Mechanical behaviour of grains in SnAgCu solder joints

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: GONG, J...et al., 2006. Mechanical behaviour of grains in SnAgCu solder joints. IN: International Conference on Electronic Materials and Packaging, (EMAP 2006), Kowloon, 11-14 Dec., pp. 1-21

Additional Information:

- This is a conference paper [© IEEE]. It is also available at: http://ieeexplore.ieee.org/ Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Metadata Record: https://dspace.lboro.ac.uk/2134/5338

Version: Published

Publisher: © IEEE

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Mechanical Behaviour of Grains in SnAgCu Solder Joints

Jicheng Gong, Changqing Liu,
Paul P. Conway and Vadim V. Silberschmidt

Wolfson School of Mechanical and Manufacturing Engineering
Loughborough University, UK
Background

- Lead-free solder
- Thermal induced load due to mismatch of CTE
- Typical method to predict reliability of solder joints:
 - Modelling mechanical behaviour of solder joints in electronics under thermal cyclic load through FEA
 - Predict the number of cycles to failure based on fatigue model (e.g. Coffin-mansion equation)

- A accurate constitutive model to describe mechanical behaviour and corresponding fatigue model are required
Microstructure of a micro- SnAgCu joint

- Most constitutive model and fatigue model are based on bulk specimens
- A micro-joint contains few grains
- β-Sn, the matrix of SnAgCu solder, has a contracted body-centred tetragonal structure, promising considerable anisotropic behaviour
Anisotropic mechanical behaviour of SnAgCu single crystal

- Three types of anisotropic behaviour are expected: elastic behaviour, thermal expansion and inelastic behaviour
- The former two can refer to Matin, M. A. et al.
- This presentation focuses on the last one
- Both the size and cooling condition’s effect on grain features are studied
- A shearing mechanical test is performed to study these features on inelastic behaviour of SnAgCu solder joints

Sample preparation

- d = 1mm, b = 0.1 and 1mm, respectively, which corresponds to solder joints of BGA and flip chip.
The cooling rates near the melting point are 0.13°C/s and 4.5°C/s, respectively. Their heating and cooling condition are the same before 718s (around 493°C).
Results

- A large joint ($b = 965 \mu m$) formed at the slow cooling rate ($0.13 ^\circ K/s$).
Shearing test

- A large joint ($b = 965 \mu m$) formed at the slow cooling rate (0.13°K/s).
- A small joint \((b = 82\, \mu m) \) formed at the slow cooling rate \((0.13^\circ \text{K/s}) \).
A large joint (\(b = 1015 \mu m \)) formed at the rapid cooling rate (4.5°K/s).
Polarized image

- A large joint ($b = 1015\mu m$) formed at the rapid cooling rate (4.5$^\circ$K/s).
A small joint (b = 108µm) formed at the rapid cooling rate (4.5°K/s).
Discussion

- For bulk specimens, their mechanical behaviour results from the contribution of all grains. Their behaviour exhibits an average phenomena. Therefore, the constitutive model is isotropic and their fatigue life concentrate at certain value.
- For a micro-joint, the mechanical behaviour depends on local microstructure. Therefore, their fatigue life distributes smoothly.
- The reliability of micro-joints is determined by the weakest microstructure.
- It important to proposed a model to describe this lattice orientation-dependent behaviour.
A constitutive model for SnAgCu micro-joints

\[\dot{\gamma}_\alpha = A_\alpha (\tau_\alpha)^n \exp \left(\frac{Q_\alpha}{RT} \right) \]

\[\tau^{(\alpha)} = s^{(\alpha)} : \sigma \]

\[\dot{\varepsilon}_{ld} = \sum_{\alpha=1}^{N} \dot{\gamma}_\alpha s_\alpha \]

- Certain slip systems can be activated during loading
- The inelastic behaviour is the sum of deformation due to each slip system
Flip chip electronics: global model

Silicon chip

Substrate

Entire Package

Substrate

Without silicon chip
Deformation of the flip chip under thermal cyclic load

Temperature (°K)

Time (s)

Thermal cyclic load

Equivalent stress
Simulation Results: submodel

Traditional model Single crystal joint

- The Mise equivalent stress gradient in single crystal is larger than that in traditional model based on bulk specimens
Stress components in single crystal joint with different grain orientation

- Stress components are different when the grain orientation varies
Results for bi- and multi-crystalline
Conclusions

- From the size of 100\(\mu\text{m}\) to 1000\(\mu\text{m}\), the smaller a solder joint is, the less number of grains it contains.
- The faster a cooling rate is applied, the finer substructure in the solder grains is obtained. However, the size of grain is not significantly sensitive the cooling rate in the range of 0.13°K/s and 4.5°K/s.
- The non-thermal activated inelastic behaviour of Sn3.8Ag0.7Cu grains is considerably lattice-dependent for a micro-joint.
Thank you!