Further attacks and comments on ‘security of two remote user authentication schemes using smart cards’

This item was submitted to Loughborough University’s Institutional Repository by the/an author.

Citation: PHAN, R.C.-W. and GOI, B.-M., 2004. Further attacks and comments on ‘security of two remote user authentication schemes using smart cards’. IEEE Transactions on Consumer Electronics, 50(2), pp. 609 - 611

Additional Information:

- This journal article is published in IEEE Transactions on Consumer Electronics [© IEEE]. It is also available at: http://ieeexplore.ieee.org/ Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Metadata Record: https://dspace.lboro.ac.uk/2134/5674

Version: Published

Publisher: © IEEE

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Further Attacks and Comments on ‘Security of Two Remote User Authentication Schemes Using Smart Cards’

Raphael Chung-Wei Phan, Member, IEEE, and Bok–Min Goi

Abstract — We point out that Hsu’s recent cryptanalysis of Sun’s remote user authentication scheme is flawed. We also comment on Chien et. al’s scheme and give more practical attacks than those presented by Hsu in the same paper.

Index Terms — remote user authentication, smart cards, cryptanalysis.

I. INTRODUCTION

A remote user authentication scheme serves to authenticate the legitimacy of remote users over an insecure channel. In 2000, Sun [5] proposed an efficient remote user authentication scheme using smart cards but this was later shown by Chien et. al [2] to only achieve unilateral authentication in that only the authentication server (AS) could authenticate the remote user and not vice versa. As a consequence, Chien et. al further proposed an improvement. Recently, Hsu [3] considered the security of both these schemes and presented two attacks on Sun’s scheme and an attack on Chien et. al’s scheme.

In this paper, we comment on Hsu’s results, in particular we show that his attacks on Sun’s scheme are flawed. We also present attacks on both Sun’s and Chien et. al’s schemes that are more practical compared Hsu’s attack. Further, we give comments on Chien et. al’s scheme.

II. TWO REMOTE USER AUTHENTICATION SCHEMES

This section describes Sun’s and Chien et. al’s remote user authentication schemes.

A. Sun’s Scheme

This scheme basically involves any new user, \(U_i \) registering with the authentication server, \(AS \), and being issued a smart card, \(SC_i \) and subsequently logging in with the smart card to be authenticated by \(AS \). Denote \(h \) as a secure one-way hash function, \(x \) as the secret key of \(AS \), \(T \) as the current time stamp, and \([_]\) as a secure channel. Then, all steps of the scheme are described as follows:

Registration:
\[
\begin{align*}
U_i & \rightarrow AS: \quad ID_i \\
AS & \rightarrow U_i: \quad [PW_i = h(ID_i, x)] \\
AS & \rightarrow SC_i: \quad h
\end{align*}
\]

Login:
\[
\begin{align*}
U_i & \rightarrow SC_i: \quad ID_i, PW_i \\
SC_i & \rightarrow AS: \quad ID_i, T, C_1 = h(T \oplus PW_i)
\end{align*}
\]

Authentication:
1. If \(ID_i \) invalid, reject login request.
2. If \(T \) expired, reject login request.
3. Compute \(PW_i = h(ID_i, x) \).
4. Compute \(h(T \oplus PW_i) \) and check if equal to \(C_1 \). If YES, \(U_i \) is authenticated.

During the Registration phase, the new user, \(U_i \) presents his \(ID \) to the authentication server, \(AS \), who then generates the user’s password, \(PW_i \) by simply hashing the concatenation of the user’s \(ID \) and \(AS \)’s long-term secret key, \(x \). This password is then sent back to \(U_i \) through a secure channel. Further, \(AS \) also stores details of the hash function, \(h \) in the smart card, \(SC_i \).

Now when the user logs in to the system during the Login phase, he inputs his \(ID \) and password, \(PW_i \) to this smart card which then interacts with the \(AS \) by forwarding the user’s \(ID \), the current timestamp, \(T \) and a computed value, \(C_1 \) that is the result of hashing the exclusive-OR (XOR) of \(T \) and \(PW_i \).

