Automatic differentiation based nonlinear model predictive control of satellites using magneto-torquers

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- This is a conference paper [©IEEE]. It is also available from: http://dx.doi.org/10.1109/ICIEA.2009.5138329 Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Metadata Record: https://dspace.lboro.ac.uk/2134/5466

Version: Published

Publisher: © IEEE

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
Automatic Differentiation based Nonlinear Model Predictive Control of Satellites using Magneto-Torquers

Yi Cao
School of Engineering
Cranfield University
Bedfordshire MK43 0AL, UK
e-mail: y.cao@cranfield.ac.uk

Wen-Hua Chen
Department of Aeronautical Automotive Engineering
Loughborough University
Leicestershire LE11 3TU, UK
e-mail: w.chen@lboro.ac.uk

Abstract—Satellite control using magneto-torquers represents a control challenge combined with strong nonlinearity, variable dynamics and partial controllability. An automatic differentiation based nonlinear model predictive control (NMPC) algorithm is developed in this work to tackle these issues. Based on the previously developed formulation of NMPC, a novel variable sampling time scheme is proposed to combine with the NMPC algorithm so that both control performance, particularly the response speed when the satellite is far away from the desired position, and the closed-loop stability when the satellite is at its equilibrium position can be comfortably satisfied. The proposed approach is demonstrated through nonlinear simulation of a specific satellite case with satisfactory results obtained.

Index Terms—Predictive Control, Nonlinear Systems, Satellite, Magneto-Torquer

I. INTRODUCTION

Using magnetic rods as the only actuators for spacecraft attitude control has been attracting a lot of attention in recent years due to its simplicity, low cost, and power efficiency. This technique is especially suitable for low-Earth orbit satellites with modest control performance requirements. The control concept is based on that interaction between the magnetic moment generated within a spacecraft and the magnetic field of the Earth produces a torque which can be used to control the attitude of the spacecraft. For satellites whose attitude is controlled by chemicals or other thrusters, by exploring the usage of magnetic torquers, it could significantly reduce the consumption of chemicals so to extend the life of the satellites.

Satellite attitude control using magneto-torque actuators has a number of challenges. The dynamic system is strongly nonlinear, particularly when the satellite is in the stage of orbit installation. The magneto-torque actuator can only provide partial controllability to the satellite at any moment. The dynamics of the system are time varying and the response time can vary from seconds to several hours. Traditional PID control cannot provide satisfactory performance. In recent years, attempts have been made in applying model predictive control (MPC) to satellite attitude control, for example, [1], [2]. However, the linear model based MPC can only work for a specified attitude with relatively small actuations. On the other hand, although the minimum time control of satellites using magneto-torquers has been studied using optimal control principles, stability of the system when satellite approaching a desired attitude has not been analysed in the work [3]. In this work, a nonlinear model predictive control solution using automatic differentiation is proposed to tackle the challenging problem of the satellite attitude control using magneto-torquers for orbit installation or altering attitude.

Automatic differentiation (AD) is a technique to automatically generate derivatives through computer programming. It does not like numerical calculations, where derivatives are approximated through finite differences, hence are inaccurate and very inefficient. It also avoids code growth issues normally relating to symbolic computations. In the recent work [4], a new NMPC scheme has been developed using automatic differentiation techniques. Using this approach, high-order Taylor coefficients of states and outputs can be automatically generated at each sampling instant, so that future trajectory can be predicted efficiently and accurately. Meanwhile, AD can also produce sensitivities of Taylor coefficients against control signals in a very efficient way. This makes the online optimization problem to be solved much more quickly. An improvement of one to two orders of magnitude in computation speed has been observed in case studies.

