Loughborough University
Institutional Repository

Advances in polyaromatic and ferrocenyl phosphine chemistry

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Additional Information:

- A Doctoral Thesis. Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/6329

Publisher: © A.J. Lake

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

![Creative Commons Licence](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Noncommercial. You may not use this work for commercial purposes.

No Derivative Works. You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

[Disclaimer](https://creativecommons.org/licenses/by-nc-nd/2.5/)

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/
Advances in Polyaromatic and Ferrocenyl Phosphine Chemistry

by

Andrew Lake

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy of Loughborough University

Department of Chemistry
Loughborough University
Loughborough
Leicestershire
LE11 3TU

© A. J. Lake 2010
Abstract

Condensation of Ph₂PCH₂OH with a range of polyaromatic substituted secondary amines afforded a new set of “hybrid” phosphine ligands of the type \{RCH₂N(CH₂PPh₂)CH₂\}_₂ and RCH₂N(CH₂PPh₂)CH₂CH₃ (R = various planar aromatic groups). The coordination chemistry of these new mono and bidentate ligands towards a range of transition metal centres including Mo(0), Au(I), Rh(I), Ni(II), Pd(II), Pt(II) and Ru(II) was investigated. Ditertiary phosphines of the form \{RCH₂N(CH₂PPh₂)CH₂\}_₂ were found to be capable of bridging two transition metal centres in addition to forming rare examples of nine–membered cis– and trans–chelate complexes. Single crystal X–ray analysis of these coordination compounds revealed several types of inter– and intramolecular packing interactions (including a C–H···Pt interaction and slipped intermolecular π···π stacking), and also confirmed the rare trans–diphosphine coordination mode. Fluorescent emission measurements have been undertaken on these new tertiary phosphines and their coordination compounds, and these luminescent properties are discussed. A preliminary investigation into the chemosensory behaviour of selected compounds has been undertaken.

Using RPCH₂OH (RP = Ph₂P, Cy₂P or AdP = 1,3,5,7–tetramethyl–2,4,8–trioxa–6–phosphaadamantane) as a versatile precursor, a range of ferrocenyl (Fc) tertiary phosphines have been prepared from a selection of primary and secondary amines. The coordination chemistry of these new mono and bidentate ligands towards several transition metal centres including Cr(0), Mo(0), Au(I), Rh(I), Ru(II), Pd(II) and Pt(II) was investigated. In particular, the previous chemistry was expanded to prepare several new diferrocenyl phosphines of the form \{FcCH₂N(CH₂PR)CH₂\}_₂. In a similar manner to their polyaromatic counterparts, these ditertiary phosphines were found to be capable of coordination through both bridging and cis– / trans–chelating modes. Notably, single crystal X–ray analysis was used to confirm the formation of an extremely rare example of a dimeric trans, trans–[Rh(CO)Cl{phosphine}₂]₂ complex; thought to be the first crystallographically characterised metallacycle containing an Rh₂Fe₄ arrangement of metal centres. In addition to this \{FcCH₂N(CH₂PR)CH₂\}_₂ chemistry, a rare example of a triferoceenyl ditertiary
phosphine, \(\text{FcCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2 \text{} \text{_2Fc} \), was prepared, as well as a macrocyclic
ditertiary ferrocenyl phosphine, \(\text{C}_{10}\text{H}_8\text{Fe(CH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2 \text{)CH}_2 \text{CH}_2} \). The
coordination chemistry of \(\text{FcCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2 \text{}_2\text{Fc} \) led to the formation of two
unusual examples of pentametallic diphosphine coordination complexes with a
\(\text{Fe}_3\text{Au}_2 \) and \(\text{Fe}_3\text{Ru}_2 \) arrangement of metal centres. The development of a new
phosphinoamine, \(\text{(Ph}_2\text{P)}_2\text{NCH}_2\text{Fc} \), and a new ferrocenyl iminophosphine,
\(\text{Ph}_2\text{PCH(Ph)CH}_2\text{C(H)NCH}_2\text{Fc} \), are also discussed, in addition to a brief investigation
of their coordination chemistry. Electrochemical measurements have also been
undertaken on these ferrocenyl ligands and their respective coordination compounds
(when purity, yield and stability would allow), and their redox chemistry discussed.

A series of novel phosphorus(III) containing ligands of the forms \(\text{(R)N(CH}_2\text{PPh}_2\text{)CH}_2 \text{CH}_2} \)
and \(\text{(R)NHCOCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2 \text{CH}_2} \) (\(\text{R} \) = functionalised planar aromatic or ferrocenyl
group) have been prepared. The phosphines were found to readily coordinate several
transition metals including Pt(II), Pd(II) and Ru(II) to form a series of new \textit{cis–}
chelate and bridged bimetallic complexes. Analysis by single crystal X–ray
diffraction revealed several types of inter- and intramolecular hydrogen bonding
within the molecular structures of the phosphines and their coordination compounds,
INCLUDING the formation of several intermolecular 1D chains and the presence of an
intramolecular \(\text{N–H–N} \) bond, which forces a “scorpion–like” conformation.

Keywords: Tertiary phosphine, Mannich based condensation, Ferrocenyl
compounds, Coordination chemistry, Late-transition metals, \textit{Trans–spanning}
diphosphines, X–ray crystallography, Electrochemical studies, Luminescent studies,
Chemosensors.
Dedicated to Paula, my parents Jenny and Michael, and my grandparents Jean and John for their love and support.
Acknowledgements

I would especially like to thank Dr.s Martin Smith, Mark Elsegood and George Weaver for their invaluable help and guidance throughout this project. Without their excellent supervision and direction this thesis would have never come to fruition. I wish you all the best for the future.

Furthermore, I wish to mention Paula who’s undying love, patience and belief in me has seen me through the whole of my university experience. “I would not be where I am today without you”. I would also like to thank both our families for their affection and encouragement over the years.

I would also like to thank Dr.s David Worrall and Siân Williams Worrall for their expert help and advice with relation to photochemistry, as well as Professor Roger Mortimer for his essential electrochemical knowledge and guidance.

Thanks also to all of those who made my PhD experience in the lab so enjoyable; Gav, Rob, Leanne, Paul, Lee, Chris R, Noelia, Raf, Allan, Anna, Jenna, Chris K, Joe K, Amy, Maria and Benoit. Special thanks also goes to my close friends, who were not in the lab, for putting up with me all these years; Jenny, Jo, Adam and Tom.

I am also indebted to the following for their assistance; Dr Mark Edgar for NMR spectroscopy; John Kershaw and EPSRC National Service for Mass Spectroscopy, Pauline King for her tireless assistance in the laboratory and microanalysis measurements and my final year project students Andy and Clare who contributed to some of the work reported herein and elsewhere.1 I would also like to thank EPSRC National Crystallography Service at Southampton and the Chemical Database Service at Daresbury for their assistance with data collection and cheminformatics.2

Finally, I would like to acknowledge Johnson Matthey for their grateful loan of precious metals and Cytec Industries Inc. for their donation of the secondary phosphine Cytop.
Contents

Abstract i
Dedication iii
Acknowledgements iv
Contents v
List of Figures x
List of Tables xv
Abbreviations and Symbols xviii

Table of Contents

Chapter 1 Introduction 1
Chapter 2 The Synthesis, Characterisation and Coordination Chemistry of Novel Tertiary Phosphines Bearing Polyaromatic Groups 36
Chapter 3 The Synthesis, Characterisation and Coordination Chemistry of Novel Ferrocenyl Phosphines 86
Chapter 4 The Synthesis and Coordination Chemistry of Novel Tertiary Phosphines Bearing a Single Polyaromatic or Ferrocenyl Groups 181
Chapter 5 Conclusion 218
Chapter 6 Experimental 221
Chapter 7 References 272
Chapter 8 Appendix 289
Chapter 1 Introduction

1.1 Introduction 2
1.2 Tertiary phosphines bearing anthracenyl or pyrenyl groups 5
1.2.1 Luminescent properties of anthracenyl and pyrenyl tertiary phosphines 17
1.3 Ferrocenyl tertiary phosphines 26
1.3.1 Electrochemical properties of ferrocenyl tertiary phosphines 31
1.4 Thesis aim 35

Chapter 2 The Synthesis, Characterisation and Coordination Chemistry of Novel Tertiary Phosphines Bearing Polyaromatic Groups

2.1 Introduction 37
2.2 Preparation and characterisation of the ditertiary phosphines 2.1 – 2.4 39
2.2.1 The molecular structure of 2.4 43
2.3 The chemical oxidation of 2.3 and 2.4 46
2.3.1 The molecular structure of 2.5 49
2.4 The coordination chemistry of 2.1 – 2.4 to divalent group 10 metals 50
2.4.1 Molecular structures of 2.7 – 2.10 53
2.4.2 The coordination chemistry of 2.2 – 2.4 to Pd(II) and Rh(I) 59
2.4.2.1 The molecular structure of 2.17 61
2.4.3 The Ru(II), Au(I) and Mo(0) coordination chemistry of 2.3 64
2.4.3.1.1 The molecular structure of 2.22 66
2.5 The luminescent properties of the coordination compounds of 2.3 and 2.4 69
2.6 Preparation and characterisation of 2.23 – 2.25 71
2.7.1 Pt(II) coordination chemistry of 2.23 and 2.24 74
2.7.2 Au(I) coordination chemistry of 2.23 and 2.24 76
2.8 The luminescent properties of the coordination compounds of 2.23 and 2.24 77
2.9 A preliminary study into the chemosensory behaviour of 2.3, 2.4, 2.23 and 2.24 78
2.10 Preparation and characterisation of 2.30 83
2.11 Conclusion 85