With this, the protocol enters the Authentication phase where the \(AS \) checks the validity of the \(ID \) and the freshness of \(T \), failure of which would result in the login request being rejected. Otherwise, the \(AS \) recomputes the password, \(PW_i \) and subsequently recomputes \(C_1 \) to check with the \(C_1 \) value received from the smart card. If they match, then the user is successfully authenticated.

B. Chien et. al’s Scheme

The scheme due to Chien et. al similarly comprise the three above phases except that the user is allowed to choose his own password and hence gives more user convenience. In more detail:

Registration:
\[
\begin{align*}
U_i & \rightarrow AS: \quad ID_i, PW_i \\
AS & \rightarrow SC_i: \quad [R_i = h(ID_i \oplus x) \oplus PW_i, \ h]
\end{align*}
\]

Login:
\[
\begin{align*}
U_i & \rightarrow SC_i: \quad ID_i, PW_i \\
SC_i & \rightarrow AS: \quad ID_i, T, C_1 = h(R_i \oplus PW_i \oplus T)
\end{align*}
\]

Authentication:
1. If \(ID_i \) invalid, reject login request.
2. If \(T \) expired, reject login request.
III. FLAWS IN HSU’S ATTACKS ON SUN’S SCHEME

In this section, we point out flaws in Hsu’s two password guessing attacks on Sun’s scheme. In particular, Hsu’s off-line password guessing attack is an obvious and trivial fact, and hence does not constitute an attack at all, while his on-line password guessing attack on Sun’s scheme is heavily flawed.

A. Hsu’s Off-line Password Guessing Attack

Hsu’s off-line guessing attack requires that the attacker eavesdrops during the login phase in order to obtain the value of T and C_1. He then needs to guess all possible values of the password, PW_i, and verify if $h(T \oplus PW_i)$ equals C_1.

Guessing all possible values of the password, and for each guess, checking if it is true is merely an exhaustive search of the password space and is an obvious fact and well-known weakness of any cryptographic scheme! Claiming it to be an attack is analogous to claiming to have re-invented the wheel. It is therefore not considered an attack at all.

B. Hsu’s On-line Password Guessing Attack

Hsu’s on-line guessing attack also requires that an attacker guesses all possible values of the password, PW_i, computing the value of $C_1^* = h(T \oplus PW_i)$ and replacing the original C_1 in the login phase with C_1^*. This is then submitted to AS, and the attacker keeps repeating this until AS finally accepts it as valid.

Besides having the same flaw as the previous off-line attack in that it is merely a trivial exhaustive search of the password space, this attack also has stronger requirements since an attacker must perform an active attack, in contrast to the previous which merely required eavesdropping and hence is a passive attack. Furthermore, exhaustively guessing a password has only a very small probability of 2^{-k} (where k is the size of the password in bits) of being accepted by AS. After only a few unsuccessful guessing attempts, AS would have noticed something amiss and blacklisted the attacker!

In summary, both Hsu’s attacks should be disregarded as they are heavily flawed.

IV. IMPROVED ATTACKS ON SUN’S AND CHIEN ET. AL’S SCHEMES

In this section, we present practical attacks on both Sun’s and Chien et al’s schemes. Our attacks are more practical in the sense that they require only simple eavesdropping and hence are passive attacks, in contrast to active attacks that require an attacker to interfere with the communicated messages, for example Hsu’s parallel session attack [3] on Chien et al’s scheme.

For this purpose, we recall the three phases of Chien et al’s scheme, as described in subsection II.B. Hsu’s attack requires that the attacker eavesdrops on the communication during the login phase, in particular during the message sent from the user’s smart card to AS, in order to obtain the values of T and C_1. He then masquerades as the user, U_i and generates a new login request message to AS by making use of the eavesdropped values. This is an active attack since an attacker needs to introduce new messages into the communication.

We now describe our attack which is a passive attack. The attacker similarly eavesdrops during the login phase, but the difference is that he does so during the message sent from the user, U_i to the smart card and hence obtains PW_i. With the knowledge of this, he can then freely masquerade as U_i in any future login. Since our attack only requires an attacker to eavesdrop and not to interfere with any communicated messages, it is more practical and an attacker can remain undetected.