In this work, the satellite attitude model with magneto-torque actuator has been converted into an iterative Taylor model based on AD principles. Using the iterative Taylor model, the satellite attitude system can be simulated much more efficiently and also much more accurately than traditional ordinary differential equation solvers. The Taylor model also enables a continuously variable sampling time scheme to be implemented with the NMPC. That is, at each control interval, future behaviour of the system is predicted through iteratively calculating high-order Taylor coefficients. Then an error estimation approach is adopted to calculate the maximum time interval, which makes the dynamic response prediction within a specified error tolerant range. Then a fraction of the maximum time interval is used as the length of next control interval. In this way, the NMPC can automatically adjust
sampling time from the initial quick move to alter attitude to final slow move when the satellite approaches the desired attitude. This scheme works very well with the satellite attitude control system, where a fixed sampling rate may result in either a very slow and very poor response when the sampling time is too large, or an enormous computation load and potential stability problems when sampling time is too short.

The paper is organized as follows. In section 2, a mathematical model describing the dynamics of a satellite equipped with magneto-torque actuators is presented. Then, in section 3, algorithms of automatic differentiation based nonlinear model predictive control with variable sampling time are to be developed. Section 4 presents a case study with specific satellite parameters and control performance is evaluated through nonlinear simulation. This work is concluded in section 5.

II. SATELLITE WITH MAGNETO-TORQUER ACTUATORS

The model of a satellite equipped with magneto-torquers can be described in various reference frames [5]. In this work, the reference system described by [6] is adopted. That is the Earth-centered inertial reference axes (ECI) plus satellite body axes. The attitude dynamics can be represented by the well-know Euler’s equations [5], whilst the attitude kinematics are described by the Euler quaternions. Therefore, the complete dynamics model of the system is given as follows.

\[
\begin{align*}
I_x \dot{\omega}_x &= \omega_y \omega_z (I_y - I_x) + T_x \\
I_y \dot{\omega}_y &= \omega_z \omega_x (I_z - I_y) + T_y \\
I_z \dot{\omega}_z &= \omega_x \omega_y (I_x - I_z) + T_z \\
q_1 &= (\omega_x q_2 - \omega_y q_3 + \omega_z q_4) / 2 \\
q_2 &= (\omega_x q_3 - \omega_y q_1 + \omega_z q_4) / 2 \\
q_3 &= (\omega_y q_1 - \omega_x q_2 + \omega_z q_4) / 2 \\
q_4 &= (-\omega_x q_1 - \omega_y q_2 - \omega_z q_3) / 2
\end{align*}
\]

where \(\omega_x, \omega_y\) and \(\omega_z\) are spacecraft angular rates expressed in body frame, \(I_i\) and \(T_i\), for \(i = x, y, z\) are the inertial components and external torques in the satellite body axes respectively, whilst \(q_i, i = 1, 2, 3, 4\) are the Euler quaternions, which satisfy the constraint:

\[q_1^2 + q_2^2 + q_3^2 + q_4^2 = 1\]

Note, the quaternion constraint (8) is implicitly represented by (7). The magneto-torquers are modelled as follows.

\[
\begin{align*}
T_x &= b_3 u_2 - b_2 u_3 \\
T_y &= b_1 u_3 - b_3 u_1 \\
T_z &= b_2 u_1 - b_1 u_2
\end{align*}
\]

where \(u_i, i = 1, 2, 3\) are control inputs (magnetic rod dipole moments), whilst \(b_i, i = 1, 2, 3\) are local magnetic field components in the body frame converted from the orbit frame:

\[
\begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix} = M_q
\begin{bmatrix}
b_x \\
b_y \\
b_z
\end{bmatrix}
\]

The conversion matrix, \(M_q\) is given as

\[
M_q = \begin{bmatrix}
1 - 2(q_2^2 + q_3^2) & 2(q_1 q_2 - q_3 q_4) & 2(q_1 q_3 + q_2 q_4) \\
2(q_1 q_2 + q_3 q_4) & 1 - 2(q_1^2 + q_2^2) & 2(q_2 q_3 - q_1 q_4) \\
2(q_1 q_3 - q_2 q_4) & 2(q_2 q_3 + q_1 q_4) & 1 - 2(q_1^2 + q_2^2)
\end{bmatrix}
\]