Chapter 3 The Synthesis, Characterisation and Coordination Chemistry of Novel Ferrocenyl Phosphines

3.1 Introduction 87
3.2 Preparation and characterisation of 3.1 – 3.3 88
3.2.1 The molecular structure of 3.1 90
3.2.2 The molecular structure of 3.3 92
3.3 Pt(II) coordination chemistry of 3.1 – 3.3 94
3.3.1 The molecular structure of 3.4 97
3.4 Coordination chemistry of 3.1 100
3.4.1 Pd(II) and Pt(II) coordination chemistry of 3.1 100
3.4.2 Rh(I) coordination chemistry of 3.1 103
3.4.2.1 The molecular structure of 3.10 104
3.4.3 Mo(0) coordination chemistry of 3.1 107
3.4.3.1 The molecular structure of 3.11 108
3.4.4 Ru(II) and Au(I) coordination chemistry of 3.1 111
3.4.4.1 The molecular structures of 3.12 and 3.13 112
3.5 The electrochemical properties of 3.1 and its coordination complexes 116
3.6 Preparation and characterisation of 3.14 118
3.6.1 The molecular structure of 3.14 120
3.7 Au(I) coordination chemistry of 3.14 122
3.7.1 The molecular structure of 3.15 123
3.8 Preparation and characterisation of 3.16 and 3.17 125
3.9 Coordination chemistry of 3.16 127
3.9.1 The molecular structure of 3.19 129
3.10 The electrochemical properties of 3.16 and 3.18 131
3.11 Preparation and characterisation of 3.20 – 3.22 133
3.12 Ru(II) coordination chemistry of 3.20 – 3.22 136
Chapter 4 The Synthesis and Coordination Chemistry of Novel Tertiary Phosphines Bearing a Single Polyaromatic or Ferrocenyl Group

4.1 Introduction 182
4.2 Synthesis and characterisation of 4.1 and 4.2 183
4.2.1 The molecular structure of 4.2a 185
4.3 The coordination chemistry of 4.1 and 4.2a 188
4.3.1 The molecular structure of 4.3 189
4.4 Functionalised ditertiary phosphines bearing peptide–coupled polyaromatic and ferrocenyl groups 191
4.4.1 Synthesis and characterisation of benzyl methylcarbamates 4.5 – 4.13
and the aminoacetamides 4.14 – 4.21 191
4.4.2 The molecular structure of 4.14a 195
4.4.3 The molecular structure of 4.15a 198
4.4.4 Synthesis and characterisation of 4.22 – 4.29 200
4.5 The coordination chemistry of 4.22, 4.23, 4.25 – 4.28 202
4.5.1 The molecular structures of 4.30 – 4.32 and 4.34 205
4.5.2 Pd(II) coordination chemistry of 4.28 211
4.5.2.1 The molecular structure of 4.37 212
4.5.3 Ru(II) coordination chemistry of 4.22, 4.23, 4.25 and 4.27 215
4.6 Conclusion 217

Chapter 5 Conclusion
5.1 General Conclusions 219

Chapter 6 Experimental
6.1 General Experimental 222
6.2 Instrumental 222
6.3 Electrochemistry 223
6.4 Photochemistry 223
6.5 X–ray Crystallography 223
6.6 Chapter 2 Experimental 224
6.7 Chapter 3 Experimental 237
6.8 Chapter 4 Experimental 259
List of Figures

Chapter 1 Figures

1.1 Examples of ditertiary phosphines 2
1.2 Tertiary phosphines prepared *via* Mannich based condensation 5
1.3 Examples of anthracenyl and pyrenyl tertiary phosphines 6
1.4 The preparation of 1.11 and 1.12 7
1.5 Bidentate coordination complexes of 1.15 11
1.6 Monodentate coordination complexes of 1.15 12
1.7 Examples of *trans*–chelating diphosphine ligands 17
1.8 Schematic illustration of a molecular sensor 18
1.9 Complex 1.24 depicted in its proposed enhanced excimer emitting state 19
1.10 The bimetallocyclophanes 1.38 and 1.43 22
1.11 Examples of ferrocenyl phosphines 26
1.12 Examples of coordination compounds of ferrocenyl phosphines 28
1.13 *Trans*–spanning ditertiary ferrocenyl phosphines. 29
1.14 Recent examples of non–phosphorus containing ferrocenyl electrochemical sensors 32
1.15 Ferrocenyl phosphines capable of acting as electrochemical sensors 33
1.16 Coordination compounds of 1.52 34

Chapter 2 Figures

2.1 The versatility of anthracene and pyrene groups within phosphine synthesis. 37
2.2 Cation chemosensors .. 38
2.3 Fluorescent emission spectra of \{C\text{\textsubscript{14}}H\text{\textsubscript{9}}CH\text{\textsubscript{2}}N\text{(H)CH\text{\textsubscript{2}}}\}_\text{2}, \{C\text{\textsubscript{16}}H\text{\textsubscript{9}}CH\text{\textsubscript{2}}N\text{(H)CH\text{\textsubscript{2}}}\}_\text{2}, 2.3 and 2.4 41
2.4 Suggested PET process involving in the fluorescence of 2.3 and 2.4 42
2.5 The molecular structure of 2.4 43
2.6 Intermolecular packing observed for the solid solution of 2.4 and 2.6
2.7 Fluorescence emission spectrum of 2.5 and the time resolved emission spectra of 2.3
2.8 The molecular structure of 2.5
2.9 The molecular structure of 2.10
2.10 The PtP₂C₄N₂ ring conformation adopted by 2.7 – 2.10
2.11 Intermolecular packing observed within the molecular structure of 2.10 and similar anti–parallel stacking reported in the literature
2.12 The molecular structure of 2.17
2.13 Trans–bis(triphenylphosphine)chloro(methyl)palladium(II) (2A) and trans–bis(triphenylphosphine)chloro(chloromethyl)palladium(II) (2B)
2.14 The molecular structure of 2.22
2.15 Known nine–membered cis–chelate complexes
2.16 The fluorescence emission spectra of 2.3, 2.5, 2.9, 2.17, 2.19
2.17 The fluorescent emission spectra of C₁₄H₉CH₂N(H)CH₂CH₃, C₁₆H₉CH₂N(H)CH₂CH₃, 2.23 and 2.24
2.18 Suggested minor species observed in the ³¹P {¹H} NMR spectrum of 2.27
2.19 Fluorescent emission spectra of 2.23 – 2.29
2.20 Fluorescent emission spectra, and normalised fluorescent emission spectra of 2.27, following the progressive addition of Fe(ClO₄)₃
2.21 Suggested monomer and excimer emitting conformations of 2.27, observed by fluorescent emission spectroscopy
Chapter 3 Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The versatility of the ferrocenyl group</td>
<td>87</td>
</tr>
<tr>
<td>3.2</td>
<td>Enantiomeric structures of the PAd moiety</td>
<td>89</td>
</tr>
<tr>
<td>3.3</td>
<td>The molecular structure of 3.1</td>
<td>90</td>
</tr>
<tr>
<td>3.4</td>
<td>The molecular structure of 3.3</td>
<td>92</td>
</tr>
<tr>
<td>3.5</td>
<td>The proposed monomeric and dimeric complexes observed within the 31P{1H} NMR spectroscopy of 3.6</td>
<td>95</td>
</tr>
<tr>
<td>3.6</td>
<td>The molecular structure of 3.4</td>
<td>97</td>
</tr>
<tr>
<td>3.7</td>
<td>The molecular structure of 3.10</td>
<td>105</td>
</tr>
<tr>
<td>3.8</td>
<td>The molecular structure of 3.11</td>
<td>108</td>
</tr>
<tr>
<td>3.9</td>
<td>The molecular structure of 3.12</td>
<td>112</td>
</tr>
<tr>
<td>3.10</td>
<td>The intermolecular Au····Cl contacts observed within the molecular structure of 3.13</td>
<td>114</td>
</tr>
<tr>
<td>3.11</td>
<td>Standard electrochemical cell setup, the electrochemical data for 3.1, and its mononuclear and binuclear complexes</td>
<td>116</td>
</tr>
<tr>
<td>3.12</td>
<td>Cyclic voltammograms of ferrocene and 3.1</td>
<td>117</td>
</tr>
<tr>
<td>3.13</td>
<td>Cyclic voltammogram of 3.14</td>
<td>119</td>
</tr>
<tr>
<td>3.14</td>
<td>The molecular structure of 3.14</td>
<td>120</td>
</tr>
<tr>
<td>3.15</td>
<td>The molecular structure of 3.15</td>
<td>123</td>
</tr>
<tr>
<td>3.16</td>
<td>Variations made to the general formula, {FcCH$_2$N(CH$_2$PPh$_2$)CH$_2$}$_2$R</td>
<td>125</td>
</tr>
<tr>
<td>3.17</td>
<td>The molecular structure of 3.19</td>
<td>129</td>
</tr>
<tr>
<td>3.18</td>
<td>Cyclic voltammogram of {FcCH$_2$NC(H)}$_2$Fe</td>
<td>131</td>
</tr>
<tr>
<td>3.19</td>
<td>Cyclic voltammograms of 3.20 and 3.22</td>
<td>135</td>
</tr>
<tr>
<td>3.20</td>
<td>The molecular structure of 3.26</td>
<td>140</td>
</tr>
<tr>
<td>3.21</td>
<td>Cyclic voltammograms of 3.27 and 3.29</td>
<td>144</td>
</tr>
<tr>
<td>3.22</td>
<td>The molecular structure of 3.29</td>
<td>145</td>
</tr>
</tbody>
</table>
3.23 The molecular structures of 3.30 – 3.32
3.24 Intermolecular packing observed in the molecular structure of 3.30
3.25 The molecular structure of 3.36
3.26 Variable temperature 1H NMR spectra (in CDCl$_3$) of 3.39
3.27 The molecular structure of 3.40
3.28 Intermolecular hydrogen bonding observed within the molecular structure of 3.40
3.29 Cyclic voltammogram of 3.42
3.30 The molecular structure of 3.42
3.31 Cyclic voltammogram of 3.43
3.32 The molecular structure of 3.43
3.33 2D 1H NMR (COSY) spectrum of 3.45
3.34 Suggested two–coordinate and three–coordinate Au complexes of 3.44
3.35 Suggested monodentate and bidentate Ru(II) complexes of 3.44, observed by 31P {1H} NMR