Similarly, our attack also applies to Sun’s scheme where the attacker merely eavesdrops during the login phase during the message sent from U_i to his smart card, and the rest follows as in our attack on Chien et al’s scheme.

V. FURTHER REMARKS ON SECURITY

A. Remarks on Chien et al’s Scheme

First, we remark that Hsu’s attack on Chien et al’s scheme appears to be sound, and works because parts of different messages (in this case C_1 and C_2) have the same structure – both being equal to $h(ID \oplus x) \oplus \text{timestamp}$ – which

3. Compute $h(h(ID, \oplus x) \oplus T) \oplus T''$ and check if equal to C_1. If YES, U_i is authenticated.
4. Compute $C_2 = h(h(ID, \oplus x) \oplus T'' \oplus T')$ and reply with the message:

$$AS \rightarrow U_i: \quad \{T'', \ C_2\}$$

Performed by $U_i \Rightarrow$

1. Compute $h(C_1 \oplus T'' \oplus T')$ and check if equal to C_2. If YES, AS is authenticated.
allows an attacker to reuse a part of a previous message as a valid part in a new message. This is a very well-known weakness [4] of authentication schemes that allows for replay attacks and should be avoided entirely.

Also, this scheme is very insecure since both the user’s identity, ID, and password, PW, are transmitted in the clear both during the registration and the login phases. This not only allows an attacker to eavesdrop and obtain these values, but also allows him to modify them according to his liking and lead to masquerades and denial of service attacks.

B. Remarks on Both Schemes

Both schemes use $C_1 = h(T \oplus z)$ for authentication, where z is PW_i for Sun’s scheme, while it is $R \oplus PW_i$ for Chien et. al’s scheme. Regardless, we observe that both schemes use the timestamp, T within the hash function, h and so T is not really tied to a unique C_1 since different T values with different z values could still result in the same $T \oplus z$ that is input to h and so produce the same C_1. T therefore has lost its main objective as a “time stamp” since this shows that there is no way to bind a certain C_1 to a unique T to prove that it was generated only at that time.

For ease of discussion we suppose that the input, $T \oplus z$ to h is simply 3 bits in length. Then, defining $z = z_2 z_1 z_0$ and $T = T_2 T_1 T_0$, we would have the situation as in Table 1.

<table>
<thead>
<tr>
<th>$T_2 T_1 T_0$</th>
<th>$T \oplus z$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>$z_2 z_1 z_0$</td>
</tr>
<tr>
<td>001</td>
<td>$z_2 z_1 \bar{z}_0$</td>
</tr>
<tr>
<td>010</td>
<td>$z_2 \bar{z}_1 z_0$</td>
</tr>
<tr>
<td>011</td>
<td>$z_2 \bar{z}_1 \bar{z}_0$</td>
</tr>
<tr>
<td>100</td>
<td>$\bar{z}_2 z_1 z_0$</td>
</tr>
<tr>
<td>101</td>
<td>$\bar{z}_2 z_1 \bar{z}_0$</td>
</tr>
<tr>
<td>110</td>
<td>$\bar{z}_2 \bar{z}_1 z_0$</td>
</tr>
<tr>
<td>111</td>
<td>$\bar{z}_2 \bar{z}_1 \bar{z}_0$</td>
</tr>
</tbody>
</table>

This simply means that at two different times corresponding to different timestamps, T, then the two inputs to h would differ by some exclusive-OR (XOR) relationship. Such scenarios are ideal for mounting differential cryptanalysis attacks [1] on hash functions.

VI. CONCLUSIONS

We have shown that Hsu’s attacks on Sun’s scheme are heavily flawed and hence should be disregarded. We have also presented passive attacks on both Sun’s and Chien et. al’s scheme which are more practical since an attacker merely needs to eavesdrop and does not need to interfere with the communicated messages. Finally, we have given further comments on the reasons behind Chien et. al’s insecurity, plus remarks on issues that might affect both schemes’ security. Both schemes exhibit common weaknesses that should not exist in a standard authentication scheme. We therefore hope that our work here will highlight the importance of more detailed analysis of authentication schemes against these common weaknesses before they can be considered for practical applications.

REFERENCES