The magnetic field components can be approximated as:

\[
\begin{align*}
b_x &= \mu_f a e \cos(\omega_0 t) \sin(\alpha) \\
b_y &= -\mu_f a e \cos(\alpha) \\
b_z &= 2\mu_f a e \sin(\omega_0 t) \sin(\alpha)
\end{align*}
\]

where \(\mu_f = \mu / a_e\) with \(\mu_f\) the Earth dipole strength and \(a_e\) the orbit radius, \(\omega_0\) the orbit frequency and \(\alpha\) the orbit inclination angle.

The above satellite system with magneto-torquers represents a difficult control challenge due the following reasons:

- The system is strongly nonlinear and time variant because of the varying local magnetic field strength along the orbit.
- The system is only partially controllable at any time instance. This is because at any time instance, the external torques have only two independent effective directions.
- Depending on actuation strength, the system dynamic response can be from very fast (time constant in few milliseconds) to very slow (time constant in few hours).

Most previous works focused on the first two issues. Linear and nonlinear solutions to this problem have been summarized by [1]. However, the issue of variable response speed has not been considered in these studies so that all these solutions, even with nonlinear formulations [6], resulted very slow dynamic response. The only exception is the work reported by [3], where a time optimal control was developed to drive the satellite from a give initial attitude to quickly reach the desired attitude. However, in that work, the stability of system at the desired attitude has not been considered so that the approach cannot be directly applied to a real satellite system. In the following section, an automatic differentiation based nonlinear model predictive control approach is to be developed to control the satellite attitude. The advantage of automatic differentiation makes the nonlinear model predictive controller work at a variable sampling time mode so that both response speed and stability issues can be handled satisfactorily.

III. AD BASED NMPC

An AD based nonlinear model predictive control formulation was proposed by one of the authors [4]. It is based on the recursive algorithms to automatically generate a high-order Taylor expansion of a wide class of nonlinear functions. AD tools, such as ADOL-C [7] available on public domain, can be directly used to generate Taylor coefficients and associated sensitivities. In this work, this formulation is extended to variable sampling time. Firstly, for tutorial purpose, analytic NMPC formulations are derived in §3.1 – 3.3. Then, the variable sampling time extension is developed in §3.4.
A. Integration using high-order Taylor expansion

Let \(\omega_i(t) \), \(i = x, y, z \) and \(q_i(t) \), \(i = 1, 2, 3, 4 \) be approximated by the truncated Taylor series around \(t_0 \):

\[
\omega_i(t) = \sum_{k=0}^{d} \omega_i^{[k]} (t - t_0)^k, \quad i = x, y, z \tag{17}
\]

\[
q_i(t) = \sum_{k=0}^{d} q_i^{[k]} (t - t_0)^k, \quad i = 1, 2, 3, 4 \tag{18}
\]

The first coefficients in these series can be determined from the initial values, i.e. \(\omega_i^{[0]} = \omega_i(t_0) \), \(i = x, y, z \) and \(q_i^{[0]} = q_i(t_0) \), \(i = 1, 2, 3, 4 \). According to the automatic differential theory [8], all high-order coefficients can be recursively determined. The recursive equations are derived from the differential equations (1) – (7) using the rules provided by [8].

\[
\omega_x^{[k+1]} = \frac{I_y - I_z}{(k + 1)I_x} \left(\sum_{j=0}^{k} \omega_y^{[j]} \omega_x^{[k-j]} + \frac{b_2^{[k]} u_3 - b_1^{[k]} u_2}{I_y - I_z} \right) \tag{19}
\]

\[
\omega_y^{[k+1]} = \frac{I_z - I_x}{(k + 1)I_y} \left(\sum_{j=0}^{k} \omega_x^{[j]} \omega_y^{[k-j]} + \frac{b_1^{[k]} u_3 - b_2^{[k]} u_2}{I_z - I_x} \right) \tag{20}
\]

