Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high quality recombinant proteins

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: SEVASTSYANOVICH, Y. ... et al, 2009. Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high quality recombinant proteins. FEMS Microbiology Letters, 299 (1), pp. 86-94.

Additional Information:

- This research letter was submitted for publication in the journal, FEMS Microbiology Letters and the definitive version is available from: http://www3.interscience.wiley.com/journal/118512081/home

Metadata Record: https://dspace.lboro.ac.uk/2134/5759

Version: Submitted for publication

Publisher: © Federation of European Microbiological Societies / Blackwell Publishing Ltd

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high quality recombinant proteins

<table>
<thead>
<tr>
<th>Journal:</th>
<th>FEMS Microbiology Letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>draft</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Research Letter</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td></td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Sevastsyanovich, Yanina; University of Birmingham, School of Biosciences Alfasi, Sara; University of Birmingham, School of Biosciences Overton, Tim; University of Birmingham, School of Chemical Engineering Hall, Richard; GlaxoSmithKline Research and Development Jones, Jo; GlaxoSmithKline Research and Development Hewitt, Christopher; Loughborough University, Chemical Engineering Cole, Jeff; University of Birmingham, School of Biosciences; None</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Recombinant protein production, inclusion bodies, gonococcal l cytochrome c2, heat shock, general stress response, green fluorescent protein, flow cytometry</td>
</tr>
</tbody>
</table>
Exploitation of GFP fusion proteins and stress avoidance as a generic strategy for the production of high quality recombinant proteins

Yanina Sevastyanovich1†, Sara Alfasi1†, Tim Overton2, Richard Hall3, Jo Jones3, Christopher Hewitt4 & Jeff Cole1*

1School of Biosciences and 2School of Chemical Engineering, University of Birmingham, Birmingham, UK; 3GlaxoSmithKline Research and Development, Gunnels Wood Road, Stevenage, Herts, UK; and 4Chemical Engineering, University of Loughborough, Loughborough, Leicestershire, UK.

*Correspondence: Jeff Cole, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK. Tel.: +44 121 414 5440, fax: +44 121 414 5495, email: j.a.cole@bham.ac.uk

Keywords

Recombinant protein production; inclusion bodies; gonococcal cytochrome c_2; heat shock; general stress response; green fluorescent protein; flow cytometry

†The first two authors contributed equally to this work.
Abstract

A C-terminal GFP fusion to a model target protein, *Escherichia coli* CheY, was exploited both as a reporter of the accumulation of soluble recombinant protein, and to develop a generic approach to optimise protein yields. The rapid accumulation of CheY::GFP expressed from a pET20 vector under the control of an IPTG-inducible T7 RNA polymerase resulted not only in the well-documented growth arrest, but also loss of culturability and overgrowth of the productive population by plasmid deficient bacteria. The fluorescence of cultures due to the accumulation of CheY::GFP were optimised by using very low concentrations of IPTG that avoid growth arrest and loss of culturability post-induction. Optimal product yields were obtained with 8 µM IPTG, a concentration so low that insufficient T7 RNA polymerase accumulated to be detectable by Western blot analysis. The improved protocol was shown to be suitable for process scale-up and intensification. It is also applicable to the accumulation of an untagged heterologous protein, cytochrome c$_2$ from *Neisseria gonorrhoeae*, that requires both secretion and extensive post-translational modification.

Introduction

Many biopharmaceutical projects require the production of recombinant proteins in heterologous bacterial hosts. When the protein itself is the end product, the requirement for rapid, bulk production in high yield drives the design of a successful process. At the other extreme, high quality protein is often required as the starting point for NMR or X-ray crystallographic structure determination, or for understanding the biology underlying a process. Quality rather than quantity or production intensity now becomes the overriding requirement.
The ability to express almost any gene at a controllable level makes bacterial hosts and plasmids attractive vehicles for generating the desired product. Despite the availability of a plethora of expression systems, detailed knowledge of the genome sequences, molecular biology, physiology and biochemistry of a range of production hosts, many proteins remain difficult to produce at the scale or quality required. Frequently encountered problems include the deposition of the target protein in insoluble inclusion bodies (Villaverde & Carrio, 2003), lysis of the production host due to the physiological stress induced by high-level synthesis of mRNA and the heterologous protein (Gill et al., 2000), and accumulation of multiple fragments of the target protein due to proteolysis (Dürrschmid et al., 2008).