Chapter 4 Figures

4.1 Recent examples of complexes that display DNA binding and cytotoxicity
4.2 The molecular structure of 4.2a
4.3 Intermolecular hydrogen bonding observed within the molecular structure of 4.2a
4.4 Further intermolecular packing observed within the molecular structure of 4.2a
4.5 The molecular structure of 4.3
4.6 The molecular structure of 4.14a
4.7 Packing plot of the molecular structure of 4.14a
4.8 The molecular structure of 4.15a
4.9 Intermolecular packing observed within the molecular structure of 4.15a
4.10 The molecular structure of 4.31
4.11 The molecular structure of 4.32
4.12 The intermolecular hydrogen bonding observed within the molecular structure of 4.30
4.13 The intermolecular hydrogen bonding observed within the molecular structure of 4.31
4.14 The molecular structure of 4.37
4.15 The speculated monometallic complex observed within the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of 4.41
List of Tables

Chapter 2 Tables

2.1 31P{1H} and 1H NMR data for 2.1 – 2.4

2.2 Fluorescent emission data for 2.3, 2.4 and their parent amines

2.3 Selected bond lengths (Å) and angles (°) for 2.4 and 2.6

2.4 Fluorescent emission data for 2.3 – 2.6

2.5 Selected bond lengths (Å) and angles (°) for 2.5

2.6 31P{1H}, 1H NMR and FT–IR data for 2.7 – 2.10

2.7a Selected bond lengths (Å) and angles (°) for 2.7 – 2.10

2.7b Selected bond lengths (Å) and angles (°) for 2.7 – 2.10

2.8 Selected bond lengths (Å) and angles (°) for 2.17

2.9 Selected bond lengths (Å) and angles (°) for 2.22

2.10 Fluorescent emission data for 2.3, 2.4, 2.9, 2.10, 2.17, 2.19 and 2.22

2.11 Fluorescent emission data for 2.3, 2.4, 2.23, 2.24 and their parent amines

2.12 Fluorescent emission data for 2.23, 2.24, 2.26 – 2.29

Chapter 3 Tables

3.1 31P{1H} and 1H NMR data for 3.1 – 3.3

3.2 Selected bond lengths (Å) and angles (°) for 3.1

3.3 Selected bond lengths (Å) and angles (°) for 3.3

3.4 Selected bond lengths (Å) and angles (°) for 3.4

3.5 Selected bond lengths (Å) and angles (°) for 3.10

3.6 Selected bond lengths (Å) and angles (°) for 3.11

3.7 Selected bond lengths (Å) and angles (°) for 3.12 and 3.13
3.8 Selected bond lengths (Å) and angles (°) for 3.14 121
3.9 Selected bond lengths (Å) and angles (°) for 3.15 124
3.10 Selected bond lengths (Å) and angles (°) of 3.19 130
3.11 Electrochemical data for 3.16, 3.18 and their precursor compounds 132
3.12 Electrochemical data for 3.20 – 3.22 134
3.13 Selected bond lengths (Å) and angles (°) for 3.26 141
3.14 Electrochemical data for 3.27 – 3.29 144
3.15 Selected bond lengths (Å) and angles (°) for 3.28 and 3.29 146
3.16 31P{1H}, 1H NMR and FT–IR data for 3.30 – 3.32 148
3.17 31P{1H}, 1H NMR and FT–IR data for 3.33 – 3.35 149
3.18 Selected bond lengths (Å) and angles (°) for 3.30 – 3.32 153
3.19 31P{1H}, 1H NMR and FT–IR data for 3.36 – 3.38 155
3.20 Selected bond lengths (Å) and angles (°) for 3.36 and 3.38 157
3.21 Selected bond lengths (Å) and angles (°) for 3.40 165
3.22 Selected bond lengths (Å) and angles (°) for 3.42 169
3.23 Selected bond lengths (Å) and angles (°) for 3.43 172

Chapter 4 Tables

4.1 Selected bond lengths (Å) and angles (°) for 4.2a 187
4.2 Selected bond lengths (Å) and angles (°) for 4.3 190
4.3 Selected bond lengths (Å) and angles (°) for 4.14a 197
4.4 Hydrogen bond lengths (Å) and angles (°) for 4.14a 197
4.5 Selected bond lengths (Å) and angles (°) for 4.15a 199
4.6 31P{1H}, 1H NMR and FT–IR data for 4.22 – 4.28 202
4.7 31P{1H}, 1H NMR and IR data for 4.30 – 4.35 204
4.8 Selected bond lengths (Å) and angles (°) for 4.30 – 4.32 and 4.34 210
4.9 Selected bond lengths (Å) and angles (°) for 4.37 214
4.10 $^{31}\text{P}\{^1\text{H}\}$, ^1H NMR and FT–IR data for 4.38 – 4.41 216
ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angström unit (10⁻¹⁰ m)</td>
</tr>
<tr>
<td>abs.</td>
<td>absolute</td>
</tr>
<tr>
<td>atm</td>
<td>atmospheres</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl ring</td>
</tr>
<tr>
<td>arom.</td>
<td>aromatic</td>
</tr>
<tr>
<td>b</td>
<td>broad</td>
</tr>
<tr>
<td>BOC</td>
<td>tert–Butyloxycarbonyl</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2´–bipyridine</td>
</tr>
<tr>
<td>Bs</td>
<td>broad singlet</td>
</tr>
<tr>
<td>ca.</td>
<td>circa</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>Deuterated chloroform</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>CHN</td>
<td>Carbon, Hydrogen, Nitrogen elemental analysis</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>Wavenumber</td>
</tr>
<tr>
<td>cod</td>
<td>Cycloocta–1,5–diene</td>
</tr>
<tr>
<td>COSY</td>
<td>COrrelation SpectroscopY</td>
</tr>
<tr>
<td>cot</td>
<td>cyclooctene</td>
</tr>
<tr>
<td>CSD</td>
<td>Cambridge Structural Database</td>
</tr>
<tr>
<td>CT</td>
<td>Charge Transfer</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexyl, C₆H₁₁</td>
</tr>
<tr>
<td>p–cym</td>
<td>η⁶–p–CH₂C₆H₄Pr</td>
</tr>
<tr>
<td>Cytop</td>
<td>1,3,5,7,–tetramethyl–2,4,8–trioxa–6–phospha–adamantane, see also PAd.</td>
</tr>
<tr>
<td>d</td>
<td>days</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet of doublets</td>
</tr>
<tr>
<td>D</td>
<td>Deuterium</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane, CH₂Cl₂</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide, HC(O)N(CH₃)₂</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide, OS(CH₃)₂</td>
</tr>
<tr>
<td>ee.</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>equiv.</td>
<td>molar equivalent</td>
</tr>
<tr>
<td>Et</td>
<td>Ethyl, (-\text{CH}_2\text{CH}_3)</td>
</tr>
<tr>
<td>Et(_2)O</td>
<td>Diethyl ether, ((\text{CH}_3\text{CH}_2)_2\text{O})</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol, (\text{CH}_3\text{CH}_2\text{OH})</td>
</tr>
<tr>
<td>FAB–MS</td>
<td>Fast Atom Bombardment Mass Spectroscopy</td>
</tr>
<tr>
<td>Fe</td>
<td>Ferrocenyl, ((\eta^5–\text{C}_5\text{H}_5)_2\text{Fe})</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>FT–IR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>h</td>
<td>hours</td>
</tr>
<tr>
<td>HMQC</td>
<td>Heteronuclear Multiple Quantum Coherence</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>(\text{i}^{\text{Pr}})</td>
<td>\text{Iso}–propyl, (-\text{CH}(\text{CH}_3)_2)</td>
</tr>
<tr>
<td>IR</td>
<td>Infra Red spectroscopy</td>
</tr>
<tr>
<td>(J)</td>
<td>Coupling constant, Hz</td>
</tr>
<tr>
<td>LUMO</td>
<td>Lowest Unoccupied Molecular Orbital</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>M</td>
<td>Molarity, mol dm(^3)</td>
</tr>
<tr>
<td>MALDI</td>
<td>Matrix–Assisted Laser Desorption / Ionization</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre, (1 \times 10^{-3}) meter</td>
</tr>
<tr>
<td>(\mu\text{M})</td>
<td>Micro molar, (1 \times 10^{-6}) mol dm(^{-3})</td>
</tr>
<tr>
<td>mA</td>
<td>milliamp, (1 \times 10^{-3}) amp</td>
</tr>
<tr>
<td>Me</td>
<td>Methyl, (-\text{CH}_3)</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol, (\text{CH}_3\text{OH})</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz, (1 \times 10^{6}) Hz</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mol</td>
<td>mole</td>
</tr>
<tr>
<td>mmol</td>
<td>millimole, (1 \times 10^{-3}) mol</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>mV(^{-1})</td>
<td>per millivolt, (1 \times 10^{-3}) V</td>
</tr>
<tr>
<td>m/z</td>
<td>mass–to–charge ratio</td>
</tr>
<tr>
<td>(\text{n}^{\text{Bu}})</td>
<td>(n)–butyl, (-\text{C}4\text{H}{10})</td>
</tr>
<tr>
<td>(\text{n}^{\text{BuLi}})</td>
<td>(n)–butyllithium, (\text{C}_4\text{H}_9\text{Li})</td>
</tr>
</tbody>
</table>
nm nanometer, 1 x 10⁻⁹ meter
NMR Nuclear Magnetic Resonance
nbd Norbornadiene, C₁₀H₈
p para
PAD 1,3,5,7–tetramethyl–2,4,8–trioxa–6–phospha–adamantane, see also
 Cytop.
PET Photoinduced Electron Transfer
Ph phenyl, –C₆H₅
ppm parts per million
¹Pr iso–propyl, –CH(CH₃)₂
Pyr pyrenyl, –C₁₆H₉
q quartet
RT Room Temperature
s singlet
sept septet
¹Bu tert–butyl, –C(CH₃)₃
THF Tetrahydrofuran, (CH₂)₄O
tht Tetrahydrothiophene, (CH₂)₄S
t triplet
TMEDA Tetramethylethlenediamine, {{(CH₃)₂NCH₂}₂
V Voltage
w weak
w/v Weight by volume
w/w Weight by weight
° degrees
°C degrees centigrade
δ chemical shift
υ frequency
λ wavelength (cm⁻¹)
λₑₐₓ excitation wavelength (cm⁻¹)
λₑₐₜ emission wavelength (cm⁻¹)
{¹H} proton decoupled
Φ quantum yield, (photons emitted / photons absorbed)
% Percentage
Chapter 1