\[
\omega_z^{[k+1]} = \frac{I_x - I_y}{(k + 1)I_z} \left(\sum_{j=0}^{k} \omega_x^{[j]} \omega_z^{[k-j]} + \frac{b_2^{[k]} u_1 - b_1^{[k]} u_2}{I_x - I_y} \right) \tag{21}
\]

\[
q_1^{[k+1]} = \frac{1}{2(k + 1)} \sum_{j=0}^{k} \left(\omega_z^{[j]} q_2^{[k-j]} - \omega_y^{[j]} q_3^{[k-j]} + \omega_y^{[j]} q_4^{[k-j]} \right) \tag{22}
\]

\[
q_2^{[k+1]} = \frac{1}{2(k + 1)} \sum_{j=0}^{k} \left(\omega_x^{[j]} q_3^{[k-j]} - \omega_y^{[j]} q_2^{[k-j]} + \omega_y^{[j]} q_4^{[k-j]} \right) \tag{23}
\]

\[
q_3^{[k+1]} = \frac{1}{2(k + 1)} \sum_{j=0}^{k} \left(\omega_y^{[j]} q_1^{[k-j]} - \omega_x^{[j]} q_2^{[k-j]} + \omega_x^{[j]} q_4^{[k-j]} \right) \tag{24}
\]

\[
q_4^{[k+1]} = \frac{-1}{2(k + 1)} \sum_{j=0}^{k} \left(\omega_x^{[j]} q_1^{[k-j]} + \omega_y^{[j]} q_2^{[k-j]} + \omega_y^{[j]} q_3^{[k-j]} \right) \tag{25}
\]

The Taylor coefficients of \(b_i \), \(i = 1, 2, 3 \) are derived from (12).

\[
\begin{bmatrix}
q_1^{[k]} \\
q_2^{[k]} \\
q_3^{[k]}
\end{bmatrix} = \sum_{j=0}^{k} \begin{bmatrix}
m_{11}^{[j]} & m_{12}^{[j]} & m_{13}^{[j]} & m_{14}^{[j]} & m_{15}^{[j]} \\
m_{21}^{[j]} & m_{22}^{[j]} & m_{23}^{[j]} & m_{24}^{[j]} & m_{25}^{[j]} \\
m_{31}^{[j]} & m_{32}^{[j]} & m_{33}^{[j]} & m_{34}^{[j]} & m_{35}^{[j]}
\end{bmatrix} \begin{bmatrix}
b_1^{[j]} \\
b_2^{[j]} \\
b_3^{[j]} \\
b_4^{[j]} \\
b_5^{[j]}
\end{bmatrix} \tag{26}
\]

where

\[
m_{11}^{[k]} = \sum_{j=0}^{k} \left(q_1^{[j]} q_1^{[k-j]} - q_2^{[j]} q_2^{[k-j]} - q_3^{[j]} q_3^{[k-j]} + q_4^{[j]} q_4^{[k-j]} \right)
\]

\[
m_{12}^{[k]} = \sum_{j=0}^{k} \left(q_1^{[j]} q_2^{[k-j]} + q_2^{[j]} q_3^{[k-j]} - q_3^{[j]} q_4^{[k-j]} \right)
\]

\[
m_{13}^{[k]} = \sum_{j=0}^{k} \left(q_1^{[j]} q_3^{[k-j]} - q_2^{[j]} q_2^{[k-j]} \right)
\]

\[
m_{14}^{[k]} = \sum_{j=0}^{k} \left(q_1^{[j]} q_4^{[k-j]} - q_2^{[j]} q_3^{[k-j]} - q_3^{[j]} q_4^{[k-j]} \right)
\]

\[
m_{15}^{[k]} = \sum_{j=0}^{k} \left(q_1^{[j]} q_4^{[k-j]} + q_2^{[j]} q_3^{[k-j]} + q_3^{[j]} q_4^{[k-j]} \right)
\]