The primary cause of many of the problems is the accumulation of incorrectly folded intermediate forms of the target protein. In bacteria like E. coli, this is a signal that induces not only the general stress response, but also other overlapping responses (Hoffmann & Rinas, 2004; Gasser et al., 2008). If the correct folding of the target protein is the only problem to be solved, over-expression of chaperones might be sufficient to achieve success, for example, by pre-inducing the RNA polymerase RpoH regulon with a heat shock (Hoffmann & Rinas, 2004), or the co-expression of groEL, dnaK or other chaperone genes (Nishihara et al., 1998; Chen et al., 2003; Schrodel et al., 2005; Mitsuda & Iwasahi, 2006; Hu et al., 2007; de Marco, 2007). More often, however, failure is due directly to the consequences of the induction of the RpoH-dependent stress response (Vera et al., 2006; Rabhi-Essafi et al., 2007; Lin et al., 2008) especially the disaggregation complex in which DnaK, ClpB and IbpAB remove aggregated recombinant proteins for proteolysis (reviewed by Gasser et al., 2008). We now report results of experiments designed to analyse the physiological cause of failure to accumulate a soluble, cytoplasmic recombinant protein, and the design of a generic strategy to minimise the problem. Although our main model system is based upon the production of the E. coli chemotaxis protein CheY, fused with a C-terminal
green fluorescent protein (GFP) tag, we show that a similar approach can be used to accumulate an untagged recombinant protein that requires both secretion to the periplasm and extensive post-translational modification.

Materials and methods

E. coli strain and plasmids

The *Escherichia coli* strains BL21(DE3)* (Invitrogen) and its derivatives, C41 and C43 (Miroux & Walker, 1996) were used for recombinant protein expression work. *E. coli* strain JM109 (Promega) was used to clone the cytochrome *c*₂ gene from *Neisseria gonorrhoeae*. The over-expression of CheY::GFP fusion gene or the gonococcal gene encoding cytochrome *c*₂ from *Neisseria gonorrhoeae* was induced from the IPTG-inducible T7 promoter of the expression vectors pET20bhc-CheY::GFP and pET20bhc-*c*₂, respectively, both of which are derived from a slightly modified version of pET20b (Novagen; Waldo *et al.*, 1999; Jones *et al.*, 2004).

The *cccA* gene (accession number NGO0292) encoding cytochrome *c*₂ was amplified from *Neisseria gonorrhoeae* strain F62 genomic DNA using primers CTACGTACCATATGAAACACAAACCG and CATAGGGATCTTAGAAAGGTGGATTTG (incorporating *NdeI* and *BamHI* restriction sites, respectively, shown in bold type) and PCR SuperMix High Fidelity (Invitrogen) according to manufacturer’s instructions. The thermal cycling profile included 1 cycle at 94°C for 3 min., 10x (94°C for 30 s, 40°C for 30 s, 68°C for 1 min.), 27x (94°C for 30 s, 55°C for 30 s, 68°C for 1 min.) and 1x 68°C for 10 min. The 465 bp PCR product was cloned into pGEM-T Easy (Promega), sequenced and the *cccA* fragment was transferred as an *NdeI* - *BamHI* fragment into pET20bhc vector digested with *NdeI* and *BamHI*. In experiments to accumulate
mature cytochrome \(c_2 \) from \(N. \) gonorrhoeae, bacteria were co-transformed with the second plasmid, pST2, that encodes the \(E. \) coli cytochrome \(c \) maturation proteins, CcmA-H (Turner et al., 2003).