Introduction
1.1 Introduction

Phosphorus(III) ligands, particularly tertiary phosphines PR₃ [R = aromatic or an aliphatic substituent], are a fascinating group of compounds that are arguably at the centre of our understanding of modern coordination chemistry and catalysis. The chemistry of this important class of compound is centred around the ability of the central pyramidal phosphorus atom to readily stabilise a huge variety of electron deficient species, particularly transition metal centres, through the formation of new P–M bonds. This ability has seen tertiary phosphines play important roles in numerous areas of industrial and academic significance ranging from catalysts for a wide range of organic transformations, to reagents used within selective metal extraction, to building blocks used in supramolecular chemistry, and to therapeutic applications such as anticancer drugs and biological imaging agents. Many tertiary phosphines have been reported to date, and some pertinent examples include the ditertiary phosphines, dppm [bis(diphenylphosphino)methane], dppe [1,2–bis(diphenylphosphine)ethane], dppp [1,3–bis(diphenylphosphino)propane], dppf [1,1´–bis(diphenylphosphino)ferrocene] and binap [2,2´–bis(diphenylphosphino)–1,1´binaphthyl] (Figure 1.1).

![Figure 1.1 Examples of ditertiary phosphines.](image)

Figure 1.1 Examples of ditertiary phosphines.
The versatility / significance associated with tertiary phosphines, orientates from two key areas;

i) The ease with which R substituents attached to the central phosphorus atom can be controllably varied.

ii) The influence that these R groups have upon the intrinsic properties of the resulting phosphines, such as steric and electronic effects, bite angle (for ditertiary phosphines), solubility and chirality.

As a result, phosphines can be readily tailored to suit specific applications, simply by the controlled variation of their R substituents. For example, all of the ditertiary phosphines shown in Figure 1.1 contain two Ph₂P– moieties, and yet, by just varying the remaining R substituent their coordination chemistry, and thus their catalytic properties, are notably different. For example, Zou et al. recently reported that whilst dppm, dppe, dppp, dppf and binap were all able to catalyse the conjugated addition of aryl boronic acid to N,N–dimethylacrylamide (Equation 1.1), the structure of the diphosphine had a remarkable influence upon the selectivity and yield of the resulting saturated product (1.1).

\[
\text{PhB(OH)₂} + \stackrel{\text{3\% RhCl₃, diphosphine}}{\text{toluene, H₂O}} \rightarrow \text{PhCH₂CO} + \text{Ph} \text{CH} = \text{CHCO} \\
\text{1.1} \text{NMe₂} + \text{1.2} \text{NMe₂}
\]

Equation 1.1

When diphosphines capable of forming stable chelate complexes were used (dppp, dppf, binap), 1.1 was obtained in excellent selectivity and yield over its unsaturated counterpart (1.2) [ca. 99:1 (1.1:1.2), 93% respectively], whilst comparatively low selectivity and yields [ca. 77:23 (1.1:1.2), 42% respectively] were observed when more constrained diphosphines were applied (dppm and dppe). Zou suggested that this enhanced selectivity and yield was due to the formation of stable chelate complexes during the catalytic cycle when dppp, dppf or binap were used, which in turn lowered the occurrence of a coordinately unsaturated Rh species which lead to the formation of 1.2.
The ability to controllably vary the R substituents attached to a phosphorus atom is therefore key to influencing the properties of the resulting phosphine. As a consequence, many methods have been developed over the years to selectively incorporate different R substituents around a phosphorus centre, such as free radical addition and nucleophilic substitution. These strategies have been extensively reviewed by McAuliffe,52 Gilheany and Mitchell,53 and more recently by Quin,54 Woollins,55 Allen,56 Smith and Downing.6

In addition to the above methods, we1,4,21,23,57-60 and others7,61-64 have shown a phosphorus based Mannich transformation to be a particularly efficient and versatile route towards catalytically and coordinatively important tertiary phosphines. This synthetic strategy, as outlined in Equation 1.2, involves reaction of a hydroxymethyl tertiary phosphine synthon $\text{R}_2\text{PCH}_2\text{OH}$ [$\text{R}_2\text{PCH}_2\text{OH}$ readily preformed7,58,60 or prepared \textit{in–situ}61,62,65 from equimolar amounts of (CH$_2$O)$_n$ and R_2PH] with an aromatic or aliphatic amine of choice. This has routinely allowed the preparation of both functionalised mono– and di–tertiary phosphines, depending upon the stoichiometry used.

![Equation 1.2](image)

In addition to its versatility, this synthetic procedure offers many advantages over classical methods of tertiary phosphine synthesis, as reactions are usually performed in one–pot, are high yielding, and involve cheap, commercially available starting materials.60 Some pertinent examples of tertiary phosphines recently prepared by this method are shown in Figure 1.2.7,21,58,61,65
Given the general significance of tertiary phosphines, the remainder of this chapter will seek to review previously reported tertiary phosphine compounds that are relevant to this research, thereby focusing upon novel tertiary phosphines bearing polyaromatic groups, such as anthracene and pyrene, as well as ferrocenyl substituents. During each section common synthetic strategies will be discussed, in addition to highlighting key coordination compounds and relevant applications.

1.2 Tertiary Phosphines Bearing Anthracenyl or Pyrenyl Groups

Surprisingly, given the general significance of phosphorus,6,55,56 and the importance of pyrenyl (–C₁₆H₉) and anthracenyl (–C₁₄H₉) groups within non–phosphorus based chemistry,66-73 relatively few examples of tertiary phosphines bearing anthracenyl and pyrenyl moieties have been reported to date. Of those that have been reported, many display novel coordination3,65,74-79 and luminescent properties.65,76,77,80-85 The versatility of anthracene and pyrene within tertiary phosphine synthesis can be readily illustrated by some of the previous examples of compounds reported in the literature. In these cases, the anthracenyl and pyrenyl groups are commonly employed as substituents directly bonded to phosphorus,74,75,82,86-88 as rigid backbones for accessing mono– and ditertiary phosphines65,77-79,84,85 or as
substituents indirectly bound to phosphorus through an alkyl or aryl tether (Figure 1.3).76,80,81,83,89,90

\begin{center}
\includegraphics[width=\textwidth]{figure13.png}
\end{center}

\textbf{Figure 1.3} Examples of anthracenyl and pyrenyl tertiary phosphines.

