide education and training.

DATA ANALYSIS MODULE

The Data Analysis module of the FDS allows for the interactive analysis of constant pressure and constant flow filtration, jar sedimentation and piston press (expression) tests. Data obtained at the laboratory, pilot and even full scale can be analysed in a consistent manner to either give additional information for equipment selection or (by repeated use) scale-up correlations for equipment simulation. An example of the screen display for filtration analysis is shown in Figure 3 whilst Figure 4 shows the screen display during the calculation of scale-up coefficients for cake formation and consolidation.

Referring to Figure 3, the user is initially required to type or select choices in the ‘General Information’ box toward the top left hand corner of the display. Descriptions for the test to be analysed can be typed and the Data and Unit Files selected. The Data file is specific to the type of analysis, in the case of constant pressure filtration the data is time vs. cumulative volume of filtrate, and can either be typed by the user or imported from a spreadsheet as required. The Unit File allows the user to enter information in their preferred units by selecting from a list. The ‘Experimental Data’ box is used to enter other relevant data from a test, including properties of the feed and operational parameters for the test apparatus. Even with well conducted tests, some of the necessary input data can missing yet the best possible analysis must be done with the available information. The FDS deals with this situation in two ways. Firstly, when the input data are entered they are checked as far as is possible and if the FDS suspects that the data may be incorrect it warns the user or does not accept the data. In many cases the FDS displays a range of acceptable values for the data as a guide to the user. Secondly, the calculation sequences within the FDS are hierarchical. Depending on which data are missing, a sequence of assumptions are made in order to carry out the calculation. After an assumption has been made, a warning may appear against item(s) of output data in the ‘Tabulated Results’ box towards the bottom of the display.

Results of an analysis can be displayed in either tabulated form, as shown in the example, or graphical forms. For each type of analysis a ‘Characteristic Plot’ is produced toward the bottom right hand corner of the display, for constant pressure filtration this is time/volume vs. cumulative volume. Vertical line cursors are used to identify the linear region of the plot and these are initially positioned by the FDS, however, the user has the facility to interact with the software and move them as appropriate. The results of an analysis can be saved to disc on the computer (in spreadsheet accessible form) and the results of several analysis can be recalled in order to compare and contrast results and/or evaluate scale-up correlations for equipment simulation as shown in Figure 4.

SIMULATION MODULES

Two simulation modules are available. The Vacuum Filter module allows for the simulation of Nutsche, multi-element leaf, belt, drum, disc, table and tilting pan filters. The Pressure Filter module is able to simulate single and multi element leaf filters, diaphragm and filter presses as well as the tube press. Figure 5 shows an example screen display for the simulation of a bottom fed rotary drum filter fitted with a knife discharge.

The ‘General Information’ box toward the top left hand corner of the display is used to start a simulation procedure. The cycle configuration is defined here, for a vacuum filter this may comprise combinations of cake formation, washing and gas deliquoring; the FDS prevents impractical stages on particular filters, for instance, cake washing on a rotary disc filter. Similar to the Data Analysis module, the Unit file allows the user to specify their preferred units for data entry and the default washing model can be over-ridden by the specification of an experimentally measured wash curve.

The remainder of the information required for simulation is typed by the user in the ‘Simulation Data’ box toward the top right hand corner of the display. Each ‘tab’ corresponds to a phase in the filter cycle or provides facility to enter data specific to the filter or the feed solids, liquid and solute. The results of a simulation are shown towards the bottom of the display.

Some key features of the Vacuum and Pressure filter simulation modules include:

- Simulation of the different modes of cake formation as determined by the type/method of pumping used (constant pressure, constant flow and variable pressure/variable flow), compression filtration/consolidation and cake post-treatment processes (cake washing and cake deliquoring)

- Checking of input data – for each required entry the FDS displays a range of numerical values to guide the user as to what is realistic for a particular filter

- Where possible the simulation calculation sequences within the FDS are hierarchical - depending on which data are missing, a sequence of assumptions are made in order to carry out the calculation

- The FDS takes account of practical constraints, for example, the minimum cake thickness that can be discharged from a particular filter

- Graphical or tabulated output of results

- On screen display of a process mass balance, indicating the input/output amounts of solid, liquid, and dissolved solute components

- The ability to save results to disk for later recall and viewing in spreadsheets.

CONCLUSIONS

This paper has described the principal features of Filter Design Software. The four integrated modules comprising the software, which can also be used in isolation, have been developed to enable:

1. A selection procedure that facilitates ranked listing and access to on-line equipment and process information from a knowledge of the required duty and basic experimental data
2. The consistent analysis of filtration, expression and jar sedimentation tests to allow the accurate
determination of the parameters required for process simulation and the basic information needed
for equipment selection

3. The detailed simulation of process scale batch and continuous filters involving combinations of
filtration, consolidation, washing and deliquoring.

By doing so a number of benefits arise, including:

1. The ability to investigate new plant and ask ‘what-if’ questions about filter installations to facilitate
optimum equipment selection(s), filter sizing, cycle configuration(s) and filter operation

2. The ability to troubleshoot existing filter installations and identify potential solutions

3. Consistent experiment analysis to give characterisation and scale-up parameters

4. Unbiased information on solid/liquid separation equipment so appropriate manufacturers can be
approached in the early stages of equipment selection

5. The ability to educate and train a user in solid/liquid separation technology.

ACKNOWLEDGEMENTS

The Filter Design Software has been developed in conjunction with a consortium of companies. The
support of GlaxoSmithKline, Huntsman, Imerys, Larox, Madison Filter and Miro is gratefully
acknowledged.

REFERENCES

3. Filter Design Software – Solid/liquid separation equipment selection, design, simulation, education
and training, 2005. Filtration Solutions, www.filtrationsolutions.co.uk
FIGURES AND TABLES

Figure 1: Flowsheet showing the integration of selection, analysis, scale-up and simulation.
Figure 2: Example screen display from the Equipment Selection module of the FDS.
Figure 3: Example screen display of a constant pressure filtration analysis using the Data Analysis module of the FDS.
Figure 4: Example screen display of scale-up correlations obtained from a sequence of expression tests using the Data Analysis module of the FDS.
Figure 5: Example screen display for a rotary vacuum drum filter simulation using the FDS.