Growth conditions for the standard protocol

Bacteria were grown aerobically in 100 mL shake flasks with 20 mL working volume or in a 3.6 L fermenter (Infors) with a 2.8 L working volume of Luria-Bertani medium supplemented with 2% (w/v) glucose and 100 \(\mu \)g mL\(^{-1} \) carbenicillin for plasmid maintenance. The shake flasks were set up in duplicates or triplicates per culture condition. In fermentations, aeration was maintained at 1 vvm and a stirring speed of 700 rpm. The pH was controlled at 6.3 by the automated addition of 5% (v/v) HCl and 10% (v/v) \(\text{NH}_3 \) and 0.1% (v/v) silicone antifoam was added in the medium to prevent foaming of the culture during the late stages of the fermentation. The medium was inoculated with 2% (v/v) of seed culture grown aerobically at 30°C for approximately 14 hours. Bacteria were grown at 37°C to an OD\(_{650}\) of approximately 0.5 at which recombinant protein expression was induced with 0.5 mM IPTG. Bacteria were grown at 25°C thereafter to facilitate correct folding of the recombinant protein. Culture samples were taken before induction and at various intervals up to 25 hours post-induction.

Growth conditions for the improved protocol

Bacteria were inoculated and grown in the same medium as that used for the standard protocol. However, bacteria were grown aerobically at 25°C to an OD\(_{650}\) of approximately 0.5 at which point recombinant protein production was induced with 8 \(\mu \)M IPTG. Bacterial growth was continued at 25°C for up to 70 hours post-induction.

Accumulation of recombinant cytochrome \(c_2 \) from Neisseria gonorrhoeae in \(E. \) coli
E. coli BL21*(DE3) (Invitrogen) containing pET20bhc-c2 and pST2 was used to produce mature cytochrome c2 in an anaerobic fermenter. The fermentation medium contained 50% Luria-Bertani broth, 40% E. coli sulphur-free minimal salts, 10 mM TMAO, 10 mM sodium fumarate, 2% glucose, 0.1% silicone antifoam, 100 µg mL⁻¹ carbenicillin and 30 µg mL⁻¹ chloramphenicol. The fermenter was inoculated with 4% of a seed culture that had been grown for 16 h at 30°C with aeration. The culture in the fermenter was grown at 30°C at 100 rpm stirring speed without aeration; pH was controlled at 6.3 with 5% HCl and 10% ammonia. Protein expression was induced by adding 10 µM IPTG at OD₆₅₀ of approximately 0.5. The bacterial culture samples were taken before induction and at various time points for up to 24 h post-induction.

Plating and replica plating for plasmid retention

To test the effect of recombinant protein production on the culturability of the bacterial host, serial dilutions of the bacterial culture were plated onto non-selective nutrient agar (Oxoid) and incubated at 30°C. The proportion of plasmid-bearing bacteria was estimated by replica plating the resultant colonies on nutrient agar supplemented with carbenicillin (100µg mL⁻¹).

Analysis of recombinant protein accumulation by SDS-PAGE

Proteins were resolved by Tris/Tricine SDS-PAGE using a 15% (w/v) polyacrylamide gel (Sambrook *et al.*, 1989) and stained with 0.2 % (w/v) Coomassie Blue. Total protein was analysed from whole cell samples resuspended in 67 µL of sample buffer per OD₆₅₀ unit so that the biomass per volume for all samples was the same. The samples were heated to 100°C for 10 minutes before loading at the same volume. Recombinant protein yield was estimated by densitometry using the Quantity one software (Bio-Rad).
The yield of soluble and insoluble recombinant protein accumulated was determined from fractionated bacterial samples. Bacterial cell pellets were resuspended in BugBuster lysis reagent (67 µL of BugBuster per OD_{650} unit) (Novagen) and incubated at room temperature for 10 minutes with gentle shaking. The soluble and insoluble cell fractions were separated by centrifugation at 13,000 rpm at 4°C for 20 min. The separated fractions were resuspended in the same volume of sample buffer as the volume of BugBuster used for lysis and boiled at 100°C for 10 minutes. To ensure that the samples contain equal biomass, two volumes of the soluble and 1 volume of the insoluble cell fractions were loaded and analysed by SDS-PAGE.

Proteins containing covalently attached heme were detected using heme-dependent peroxidase activity (Thomas et al., 1976).