Over the years, a variety of synthetic strategies, such as condensation,65,76,77,79,84 nucleophilic substitutions78,85 and peptide couplings,89 have been used to prepare tertiary phosphines bearing anthracenyl and pyrenyl substituents. For example, tertiary phosphines with a P–Ar (Ar = anthracenyl or pyrenyl) connectivity have been routinely prepared \textit{via} phosphorylation reactions, which involve, treatment of polyaromatic groups with an organometallic base (e.g. nBuLi) followed by reaction of the resulting salt with a halophosphine.74,75,86,87,91 Recently, Hu \textit{et al.} used this procedure to prepare the pyrenyl–ditertiary phosphine \textbf{1.8}, in good yield (75\%) (Scheme 1.1).74

\begin{center}
\includegraphics[width=\textwidth]{scheme11.png}
\end{center}

\textbf{Scheme 1.1}

Yamaguchi \textit{et al.} also used this methodology to prepare the tri–anthracenyl monophosphine \textbf{1.10}, in reasonable yield (59\%) (Scheme 1.2).87
In contrast, the alkyl linked mono– and ditertiary phosphines 1.11 and 1.12 were prepared, in reasonable yield (41 and 71% respectively), by the reaction of pre–metalated PHPh$_2$ with the respective alkyl halides (Figure 1.4).^{79,80}

More functionalised tertiary phosphines bearing anthracenyl and pyrenyl substituents have also been reported in the literature. Zhang et al. reported the preparation of the hexadentate (P$_2$N$_4$) ditertiary phosphine 1.13 (Equation 1.3).^{78} The phosphine was prepared, in reasonable yield (57%), by treatment of the preformed dipyridenyl amine with Ph$_2$PLi (Equation 1.3).
In contrast, Xing et al. described the preparation of the chiral ditertiary phosphine 1.14, in excellent yield (94%), by peptide coupling of the commercially available chiral diphosphine, (3R,4R)3,4-\textit{bis}(diphenylphosphino)pyrrolidine (Pyrphos), with 1-pyrenebutyric acid in the presence of the peptide coupling reagent DCC (dicyclohexylcarbodiimide) (Equation 1.4).89

\[
\begin{align*}
\text{HN} & \quad \text{PPh}_2 \\
& \quad \text{PPh}_2 \\
\end{align*}
\]

\[\text{DCC} \quad \text{CH}_2\text{Cl}_2\]

Equation 1.4

Jeon et al.76 reported the preparation of a similarly substituted pyrene appended monophosphine 1.15, in low yield (22%). The ligand was prepared via consecutive condensation reactions, as shown in Scheme 1.3.

\[
\begin{align*}
\text{Ph}_2\text{P} \quad \text{Cl} & \quad + \quad \text{HS} \quad \text{CO}_2\text{H} \\
& \quad \rightarrow \quad \text{Ph}_2\text{P} \quad \text{S} \quad \text{CO}_2\text{H} \\
\end{align*}
\]

\textbf{Scheme 1.3} The preparation of 1.15. a) K_2CO_3, 18–crown–6, CH\textsubscript{3}CN/H\textsubscript{2}O, reflux; b) isobutylchloroformate/NE\textsubscript{t}\textsubscript{3}, 2–pyrenylmethylamine·HCl/NE\textsubscript{t}\textsubscript{3} CH\textsubscript{2}Cl\textsubscript{2}, rt.

The anthracene appended phosphines 1.1677 and 1.779,84 were prepared by Zhang et al. in good yield (73 and 54% respectively), via the aminolysis of the appropriate secondary amines with Ph\textsubscript{3}PCl (1 equiv. 1.16 and 2 equiv. 1.7) (Equation 1.5). In both cases NE\textsubscript{t}\textsubscript{3} was used to scavenge HCl from the reaction mixture.77,79,84
Further work by Zhang and co–workers65 described the preparation of the ditertiary phosphine 1.17. The ligand was synthesised by Mannich based condensation of the appropriate secondary amine with Ph$_2$PCH$_2$OH, prepared in–situ from PHPh$_2$ and (CH$_2$O)$_n$ (Equation 1.6).

Moreover Wolf et al.83 recently prepared the pyrene appended monophosphine ether 1.18, in good yield (81%), by reaction of 4–bromobutylpyrene with deprotonated 2–diphenylphosphinophenol (Equation 1.7).
The coordination chemistry of tertiary phosphines bearing anthracenyl and pyrenyl groups is varied, due to the diverse range of phosphines available. Monophosphines for example, have been found to readily stabilise a variety of transition metal centres of varying oxidation states and coordination numbers, through the formation of new P–M bonds. For example, Muller et al. reported a diverse family of anthracenyl monophosphine Au(I) and Pt(II) complexes that display this simple monodentate P–M coordination mode. One example from this series is the two coordinate Au(I) complex 1.19, which was prepared in good yield (72%) by reaction of 1.10 with an equimolar amount of Au(SMe₂)Cl (Equation 1.8).

More functionalised monophosphines bearing anthracenyl and pyrenyl groups have also been found to coordinate in a P–monodentate manner. For example, Zhang et al. recently found that the two-coordinate gold complex 1.20 could be readily prepared (yield 81%) by reaction of Au(SMe₂)Cl with an equimolar amount of 1.16, in CH₂Cl₂ (Equation 1.9).
In contrast, Jeon et al.76 and Wolf et al.81,83 both recently reported the functionalised monophosphines 1.15 and 1.18 to coordinate transition metal centres in a hemilabile cis–P,X [X = S (1.15) or O (1.18)] manner. In the case of 1.15, Jeon et al.76 reported that reaction of two equivalents of the monophosphine with half an equivalent of [Rh(nbd)Cl]\textsubscript{2} (nbd = norbornadiene), or one equivalent of [Cu(CH\textsubscript{3}CN)\textsubscript{4}]PF\textsubscript{6}, yielded the symmetrical cis–M–P,P,S,S complexes 1.21 and 1.22 in excellent yield (96\% in both cases) (Figure 1.5).76

![Figure 1.5](image)

The hemilabile nature of 1.15 within both complexes 1.21 and 1.22 was confirmed by displacement of the thio–ether sulfur atoms of 1.15 with CO (1.23) or C\textsubscript{5}H\textsubscript{5}N (1.24), to afford the monodentate P,P complexes 1.23 and 1.24 in excellent yield (100 and 92\% respectively) (Figure 1.6). In the case of the fluorescent Cu(I) complexes 1.22 and 1.24, the change in coordination mode had a significant effect upon the luminescent properties.76
Similarly, Wolf et al. reported the bidentate–P,O ruthenium halide complexes 1.25 – 1.27 of the phosphine pyrene ether 1.18 (Scheme 1.4). Complexes 1.25 and 1.26 were prepared, in low yield (38 and 39% respectively), by reaction of two equivalents of 1.18 with 1 equivalent of RuX₃·nH₂O [X = Cl (1.25) or Br (1.26)]. The iodo complex 1.27 was prepared, in excellent yield (94%), by chloride substitution of 1.25 with NaI.

As was the case with complexes of 1.15, the hemilabile nature of 1.18 was highlighted by a further reaction. In all three cases, exposure of 1.25 – 1.27 (in CH₂Cl₂) to CO (1 atm) resulted in displacement of the weakly coordinated ether oxygen of 1.18 by CO, to form the ttt–RuX₂(CO)₂(1.18)₂ complexes 1.28 – 1.30 (Scheme 1.5). These kinetic products were thought to isomerise, upon removal of the
CO atmosphere, to form the thermodynamic products cct–RuX₂(CO)₂ (1.18) (Scheme 1.5). This change in coordination mode, upon exposure to CO, in all three cases had a significant effect upon the luminescent properties of the pyrene moieties (vide infra).

In contrast to mono–tertiary phosphines, ditertiary phosphines bearing anthracenyl and pyrenyl groups have been found to routinely chelate or bridge transition metals in a trans–P,P manner. For example, the anthracene bridged ditertiary phosphine 1.12 was found to react with an equimolar amount of AgClO₄ to afford the trans–spanned Ag(I) complex 1.34, in good yield (Equation 1.10). The trans–spanning nature of 1.12 was confirmed by single crystal X–ray analysis, which shows the bite angle of 1.12 to be only 2° less than the ideal angle for that of a trans disposition of groups.

Equation 1.10
Xu et al. also reported the diamino analogue 1.7 of 1.12 to behave in a similar trans–spanning arrangement upon reaction with Cu(I), Ag(I) and Au(I) to afford the two– and three–coordinate complexes 1.35 – 1.37 (Scheme 1.6). However in these cases, the trans–disposition of phosphorus atoms was not close to the idealised angle for a trans–disposition of groups following single crystal X–ray analysis [bite angle 153.97º 1.35, 169.90º 1.36 and 171.60º 1.37]. Complexes 1.35 and 1.36 were prepared, in good yield (75% in both cases), by reaction of 1.7 with an equimolar amount of [Cu(CH₃CN)₄]ClO₄ (1.35) or AgClO₄ (1.36). The three–coordinate Au(I) complex 1.37, was prepared in excellent yield (92%) by reaction of 1.7 with an equimolar amount of Au(SMe₂)Cl. Furthermore in the case of 1.35 and 1.36, a rare η⁶–interaction was also observed between the anthracenyl group and the metal centre, which was thought to have an effect upon the luminescent properties of these complexes.