The Taylor coefficients of \(b_i \), \(i = x, y, z \) are obtained recursively according to (14) to (16) as follows.

\[
v_1^{[0]} = \cos(\omega_0 t_0) \tag{27}
\]

\[
v_2^{[0]} = \sin(\omega_0 t_0) \tag{28}
\]

\[
v_1^{[k+1]} = \frac{-\omega_0^{[k]} v_1^{[k]}}{k + 1}, \quad k \geq 0 \tag{29}
\]

\[
v_2^{[k+1]} = \frac{\omega_0^{[k]} v_2^{[k]}}{k + 1}, \quad k \geq 0 \tag{30}
\]

\[
b_0^{[y]} = -\mu_f a \cos(\alpha) \tag{31}
\]

\[
b_0^{[y]} = 0, k > 0 \tag{32}
\]

\[
b_0^{[y]} = \mu_f a \sin(\alpha) v_1^{[k]} \tag{33}
\]

\[
b_0^{[y]} = 2\mu_f a \sin(\alpha) v_2^{[k]} \tag{34}
\]

Equations (17) – (34) provide a complete solution to the initial value problem of the satellite differential equation system. Let \(t_{i+1} = t_i + h_i, \ i = 0, \ldots, n \) and \(t_f = t_{n+1} \). Then, initial values at \(t_i \) can be iteratively calculated using (17) and (18) until the specified final time, \(t_f \) reaches. The order of Taylor series is determined by the integration step and the tolerance specified [4].

Note, in the above formulation, the actuating inputs are treated as constant. In model predictive control, these inputs are piecewise constant. Therefore, whenever an input changes its value, a new integration step should start.

The advantage of this integration approach against other numerical integration methods is its efficiency. It is able to
provide a high-accuracy solution within a very short time. For the satellite differential equation system, one particular problem is that the algebraic constraint (8) cannot be satisfactorily agreed with solutions provided by traditional differential equation solvers. This problem is easily overcome by the high-order Taylor series based approach as indicated in §4.

B. Sensitivity

The nonlinear model predictive control problem presented in section 3.3 requires to solve a nonlinear least square problem in realtime, where the computation efficiency is a critical issue to make the control approach practically applicable. Experience shows that more than 90 percent of computation time is associated with derivative calculation in solving such a nonlinear model predictive control problem [4]. Therefore, to accelerate the computation speed of the nonlinear model predictive control, an efficient algorithm to solve the sensitivity equations associated with the differential equations (1) – (7) is desirable. Based on the high-order Taylor coefficients derived above to solve the differential equations, the associated sensitivity problem can also be solved by deriving the corresponding Taylor coefficients of the sensitivity variables as follows.

Let \(s = [\omega_x \quad \omega_y \quad \omega_z \quad q_1 \quad q_2 \quad q_3 \quad q_4]^T \). For equations (1) – (7), two sensitivity matrices are defined as follows.

\[
A_s^{[k]} := \begin{bmatrix}
A_{\omega_x}^{[k]} & A_{\omega_y}^{[k]} & A_{\omega_z}^{[k]}
\end{bmatrix}, \quad A_u^{[k]} := \begin{bmatrix}
A_{u_1}^{[k]} & \cdots & A_{u_{21}}^{[k]}
\end{bmatrix} \tag{35}
\]

where

\[
A_{\omega_x}^{[k]} := \begin{bmatrix}
0 & \omega_x^{[k]} I_{x} - f_{x}^{[k]} - \omega_x^{[k]} I_{x} & \ldots & 0 & \omega_x^{[k]} I_{x} - f_{x}^{[k]} & 0
\end{bmatrix}
\]

\[
A_{\omega_y}^{[k]} := \begin{bmatrix}
0 & 0 & \omega_y^{[k]} I_{x} & \omega_y^{[k]} I_{x} - f_{x}^{[k]} & 0 & \omega_y^{[k]} I_{x} - f_{x}^{[k]}
\end{bmatrix}
\]