Fluorescence determination

Fluorescence of culture samples taken at various intervals throughout the experiment were measured using a Perkin-Elmer fluorescence spectrophotometer model 203 at settings that allowed accurate readings from a calibration curve. The accumulation of the soluble CheY::GFP was detected using an excitation wavelength of 485 nm and an emission wavelength of 509 nm. The same culture diluted in phosphate buffered saline (PBS; Sambrook et al., 1989) was used for optical density measurement and for fluorescence measurement.

Flow cytometry

The proportion of green fluorescent bacteria overproducing the GFP-tagged recombinant protein in the culture and their physiological state were analysed by flow cytometry (BD FACS Aria II: Becton, Dickinson & Co.). Bacteria were diluted in PBS at a final concentration of 10^5-10^6 mL^{-1} and analysed at a data rate of 1000-2000 events sec^{-1}. An eighty-five µm nozzle was used for the
analysis. The red fluorescent dye propidium iodide (PI, Sigma) was added to the samples to stain dead bacteria. The PI stock solution was made up at 1 mg mL$^{-1}$ in distilled water and used for staining at the working concentration of 5 µg mL$^{-1}$ (Hewitt et al., 1999). All solutions were passed through 0.2 µm filter immediately prior to use to remove particles. The backflush cleaning was applied between samples to prevent cross-contamination. The sample was excited with a 488 nm solid state laser (13 mW). The software discriminator was set on the forward scatter to reduce electronic and small particle noise. Forward and side scatter data were collected along with GFP fluorescence (502LB, 530/30BP) and PI fluorescence (610LP, 616/23BP). For each experiment, 100000 data points were collected and analysed using BD FACSDiva software (BD Biosciences).

Western blotting

For Western analysis, culture samples were resuspended in sample buffer as described above (SDS-PAGE section) and loaded onto NuPAGE 4-12% Bis-Tris gel (Invitrogen). The proteins were transferred onto Hybond-ECL nitrocellulose membrane (Amersham) in the Xcell II blot module (Invitrogen). The blots were incubated with T7 RNA polymerase antibodies (Novagen) and then with peroxidase-conjugated anti-mouse IgG (Amersham) according to the manufacturers’ instructions. The blots were developed using EZ-ECL Chemiluminescence detection kit (Biological Industries) according to the provided protocol.

Results

Standard protocol for CheY::GFP accumulation

Many laboratories use the commercially available pET plasmids to express a cloned gene in an *E. coli* host under the control of T7 RNA polymerase that is both chromosomally encoded and regulated by an IPTG-inducible promoter. This system was used in initial experiments to
produce a 42 kDa CheY::GFP fusion protein (Jones, 2007). It had been observed that, in contrast to N-terminal GFP fusion proteins, optimisation of fermentation conditions for the accumulation of a fluorescent recombinant protein with a carboxy-terminal GFP fusion provides a good prediction of how to generate the correctly folded N-terminal target protein without a fusion tag. Expression of the gene encoding CheY::GFP cloned into plasmid pET20bhc-CheY::GFP was induced with 0.5 mM IPTG at a low biomass density of 0.2 g dry mass L\(^{-1}\), and the temperature was decreased from 37\(^{\circ}\)C to 25\(^{\circ}\)C. Samples of the culture taken before induction and at intervals for 24 h post-induction were analysed for growth, fluorescence, plasmid retention, colony-forming ability, and the accumulation of recombinant protein in both soluble and insoluble cell fractions.

The optical density of the culture increased only slowly soon after IPTG addition, but growth resumed after a lag of between 10 to 14 h for up to 24 h post-induction. Plating of serial dilutions of samples taken 2 to 4 h post-induction revealed that only about 1% of the bacteria were able to form colonies on non-selective agar, but high plating efficiency was restored after 24 h (Fig. 1A). In contrast to colonies from samples taken before induction that were pale green due to leaky expression of the recombinant protein, colonies from samples taken 24 h post-induction were white. This was readily shown to be due to overgrowth of the population by plasmid-free bacteria (Fig. 1A). Consistent with these results, SDS-PAGE analysis revealed a rapid burst of CheY::GFP synthesis immediately post-induction (Fig. 1B), but little increase after a further 2 to 4 h. Furthermore, about 80% of the CheY::GFP fusion protein accumulated in inclusion bodies in the insoluble fraction (Fig. 1B), which was almost non-fluorescent, indicating that GFP was incorrectly folded and therefore inactive.