Interestingly Zhang et al. found that incorporation of an additional carbon between the N and P atoms of 1.7, to give 1.17, had a significant effect upon the coordination chemistry. Compound 1.17 afforded three new examples of rare bimetallocyclophane complexes 1.38–1.40, in good yield >90%, by reaction with [M(CH₃CN)₄]ClO₄ [M = Cu(I) or Ag(I)] or Au(SMe₂)Cl, in a 1:1 stoichiometry (Equation 1.11).
It has been suggested that the preparation of these rare dimeric complexes is driven by intermolecular $\pi \cdots \pi$ stacking between the neighbouring anthracene units of coordinated ligands. The occurrence of this $\pi \cdots \pi$ stacking interaction was supported by single crystal X–ray analysis of 1.38, which showed a distance of 3.6 Å between the neighbouring anthracene rings \cite{c.f. interlayer separation within graphite, 3.45 Å}92. Similar work by Holliday \textit{et al.}85 also allowed for the preparation of a bimetallocycle 1.43 through the coordination of an anthracenyl ditertiary phosphine. Complex 1.43 was prepared in two steps (Scheme 1.7); firstly the “condensed” rhodium complex 1.42 was prepared in excellent yield (>99\%) by reaction of 1.41 with [RhCl(cot)\textsubscript{2}]. Once prepared, 1.42 was reacted with CH\textsubscript{3}CN, in CH\textsubscript{2}Cl\textsubscript{2}, to afford 1.43 in a quantitative yield due to the efficient displacement of the ether oxygen atom by CH\textsubscript{3}CN in 1.41.
The preparation of ditertiary phosphines, such as \textbf{1.12} and \textbf{1.17}, capable of coordinating transition metal centres in a \textit{trans}–P–M–P manner are of particular interest since they frequently show high activity for many catalytic processes.3 This activity is thought to result from the ability of such phosphines to form key reaction intermediates within a catalytic cycle, for a low energy debt, due to their inherent flexibility and wide range of available P–M–P bite angles.3,93,94 Some of the most noteworthy and recent examples of \textit{trans}–spanning ditertiary phosphine are shown in Figure 1.7. Transphos is considered to be the first example of a ditertiary phosphine that was specifically designed to \textit{trans}–span transition metal centres, and was reported in the 1970’s by Venanzi \textit{et al.}3,95,96 The rigid phenanthrene backbone of Transphos was thought to be responsible for the ligand’s \textit{trans}–coordinating nature, particularly in square planar complexes with Pt(II) and Pd(II). Complexes of Transphos were comprehensively studied during the 1970 – 1980’s as hydroformylation, hydrogenation and oligomerisation catalysis, with some success.95 Since then a number of other “iconic” ditertiary phosphines capable of \textit{trans}–spanning metal centres have been reported, including SPANphos,97-100 Xantphos,101-107 BisBi,3,93,108 and Trap.109-113
Figure 1.7 Some examples of trans–chelating diphosphine ligands.

1.2.1 Luminescent Properties of Anthracenyl and Pyrenyl Tertiary Phosphines

The need to selectively detect and monitor small molecules and ions continues to attract a great deal of interest from a variety of disciplines including; chemistry, biology, clinical biology and environmental science. This wide ranging curiosity, undoubtedly stems from the involvement of such species in essential biological, environmental and industrial processes, and is driven by the endeavours of scientists to control and understand these processes further. For example, a means of selectively monitoring small biologically relevant molecules, such as ATP (adenosine triphosphate), could lead to a greater understanding of the mechanisms that make a cell work whilst the ability to quickly and accurately measure the levels of Na⁺, K⁺, Ca²⁺ and Mg²⁺ within a sample of blood at the scene of an accident, could save lives, as tailored intravenous serums could be prepared prior to the casualties arrival at hospital. Although there are currently numerous analytical methods available that can routinely detect cations, anions and small molecules, such as: flame photometry, neutron activation analysis, mass spectroscopy, NMR, etc. The majority of these methods are expensive and require
technical expertise to maintain, run, and interpret, as well as often being completely remote from the environment of interest (not capable of real time / \textit{in-situ} monitoring). It has therefore been desirable to develop alternatives to these more familiar analysis methods.114,116,123 Intriguingly, devices based around specifically designed molecules that provide a particular response in the presence of a target analyte, have been shown to offer distinctive advantages in terms of sensitivity, selectivity, response time and cost, over their more traditional counterparts81,114,119,123 and these specifically designed molecules have been termed chemosensors since Czarnik’s initial use of the term in 1993.124,125

The basic schematic design of a chemosensor is depicted in Figure 1.8, and can be summarised into three components;116-120

i) A binding site – responsible for selectively coordinating / binding the target analyte.

ii) Signalling moiety or transducer – responsible for converting coordination events at the binding site, at the molecular level, into measurable properties that can be monitored on the macroscopic level.

iii) A linker – usually an alkyl, aryl or peptide group that connect the two aforementioned subunits, however this group is not essential.

\textbf{Figure 1.8} Schematic illustration of a molecular sensor.

One common chemosensor design strategy is to employ polyaromatic groups as the signalling moiety, thereby tailoring the recognition response of the chemosensor.
towards variations in absorbance or fluorescence; such moieties are termed fluorophores. Two widely used fluorophores are anthracene66-69,71,126-128 and pyrene,70-73,129,130 due to their naturally high quantum yields (ϕ, number of photons emitted / number of photons absorbed), ease of derivatisation and commercial availability. As a result, several of the previously discussed phosphine complexes bearing anthracenyl and pyrenyl groups display chemosensory properties.

The Cu(I) complexes \textbf{1.22} and \textbf{1.24} of the pyrene appended hemilabile phosphine \textbf{1.15}, have been shown to display fluorescence–sensitive binding properties towards various halides (Figure 1.9).76 In the absence of any halide ions the fluorescent emission spectra of \textbf{1.22} and \textbf{1.24} both revealed strong excimer emissions at λ_{max} 475 nm (λ_{ex} 345 nm). The intensity of the excimer emission was found to be slightly larger for \textbf{1.24}, compared to \textbf{1.22}; an effect attributed to stronger interactions between the neighbouring pyrene fluorophores within \textbf{1.24}, due to its “more–open” structure.76 Interestingly both \textbf{1.22} and \textbf{1.24} displayed a marked change in fluorescent emission upon addition of Cl$^-$, Br$^-$ or I$^-$, with a significant enhancement of the excimer emission at λ_{max} 475 nm, following the addition of an equimolar amount of halide. This effect was also attributed to an enhancement of the π–π stacking between neighbouring pyrene group within both complexes. The enhancement was thought to be due to the formation of a chelate complex involving two amide to halide hydrogen bonds (Figure 1.9).

![Figure 1.9](image)

\textbf{Figure 1.9} Complex \textbf{1.24} depicted in its proposed enhanced excimer emitting state, upon halide anion binding (X = Cl$^-$, Br$^-$ or I$^-$).
The occurrence of this binding configuration was supported by 1H NMR titration, which showed δ(NH) to shift by ca. 2.5 ppm upfield as a function of increasing [Cl$^-$]. Fascinatingly the addition of further equivalents of halide, past this equivalence point, only served to steadily decrease the excimer emissions of 1.22 and 1.24, until they were completely diminished after the addition of 100 equivalents. This decrease in intensity was suggested to be due to the additional anions disrupting the perceived hydrogen bond complex by the formation of individual amide–halide hydrogen bonds. As a result, 1.22 and 1.24 both represent new chemosensors capable of concentration dependent detection of halide anions via variation in excimer emission.

The ruthenium(II) complexes 1.25 – 1.27 (Scheme 1.8), have also been shown to display luminescent recognition properties, in this instance towards CO. As previously state, exposure of 1.25 – 1.27 to CO was thought to yield the thermodynamic products 1.31 – 1.33. These various ruthenium complexes were found to have different fluorescent properties, thereby allowing the observed change in luminescence to be used to detect CO. For example, the ruthenium(II) chloride complex 1.25, gave a weak monomeric pyrene emission at ca. λ_{max} 375 nm (in CH$_2$Cl$_2$ solution, λ_{ex} 350 nm); presumably due to CT (charge transfer) between the fluorophores and the Ru(II) metal centre.
Upon exposure of **1.25** (in CH₂Cl₂) to CO (1 atm), Wolf and co–workers observed the emergence of a strong excimer emission at *ca.* \(\lambda_{\text{max}} \) 480 nm, coupled with significantly quenching of the monomeric emission at *ca.* \(\lambda_{\text{max}} \) 375 nm and a dramatic visible colour change (raspberry–red to a greenish yellow solution). This drastic change in both absorbance and emission was suggested to be caused by displacement of the weakly coordinated ether oxygen of the hemilabile ligand **1.18** by CO, to form the complexes \(\text{ttt–RuX}_2(\text{CO})_2(1.18)_2 \) **1.28 – 1.30**. These kinetic products were thought to isomerise further to the excimer emitting thermodynamic products **1.31 – 1.33**. Whilst the isomerisation mechanism responsible for this OFF–ON excimer emission is currently unknown, Wolf suggests that the process involves dissociation of CO from the kinetic products **1.28 – 1.30**, with the resulting five–coordinate intermediate being stabilised through the \(\pi \cdots \pi \) stacking of the neighbouring pyrene groups, which in turn leads to the observed excimer emission in **1.31 – 1.33**. Nevertheless, these findings show that **1.25 – 1.28** can act as an effective fluorescent sensor for CO.**81,83**

The bimetallocyclophanes **1.38** and **1.43** (Figure 1.10) are two rare examples of novel anthracenyl ditertiary phosphine complexes that display solution–based chemosensor behaviour towards small molecules, in this instance towards aromatic diisocyanides.**65** As mentioned, the preparation of these large dimeric complexes was suggested to be driven by intermolecular \(\pi \cdots \pi \) stacking between the neighbouring anthracene units of the neighbouring ligands upon coordination. These intramolecular interactions were evident in the fluorescent emission spectra of **1.38** and **1.43**, which contained characteristic excimer emission at \(\lambda_{\text{max}} \) 435 and 442 nm respectively (in CH₂Cl₂ solutions).**65,85**
In the case of 1.38, fluorescence was found to be significantly enhanced following the addition of 1,4–benzenediacetonitrile, with a maximum increase in excimer emission being observed upon addition of two equivalents of diisocyanide. This fluorescent enhancement was thought to be caused by incorporation of the second 1,4–benzenediacetonitrile molecule into the centre of the macrocyclic cavity in 1.38. Scheme 1.9 depicts the suggested enhancement process where initially copolymer 1.38a is formed via substitution of the perchlorate counterions with the cyano groups of the first 1,4–benzenedicarbonitrile molecule, followed by formation of the highly fluorescent copolymer 1.38b, upon addition of a second equivalent of 1,4–benzenedicarbonitrile.
A similar fluorescent enhancement was also observed when an equimolar amount of 9,10-anthracenediisocyanide was added to a CH₂Cl₂/CH₃CN (100:1) solution of 1.43. In this case, a non-polymeric triple layered metallocyclophane was formed, which in turn yielded an enhanced excimer emission at λₘₐₓ 466 nm. Interestingly, the addition of monoisocyanides, alkyl diisocyanides and 1,4-benzeneacetonitrile (in the case of 1.43) to a solution of the respective metallocyclophane failed to produce any similar enhancements in excimer emission. This suggests that the photophysical changes observed were selective towards the aromatic diisocyanides studied.