\[
A_{\omega_z}^{[k]} := \begin{bmatrix}
0 & \omega_z^{[k]} I_{x} & \omega_z^{[k]} I_{x} - f_{x}^{[k]} & 0 & \omega_z^{[k]} I_{x} & 0
\end{bmatrix}
\]

\[
A_{q_1}^{[k]} := \frac{1}{2} \begin{bmatrix}
0 & 0 & -q_1^{[k]} & q_2^{[k]} & q_1^{[k]} & 0
\end{bmatrix}
\]

\[
A_{q_2}^{[k]} := \frac{1}{2} \begin{bmatrix}
0 & 0 & q_2^{[k]} & -q_1^{[k]} & q_1^{[k]} & 0
\end{bmatrix}
\]

\[
A_{q_3}^{[k]} := \frac{1}{2} \begin{bmatrix}
0 & 0 & q_3^{[k]} & -q_1^{[k]} & q_1^{[k]} & 0
\end{bmatrix}
\]

\[
A_{q_4}^{[k]} := \frac{1}{2} \begin{bmatrix}
0 & 0 & q_4^{[k]} & -q_1^{[k]} & q_1^{[k]} & 0
\end{bmatrix}
\]

The sensitivity Taylor coefficients are derived as follows.

\[
B_s^{[k+1]} := \frac{ds^{[k+1]}}{ds^{[0]}} = \frac{1}{k+1} \sum_{j=0}^{k} A_s^{[j]} B_s^{[k-j]} \tag{36}
\]

\[
B_u^{[k+1]} := \frac{du^{[k+1]}}{du^{[0]}} = \frac{1}{k+1} \left(A_u^{[k]} + \sum_{j=0}^{k} A_u^{[j]} B_u^{[k-j]} \right) \tag{37}
\]

Therefore,

\[
B_s(t_0 + h_0) := \frac{ds(t_0 + h_0)}{ds(t_0)} = \sum_{k=0}^{d} B_s^{[k]} h_0^k \tag{38}
\]

\[
B_u(t_0 + h_0) := \frac{du(t_0 + h_0)}{du(t_0)} = \sum_{k=0}^{d} B_u^{[k]} h_0^k \tag{39}
\]

At the time, \(t_i = t_{i-1} + h_{i-1}, i = 1, \ldots, n \), the sensitivity can
be obtained using the chain rule iteratively.

\[
B_{s_i}(t_i) := \frac{ds(t_i)}{ds(t_j)} = \prod_{k=0}^{i-(j+1)} B_s(t_{i-k}), \quad j < i
\]

\[
B_{u_i}(t_i) := \frac{ds(t_i)}{du(t_j)} = \prod_{k=0}^{i-(j+2)} B_u(t_{i-k})B_u(t_{j+1}), \quad j < i
\]

(40)

(41)

C. Predictive control

The control performance of the satellite system is measured by a quadratic integration as follows.

\[
\phi := \frac{1}{2} \sum_{k=0}^{n} \int_{t_k}^{t_k+h_k} ((s - s_0)^T Q (s - s_0) + u^T R u) \, dt \tag{42}
\]

where \(s_0 \) is the desired reference vector of \(s, Q \) and \(R \) are performance weights of states and inputs respectively. Let \(\phi_k \) represent the performance measure from \(t_k \) to \(t_k + h_k \) and \(\phi \) is determined by the algorithm to make sure the performance measure is reduced at each iteration step. Then, it can be proven that \(\phi_k = \frac{1}{2} E_k^T E_k \). Stack all \(E_k \) together as \(E = \begin{bmatrix} E_0^T & \cdots & E_n^T \end{bmatrix} \) then \(\phi = \frac{1}{2} E^T E \). This is a standard nonlinear least square problem. To solve the problem, the Jacobian matrix, \(J \) of \(E \) against \(u(t_k) \), \(k = 0, \ldots, n \) is required. Partition \(J \) into \(J_{ij}, i, j = 1, \ldots, n+1 \), where \(J_{ij} \) is the Jacobian matrix of \(E_{i-1} \) against \(u_{j-1} \). Therefore,