Analysis of samples by flow cytometry revealed that the population pre-induction was relatively homogenous but moderately fluorescent, reflecting the leakiness of the pET promoter (Fig. 2A). Fluorescence had increased substantially within 3 h of IPTG addition.
However, the small population of non-fluorescent bacteria already present in the culture increased from 4% to 12% post-induction. After 25 h, only a minority of the bacteria in the culture were fluorescent due to overgrowth by unproductive, plasmid-free bacteria. Around 20% of the population were permeable to propidium iodide, indicating loss of viability, though these were split equally between fluorescent and non-fluorescent bacteria.

Optimisation of soluble CheY::GFP production by minimising post-induction growth-arrest

Although the consequences of rapid over-expression of cloned genes are well documented, less reported is the loss of colony forming units during recombinant protein production (Sundström et al., 2004). We therefore investigated whether it was possible to optimise the IPTG concentration not on the basis of quantity or speed of recombinant protein production, but on the maximum level of fluorescence under conditions that greatly decreased the general stress response. This involved growing the culture at the same temperature both before and after induction to avoid any stress caused by a change in temperature; and the determination of the concentration of the inducer, IPTG, that would allow maximum GFP fluorescence 24 h post-induction. Based upon these criteria, optimal results were obtained with cultures grown at 25°C and induced with 8 μM IPTG, which had only a slight effect on exponential growth and avoided selection of plasmid-free bacteria (Fig. 1C; D). Flow cytometry analysis showed that fluorescence continued to increase for at least 25 h (Fig. 2B), and much greater homogeneity in the culture: around 98% of bacteria were in the GFP+ population both before induction and after 3 and 25 hours post-induction; the number of nonviable, PI+ bacteria at 25 h was greatly reduced compared to the original protocol; and the GFP+ population actually decreased in size from 2% pre-induction to 0.7% after 25 h (Fig. 2B). Analysis of samples from the culture by SDS-PAGE revealed that about 90% of the CheY::GFP had accumulated
throughout the induction phase in the soluble protein fraction, in contrast to less than 20% soluble product from the standard protocol (Fig. 1E). Furthermore, the yield of recombinant protein was four-fold higher from the improved protocol than from the standard protocol due to the production of a higher yield of biomass (Table 1). Finally it was demonstrated that much higher yields of product could be generated following prolonged expression in fed-batch cultures (Table 1).

Molecular basis for the increased accumulation of CheY::GFP

Aware of the stress on the bacterial host associated with the use of the BL21/pET system, Miroux and Walker (1996) isolated mutants that were resistant to stress and therefore continued to accumulate recombinant protein far longer than their parent strain. Two of these strains were called C41 and C43, and it was subsequently shown that the basis for the improved performance was a down-mutation of the promoter of the T7 polymerase gene (Wagner et al., 2008). To determine whether the low concentration of IPTG coupled with the low expression temperature might simply limit production of the T7 RNA polymerase and hence explain why the improved protocol was successful, Western blots of samples from both the standard and improved protocols were probed with anti-T7 RNA polymerase antibody (Fig. 3). In contrast to the strong bands of cross-reacting antigen from the standard protocol, so little T7 polymerase was produced using the improved protocol that it was not visible.

We then compared yields of CheY::GFP from strain BL21* using the improved protocol with those from strains C41 and C43 generated using the standard protocol (Fig. 4). The level of fluorescence (per unit volume) from the improved protocol was the same as that from C41 and considerably higher than from C43 (not shown). The specific fluorescence (per unit biomass) at the point of harvest was highest for BL21* using the improved protocol (Fig. 4A) and its cell density was only slightly lower than that for strain C41 (Fig. 4B).
High-level production of a secreted recombinant c-type cytochrome using the improved protocol