The anthracenyl diaminophosphine 1.7 (Scheme 1.10) is another example of a phosphine whose coordination complexes have been used to detect small molecules. As previously stated, 1.7 was readily prepared by reaction of 9,10-(N-propylaminomethyl)anthracene with two equivalents of Ph₂PCl. Once prepared, fluorescent emission spectroscopy revealed 1.7 to produce a fluorescent monomeric anthracene emission at λₘₐₓ 438 nm in CH₂Cl₂ solution (λₑₓ 362 nm). Upon reaction
of 1.7 with AgClO₄ the very weakly–emissive complex 1.36 was prepared; its non–emissive behaviour being attributed to fluorescence quenching caused by CT between the anthracenyl fluorophore and the metal centre. Interestingly the fluorescent properties of the chromophore were subsequently restored by ligand substitution of the η⁶–anthracenyl group of complex 1.36 with one equivalent of phosphine (PR₃). The degree of the restored fluorescence was found to be related to the cone angle of the newly coordinating phosphine, with the smallest cone angle producing the greatest enhancement; 1.38 > 1.39 > 1.40 (Scheme 1.11). This On/Off Off/On fluorescent behaviour of ligand 1.7 and its silver complexes, was termed a “molecular light switch effect” and was suggested to be exploited two–fold; firstly as a means of selectively probing for phosphines and secondly for the detection of silver ions.⁸⁴

Scheme 1.10 The preparation of 1.38 – 1.40 (left) and the fluorescence emission spectra of 1.7, 1.36, and 1.38 – 1.40 (right).

Compound 1.16 (Scheme 1.11) is the final example of an anthracenyl–phosphine whose coordination can be exploited in order to detect small molecules and ions.⁷⁷ In
a similar manner to 1.7, the monophosphate was prepared by aminolysis of 9-(N–propylaminomethyl)anthracene with one equivalent of Ph$_2$PCl, and emitted a strong monomeric anthracenyl emission centred around λ_{em} 415 nm, in CH$_2$Cl$_2$ solution. The reaction of 1.16 with an equimolar amount of Au(SMe$_2$)Cl yielded the two-coordinate gold(I) chloride complex 1.20 (Scheme 1.11), which displayed a significantly enhanced fluorescence of the monomeric emission. This enhancement was suggested to be due to an inhibition of a PET (Photoinduced Electron Transfer) process present between the anthracene unit and the phosphorus atom, upon coordination of the gold(I) centre.

![Scheme 1.11](image)

Subsequent treatment of 1.20 with AgClO$_4$ and reaction with acetonitrile, pyridine or triphenylphosphine sulfide afforded the novel Au(I) η^2–anthracene complexes 1.41 – 1.44 (Scheme 1.11). The fluorescent emissions of 1.41 – 1.44 were all found to be significantly weak, by comparison with 1.20 or 1.16, owing to the formation of a CT process between the Au(I)$^+$ and the anthracene fluorophore. Interestingly, when solutions of 1.41 and 1.44 were treated with an equimolar amount of PPh$_3$, the intensity of the emission centred around λ_{em} 415 nm, was significantly increased, suggesting inhibition of the CT process. As a result 1.16 could be used as a
chemosensor towards the detection of Au(I) ion, whilst 1.41 and 1.44 could be used to indicate the presence of molecules, such as PPh₃.⁷⁷

1.3 Ferrocenyl Tertiary Phosphines

The ferrocenyl group \([\text{Fc} = (\eta^5\text{C}_5\text{H}_5)\text{Fe}(\eta^5\text{C}_5\text{H}_4)]\) continues to play an important role in the design of new ligands, particularly those containing phosphorus atoms.⁴⁶,¹³¹-¹³³ One plausible reason for this success, is the ease with which the cyclopentadienyl rings of the Fe moiety can be functionalised with phosphorus containing substituents. As a result, ferrocene and its derivatives have been routinely used as building blocks in the preparation of an array of functionalised phosphines,¹³⁴-¹⁴⁰ diphosphines,¹⁴¹-¹⁴⁵,¹⁴⁵,¹⁴⁶ polyphosphines,¹⁴⁷-¹⁴⁹ and chiral¹⁵⁰-¹⁵³ or macrocyclic¹⁵⁴ phosphorus ligands (Figure 1.11). To date, \(\text{bis(diphenylphosphino)ferrocene (dpff)}\) possibly remains the most iconic example of a phosphorus(III) based ligand containing the Fe moiety, and its coordination chemistry⁴³-⁴⁶,¹⁵⁵ and catalytic¹⁶,¹⁷,³⁶,¹⁵⁶ properties have been extensively studied.

![Figure 1.11 Examples of ferrocenyl phosphines.](image)

As would be expected, due to the diversity of reported ferrocenyl phosphines, many synthetic strategies towards such organometallic ligands have been developed.⁵,¹³¹,¹³³ One synthetic strategy that is commonly employed during the preparation of ferrocenyl phosphines with a Fe–P connectivity is the phosphorylation of the cyclopentadienyl groups \(\text{via treatment with an organometallic base e.g. } ^{n}\text{BuLi}\) followed by reaction of the resulting salt with a halophosphine. This strategy has routinely allowed for the preparation of both symmetrical⁵,¹⁵⁷-¹⁶¹ and
unsymmetrical133,147,151,152,162 mono– and poly–phosphines. Song \textit{et al.}161 use this methodology to good effect to prepare the symmetrical, chiral ditertiary phosphine \textbf{1.49} (Equation 1.12).

Another method of preparing ferrocenyl phosphines with a Fe–P connectivity is to react adequately derivatised cyclopentadienyl salts with an iron(II) halide. For example, the ditertiary phosphine \textbf{1.50} was prepared by Broussier and co–workers in moderate yield (46\%), by reaction of \textbf{1.51} with half an equivalent of FeCl\textsubscript{2} (Equation 1.13).5

In contrast, ferrocenyl phosphines that do not have a Fe–P connectivity, such as the diphosphine \textbf{1.52} (Equation 1.14), have been routinely prepared \textit{via} common organic reactions between phosphines and appropriately derivativised ferrocenyl compounds \textit{e.g.} peptide coupling14,136,139,140 and condensation reactions.57,163 For example, \textbf{1.52} (Equation 1.14) was prepared \textit{via} the condensation of the acid chloride, 1,\textsubscript{1}–\textsubscript{bis}(chlorocarbonyl)ferrocene, with two equivalents of the known aminophosphine, 3–aminopropyldiphenylphosphine.163
The considerable interest in ferrocenyl phosphines is, however, not just due to synthetic curiosity. Many of these organometallic compounds have been shown to possess interesting coordination \(^{46,57,135,141,144,154,164}\) and catalytic properties. \(^{133,137,143,151,152,161}\) The coordination chemistry of ferrocenyl phosphines is diverse, with many compounds being shown to be capable of coordinating a huge variety of transition metal centres of varying oxidation state and coordination number. In particular, ferrocenyl monophosphines have been routinely shown to stabilise a variety of transition metal centres with coordination numbers of 2 to 6, \(^{135,159,164,165}\) whilst ferrocenyl di– and poly–phosphines have frequently been shown to bridge \(^{14,43,46,57,144}\) or chelate \(^{14,57,141,142,149,153,154,161,163,166,167}\) transition metal centres (Figure 1.12). This versatility is presumably due to the array of ferrocenyl mono– and poly-phosphines available, and the ability of the ferrocenyl group to readily change its conformation in order to match the steric demands of the surrounding environment. \(^{46}\)

![Equation 1.14](image)

![Figure 1.12](image)

Figure 1.12 Examples of coordination compounds of ferrocenyl phosphines.