\[
E_k := \begin{bmatrix}
F_k^{1/2} \\
\vdots \\
F_k^{1/2} Q_{1/2}^2 B_u \\
\vdots \\
F_k^{1/2} Q_{1/2}^2 B_u \\
R_k^{1/2} \\
R_k^{1/2} \\
R_k^{1/2} B_u(t_k) \\
0
\end{bmatrix}
\]

(43)

where the \((i,j)\)th element of \(F_k \) is \(h_{k+1}^{i+j-1}/(i+j-1) \). Then, the Jacobian matrix, \(J \) of \(E \) against \(u(t_k) \), \(k = 0, \ldots, n \) is required. Partition \(J \) into \(J_{ij}, i, j = 1, \ldots, n+1 \), where \(J_{ij} \) is the Jacobian matrix of \(E_{i-1} \) against \(u_{j-1} \). Therefore,

\[
J_{ij} := \begin{cases}
0, & j > i \\
F_i^{1/2} \\
\vdots \\
F_i^{1/2} Q_{1/2}^2 B_u \\
\vdots \\
F_i^{1/2} Q_{1/2}^2 B_u \\
R_i^{1/2} \\
R_i^{1/2} B_u(t_i) \\
0
\end{cases}, \quad j = i
\]

\[
J_{ij} := \begin{cases}
0, & j > i \\
F_i^{1/2} \\
\vdots \\
F_i^{1/2} Q_{1/2}^2 B_u \\
\vdots \\
F_i^{1/2} Q_{1/2}^2 B_u \\
R_i^{1/2} \\
R_i^{1/2} B_u(t_i) \\
0
\end{cases}, \quad j < i
\]

Based on Levenberg-Marquardt algorithm \([9]\). Using the Jacobian, \(J \) and the performance vector, \(E \), the inputs, \(U := \begin{bmatrix} u^T(t_0) & u^T(t_1) & \cdots & u^T(t_n) \end{bmatrix}^T \) is iteratively updated as:

\[
U_{k+1} = U_k - (J^T J + \lambda I)^{-1} J^T E
\]

(44)

where \(\lambda \) is determined by the algorithm to make sure the performance measure is reduced at each iteration step. The optimal solution, \(U^* \) is obtained when the algorithm is converged, whilst only the first block of \(U^* \), i.e. \(u^*(t_0) \) is applied to the system until the next sampling instance.

Note that in the above configuration, it is assumed that there is no any state constraint. Standard algorithm is readily available to deal with input constraints, e.g. by using \texttt{lsqnonlin} function in MATLAB Optimization Toolbox \([10]\).

D. Variable sampling time

Performance of discrete control systems is limited by the sampling time. Fast response requires a short sampling time. However, on the other hand, to ensure closed-loop stability of MPC, the predictive period should be long enough. Combining both requirements may result in an impractical large prediction horizon (number of predictive steps) so that computation load of NMPC is not tractable. The situation is even worse in the satellite control system, where the dynamic response speed is depend on the magnitude of actuating inputs. The rotating speed under the maximum actuating force can be 3 to 4 orders of magnitude higher than that under the minimum force. Therefore, a novel variable sampling time scheme is adopted in this work to tackle this problem.

Naturally, when the satellite is far away from its desired equilibrium position, a relative large actuating force is required to drive the satellite to the desired position as quickly as possible. In this situation, control performance, i.e. response speed is the main concern. Hence, a relatively small sampling time should be adopted. As the satellite gradually approaching the desired position, required magnitude of actuating force is reduced and the stability issue becomes more and more important. In general, for a performance index as given in (42), the stability of the MPC algorithms can be achieved by employing a sufficiently large horizon. Therefore, the sampling time should increase so that within the tractable computation time closed-loop stability can be ensured. The both requirements are satisfied by adjusting the sampling time to match the integration steps, which is determined based on the error tolerance control algorithm described as follows.