The model protein, CheY::GFP, is a soluble, cytoplasmic protein. It was therefore of interest to determine whether the improved protocol for CheY::GFP production was sufficiently generic to be exploited in the production of a secreted protein that requires extensive post-translational modification and assembly in the bacterial periplasm. A Neisseria gonorrhoeae gene of unknown function predicted to encode a c-type cytochrome, which we have designated cytochrome c_2, was cloned into the expression plasmid, pET20bhc, and expressed either using the standard protocol (induction with a high concentration of IPTG followed by a decrease in growth temperature from 37°C to 25°C) or the same optimised conditions that were used for CheY::GFP. Under both sets of conditions, two bands of recombinant protein were detected by SDS-PAGE stained for total protein: the upper band was pre-apocytochrome c located in the cytoplasm; the lower band stained positively for covalently attached heme, confirming that it was mature cytochrome located in the periplasm. Using the standard protocol, cytochrome rapidly accumulated for a short time, but then production stopped as the culture was overgrown by plasmid deficient bacteria (not shown). Even with the standard protocol, some mature cytochrome was produced, but more than 95% of the product was pre-apoprotein located in cytoplasmic inclusion bodies. In contrast, yields of mature cytochrome c_2 from the improved protocol were so high that the resulting E. coli culture was slightly orange, and the cytochrome with covalently bound heme accumulated in the soluble, periplasmic fraction of the bacteria (Fig. 5). This demonstrated that the improved protocol had enabled post-translational secretion, periplasmic heme attachment and folding to keep pace with the synthesis of the pre-apoprotein. Furthermore, analysis by SDS-PAGE revealed that
only a small percentage of the pre-apoprotein had accumulated in the cytoplasmic fraction, or
been deposited into inclusion bodies (Fig. 5A).

Accumulation of other recombinant proteins using the improved protocol

The overproduction of two other recombinant proteins, namely the gonococcal cytochrome c
peroxidase (CCP; 47 kDa) from N. gonorrhoeae (Turner et al., 2003) and a non-E. coli
protein D-GFP (45 kDa) (Intellectual property; GSK) were produced using both approaches.

There was at least an 8-fold increase in the yields of mature CCP with covalently attached
heme and of soluble protein D-GFP when the modified approach was used compared with the
normal protocol, clearly reflecting the robustness of this approach for improving soluble
recombinant protein yields regardless of size, properties or bacterial host origin.

Discussion

The primary cause of failure to produce a correctly-folded recombinant protein in high yield
is well understood, namely the accumulation of incorrectly folded intermediates due to rates
of protein synthesis overwhelming post-translational modifications such as folding, secretion,
folding into membrane-spanning helices or the incorporation of prosthetic groups (reviewed
by Gasser et al., 2008). Different, and sometimes opposite, strategies depending on the
properties of the target protein are required to solve these problems (Gasser et al., 2008;
Hoffmann & Rinas, 2004; Miroux & Walker, 1996; Soriano et al., 2002; Wagner et al.,
2008). Stress post-induction is especially severe when the IPTG-inducible T7 RNA
polymerase system in the E. coli BL21 host is used to accumulate high concentrations of
recombinant protein. Many genetic strategies have been described to decrease this stress
response (Miroux & Walker, 1996; Soriano et al., 2002; Wagner et al., 2008), and a suite of
commercially available derivatives of BL21 and pET plasmids have been designed to
overcome these problems. Consequently the Holy Grail of recombinant protein production, the availability of generic protocols and hosts for the production of even the most difficult target product, has yet to be achieved: recombinant protein production remains as much an art as a science.

Although the consequences of rapid over-expression of cloned genes are well documented, less reported is the loss of colony forming units during recombinant protein production (Sundström et al., 2004). We therefore adopted a physiological approach to investigate whether it was possible to optimise the IPTG concentration not on the basis of quantity or speed of recombinant protein production, but on yield of GFP fluorescence under conditions that greatly decreased the stress on the host. This involved growing the culture at the same temperature both before and after induction to avoid any stress caused by a change in temperature; and determination of the concentration of the inducer, IPTG, that would allow optimal yields of GFP fluorescence 24 h post-induction. This approach defined conditions that were suitable for the accumulation of two vastly different types of recombinant protein to levels approaching 30% of the total protein content of the bacteria. Experiments currently in progress are designed to determine whether this approach is applicable to other hosts and expression systems, or limited to expression systems based upon the bacteriophage T7 polymerase that, due to the very high rates of transcription post-induction, impose an excessive stress on the host bacterium (Soriano et al., 2002; Sørensen & Mortensen, 2005). It will be particularly interesting to know whether it can also be beneficial for other, less stressful expression systems.

Acknowledgements

This work was funded by the UK Biotechnology and Biological Sciences Research Council grant number BB/E005934/1 and a BBSRC CASE Research Studentship to SNA. The
FACS Aria II cell sorter was funded by BBSRC Research Equipment Initiative grant BBF0112371. We are grateful to Lesley Griffiths for excellent technical support.
References

Table 1

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Format</th>
<th>Biomass, g dry mass L⁻¹§</th>
<th>Percentage recombinant protein, %†</th>
<th>Yield of recombinant protein, g L⁻¹‡</th>
<th>Specific fluorescence, Fluorescence units/OD₆₅₀</th>
<th>Total fluorescence, units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Shake flask</td>
<td>2.3</td>
<td>21</td>
<td>0.34</td>
<td>60.8</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Batch fermenter</td>
<td>2.4</td>
<td>25</td>
<td>0.42</td>
<td>106.0</td>
<td>627</td>
</tr>
<tr>
<td>Improved</td>
<td>Shake flask</td>
<td>6.16</td>
<td>52</td>
<td>2.24</td>
<td>214.0</td>
<td>3240</td>
</tr>
<tr>
<td></td>
<td>Batch fermenter</td>
<td>6.6</td>
<td>29</td>
<td>1.34</td>
<td>269.4</td>
<td>4440</td>
</tr>
<tr>
<td></td>
<td>Fed-batch fermenter</td>
<td>26.6</td>
<td>31</td>
<td>5.8</td>
<td>289.2</td>
<td>19200</td>
</tr>
</tbody>
</table>

§Biomass was calculated on the assumption that a culture with an OD₆₅₀ of 1.0 contains 0.4 g dry mass L⁻¹.

†The percentage of recombinant protein was estimated from SDS-PAGE gels by densitometry.

‡Recombinant protein yield was estimated based on the assumption that 70% of the bacterial culture dry mass is protein.
Figure legends

Fig. 1. Optical density, colony forming units, plasmid retention and SDS-PAGE profile for the standard (A, B) and improved (C, D, E) protocols. IPTG was added at time zero. The arrow beside the gels indicates the position of the 42 kDa CheY::GFP protein. BI: before induction; S: soluble fraction; I: insoluble fraction; M: marker proteins.

Fig. 2. Flow cytometry analysis of before, 3 h after and 25 h after IPTG induction for the standard (A) and improved (B) protocols. Note that only the final 25 h samples were stained with propidium iodide (PI). X axes show PI-emitted fluorescence measured at ~630 nm and Y axes show GFP-emitted fluorescence measured at ~510 nm. The numbers in each quadrant show percentage of bacteria in each sub-group.

Fig. 3. Western blot to detect T7 RNA polymerase during CheY::GFP accumulation using the standard (A) and improved (B) protocols. BI: before induction; other time points are post-induction.

Fig. 4. Comparison of CheY::GFP accumulation during expression using the improved and standard protocols and *E. coli* BL21* as the host and in strains C41 and C43 using the Miroux and Walker (1996) protocol. A. Specific fluorescence 3, 7 and 24 h post-induction. B. Growth post-induction, plotted on linear scale to show differences between strains and protocols more clearly. IPTG was added at time zero.

Fig. 5. Production of gonococcal cytochrome c_2 using the improved protocol. The SDS-PAGE gels show yields of total protein (A. Coomassie stained gel) and of mature cytochrome...
c_2 (B. Gel stained for heme-dependent peroxidase activity). The upper arrow indicates the position of the pre-apo-cytochrome located in the cytoplasm; the lower arrow is the mature cytochrome with heme attached post-secretion into the periplasm.