Assume the state of the satellite at the next sampling time is estimated by the Taylor series as \(s(h) = \sum_{k=0}^{d} s[k] + \varepsilon(h, d) \), which has the radius of convergence equal to \(r \). Then,

\[
\varepsilon(h, d) \approx C(h/r)^{d+1}
\]

(45)

where \(C \) is constant. For sufficient large \(d \),

\[
r \approx r_d := \frac{\|s[d-1]\|_{\infty}}{\|s[d]\|_{\infty}}
\]

(46)

Since, \(\varepsilon(h, d-1) \approx \varepsilon(h, d)(r_d/h) \approx \varepsilon(h, d) + \|s[d]\|_{\infty} h^k \), it leads to the following estimation of the truncation error:

\[
\varepsilon(h, d) = \frac{h^{d+1} R_{\infty} \cdot s[d]^2}{\|s[d-1]\|_{\infty} - h\|s[d]\|_{\infty}}
\]

(47)

Therefore, for a given \(d \) and a specified error tolerance, \(\varepsilon_0 \), the integration step (sampling time) can be estimated from
\[\varepsilon(h, d) \leq \varepsilon_0. \] For \(h > 1 \), it leads to
\[h \leq \left(\frac{\varepsilon_0}{\| s^{(d-1)} \|_\infty} \right)^{1/(d+1)} \] (48)

When the satellite position is far away from its desired attitude and a large actuating force is imposed, a small sampling time is determined by applying the above estimation. Therefore, the control system has fast response speed. As the satellite approaching the desired attitude, actuation from the MPC is small. The above estimation will result in a large sampling time and hence a long predictive horizon, which then ensures the closed-loop stability.

IV. Case Study and Simulation

The developed AD based NMPC with variable sampling time algorithm is implemented in MATLAB and tested with a specific satellite case, which has the following parameters: \(I_x = 128 \), \(I_y = 600 \) and \(I_z = 500 \) all in \([\text{kg} \cdot \text{m}^2]\); \(\alpha = 50^\circ \), \(\omega_0 = 2\pi / 5400 \) [rad/sec] and \(\mu_f = 0.0632 \) based on orbit height 500 [km]. The maximum dipole moment of each magnetic rod is 400 [A-m^2].

To test the performance of the NMPC, a set of initial conditions randomly generated. The NMPC is able to achieve satisfactory control performance and ensure the closed-loop stability as indicated in Figure 1.

In the simulation, initially, the controller adopts the sampling time as small as 500 [ms] to facilitate the maximum control action, as shown in sub-figure (a) so that the rotating speed of the satellite decreases quickly as indicated in sub-figure (c). Overall, the system is able to reach the desired attitude within 2 hours as seen from sub-figure (b). When the system is close to its desired equilibrium position, the sampling time is gradually increased to 50 [s], which is about 100 time larger than the minimum sampling time such that the stability is observed over a long time period (6 hours) as shown in sub-figure (b). Finally, sub-figure (d) shows the residual of the algebraic constraint, which is very difficult to be maintained at a small tolerance by using traditional differential equation solvers. By using the high-order Taylor series based formulation developed in this work, the residual is comfortably maintained at a very small level.

V. Conclusions

An automatic differentiation based nonlinear model predictive control formulation is developed for the satellite attitude control problem using magneto-torquers. A novel variable sampling time mechanism has been proposed to tackle the problem where due to the coupling between the local magnetic field and the satellite attitude, the satellite dynamics change dramatically from initial orbit installation to the end of the maneuver so that both control performance and closed-loop stability can be maintained satisfactorily. Nonlinear simulation on a particular satellite case demonstrates the superior merits of the proposed control scheme.

References