Two ferrocenyl ditertiary phosphines that have recently been reported to display interesting coordination chemistry are \(^{1.53}\) and \(^{1.45}\) (Figure 1.13), as both compounds were found to be capable of *trans*–spanning various transition metal
centres. Compound 1.53, and its previously reported derivatives,109,110 are of particular significance as they represent the only examples of chiral ditertiary phosphines that are known to be capable of \textit{trans}–spanning transition metal centres. This has relevance in asymmetric catalysis.111-113,153

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.13.png}
\caption{\textit{Trans}–spanning ditertiary ferrocenyl phosphines.}
\end{figure}

In particular, the reaction of 1.45 with PdCl\textsubscript{2}(cod) afforded a \textit{trans}–palladium(II) dichloride complex with a bite angle only 8° less than the idealised bite angle for the \textit{trans} disposition of groups as determined by single crystal X–ray analysis (P–Pd–P 171.9°).14 Analysis of the molecular structure of \textit{trans}–PdBr\textsubscript{2}(1.53) and \textit{trans}–RhCl(CO){1.53}, revealed comparatively smaller bite angles (P–M–P 163.6 and 161.1° respectively).110

As previously discussed (Section 1.2), ditertiary phosphines capable of \textit{trans}–spanning transition metal centres, such as 1.45 and 1.53, have significant catalytic potential due to their ability to access a large range of bite angles for a low energy debt.93 Consequently, the catalytic properties of 1.45 and 1.53 have been investigated.14,111-113,153 Recently, 1.53 has been shown to capable of catalysing the asymmetric hydrogenation for various \textit{N}–, 2– or 3–substituted indoles, to a high enantiomerselectivity due to the “chiral pocket” created during the catalytic cycle.153 The diphosphine was showed to be particularly effective in the conversion of \textit{N}–tosylate (Ts = CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}SO\textsubscript{2}–) protected 3–methylindole, with the corresponding indoline being generated to a high enantiomeric excess (ee 98%) and yield (up to 98% conversion) (Equation 1.15).
The diphenylphosphine 1.45 has also been shown to be a good catalyst, in this case for the Suzuki–Miyaura cross coupling of phenylboronic acid to 4–substituted aryl bromides (Equation 1.16). The phosphine proved to be particularly effective at the cross coupling of aryl bromides bearing –NO2 and –C(O)CH3 groups, with the biphenyl product being prepared quantitatively in both cases.

In addition to the trans–spanning phosphines 1.45 and 1.53, many other organic transformations have been shown to be catalysed by coordination complexes containing non trans–spanning ferrocenyl phosphines such as hydrogenation, hydroformylation, cyanation, amination, cyclopropanation and ethylene oligomerisation, in addition to various C–C bond forming reactions. For example, the ditertiary ferrocenyl phosphine 1.47 (Equation 1.17) was recently shown to catalyse the asymmetric hydrogenation of various alkenes and ketones in excellent selectivity (ee up to 99.7%) (Equation 1.17).
1.3.1 Electrochemical Properties of Ferrocenyl Tertiary Phosphines

In addition to the catalytic and coordination properties of ferrocenyl phosphines, these organometallic compounds also attract much attention due to their redox active metal centre \([\text{Fc} \leftrightarrow \text{Fe}((\text{C}_5\text{H}_5)_2]^+ \text{ or ferrocenium ion (Fc}^+))\], which allows for the study of electronic communication for the development of new electronic materials and devices.\(^{57,135,173-175}\) For example, the Fc moiety is ideal as a transducer within chemosensor design (see Section 1.2.1), as it allows coordination responses at the binding site to be tailored towards changes in the electrochemical properties of the compound.\(^{176,177,177-182}\) Some recent examples of non–phosphorus containing electrochemical sensors are shown in Figure 1.14.\(^{177,177-182}\) Compound 1.56 (Figure 1.14), for example, is one of a series of chiral ferrocenyl ureas (1.54 – 1.57, Figure 1.14) that have recently been shown to be a highly efficient electrochemical chemosensor for chiral carboxylate ions.\(^{178}\) In the absence of carboxylate, the cyclic voltammograms of 1.54 – 1.57 were found to produce reversible Fc/Fc\(^+\) redox waves [half wave potentials \((E_{1/2})\) ranging between 0.545 to 0.505 V, \(E_{1/2} = E_{pa} + E_{pc}/2\)], in dry CH\(_3\)CN solutions. However, the addition of an equimolar amount of carboxylate caused a significant cathodic shift in the redox waves of 1.54 – 1.57 i.e. wave moved to lower voltages. This cathodic shift in \(E_{1/2}\), was attributed to the coordination of the various carboxylate anions to 1.54 – 1.57 via complementary hydrogen bonding, an effect which was confirmed by \(^1\)H NMR spectroscopy \([\text{ca. } \Delta\delta(\text{NH}) +4 \text{ ppm}]\). In particular, compound 1.56 stood out from the rest of the series of 1.54 – 1.57, as it was shown to be able to effectively distinguishing between opposite enantiomers of \(N\)–benzenesulfonyl proline. This ability was thought to be due to variations in binding constants between 1.56 and the two proline enantiomers, leading to a
significant difference in the observed electrochemical potentials i.e. the stronger the binding constant the greater the cathodic shift.178

In contrast, compound 1.58 (Figure 1.14) was found to be a selective electrochemical chemosensor for Cu(II) ions.179 In the absence of any transition metal ions, the cyclic voltammogram for 1.58, was found to produce a reversible Fe/Fe+ redox wave at $E_{1/2}$ +0.254 V, in aqueous solution. Addition of Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) cause a significant anodic shift (shifts to higher voltages) relative to the original $E_{1/2}$ of 1.58 [Ni(II) +0.152, Cu(II) +0.218, Zn(II) +0.111, Cd(II) +0.110 and Pb(II) +0.268 V]. This anodic shift was suggested to be due to the coordination of the respective cations at the nitrogen atoms of 1.58.179 When Ni(II), Cu(II), Zn(II), Cd(II) and Pd(II) [or only Ni(II) and Cu(II) or Cu(II) and Pd(II)] were added to solutions of 1.58, the resulting redox potential was found to be approximately equal to that induced by Cu(II) alone [$E_{1/2}$ 0.472 V], thereby suggesting that 1.58 was capable of selectively detecting Cu(II) over the other cations studied.179

Interestingly, only a handful of ferrocenyl phosphine–based compounds capable of acting as chemosensors have been reported,163,175,176 and the phosphines in question
are displayed in Figure 1.15. The occurrence of so few examples of this type of chemosensor is somewhat surprising, given the general importance of ferrocenyl phosphines within catalysis and coordination chemistry and suggests that there is significant potential to generate new examples of such compounds.

![Chemical structures of ferrocenyl phosphines](image)

Figure 1.15 Ferrocenyl phosphines capable of acting as electrochemical sensors.

Gholivand175 provided the first of these rare examples, through the preparation of a new Zr ion sensitive PVC (poly vinyl–chloride) electrode coating system, which contained the ferrocenyl ditertiary phosphine dppf as the electrochemically active component. The dppf used in this new electrode coating system was prepared via a known literature method,183 involving treatment of a lithiated solution of ferrocene with two equivalents of chlorodiphenylphosphine. The electrode coating was prepared by dissolution of dppf, PVC, plasticiser and various additives in THF, followed by evaporation of the solvent, to yield an oily concentrate which was coated onto Pyrex or Teflon tubes. The dried coated tubes were subsequently internally filled with electrolyte and conditioned for 1 d, before the electrical responses of the electrodes towards various aqueous solutions of metal ions was tested. In the majority of cases, the introduction of cations [Cu(II), Ni(II), Cr(II), Mn(II), Hg(II), Al(III), Co(II), Pb(II), Cd(II), Zn(II), Ce(II), Y(III) and Pd(II)] to the dppf coating caused a cathodic shift in the E_{1/2} of the immobilized dppf molecules (values ranged between ca. ΔE_{1/2} –0.025 to –0.120 V).175 However, by far the most dramatic response was observed upon addition of Zr ions to the electrode system, which revealed a significant shift of ca. ΔE_{1/2} –0.350 V at high Zr concentrations (0.1 moldm–3). This selective response of the dppf electrode towards zirconium ions was proposed to be due to the strong tendency of the immobilised dppf molecules to bind Zr ions. This change in electrical potential, was also found to be concentration
dependent (linear range 1×10^{-1} to 1×10^{-7} moldm$^{-3}$ of cation) and allowed the dpf electrode to be successfully used to determine the concentration of zirconium ions in tap water and standard metal alloys, to an accuracy of ± 0.004 M.175

The bis(phosphine) amide linked ferrocene 1.52 and its transition metal coordination complexes (1.66 – 1.69) provide the only other examples of phosphine–based ferrocenyl compounds capable of electrosensitive recognition (Figure 1.16).163,176

As previously noted, compound 1.52 was prepared via condensation of the acid chloride, 1,1’–bis(chlorocarbonyl)ferrocene, with two equivalents of 3–aminopropyldiphenylphosphine.163 Whilst the coordination complexes 1.66 – 1.69 were prepared either by ligand displacement (1.66, 1.67 and 1.69) or dimer cleavage (1.68) reactions, involving 1.52 and the respective transition metal precursors.163 The electrochemical properties of 1.52 and 1.66 – 1.69 were all investigated by cyclic voltammetry. Compound 1.52 displayed a single irreversible oxidation potential (E_{pa}) at $E_{pa} 0.440$ V (relative to the $E_{1/2}$ of ferrocene), which was attributed to the ferrocenyl group within the ligand. The irreversible nature of the Fe centre within
was suggested to be due to a stabilising interaction between the lone pairs of the phosphorus atoms and the positively charged ferrocenium moiety.163,184 In contrast, the cyclic voltammograms of \textbf{1.66} – \textbf{1.69} all contained reversible Fe/Fe+ redox couples in addition to those of the coordinated metals.163 Furthermore, the E_{pa} values of \textbf{1.66} – \textbf{1.69} were found to be significantly anodically shifted (shifts to higher voltages) with respect to that of \textbf{1.52}. The chemosensory properties of \textbf{1.52} and \textbf{1.66} – \textbf{1.69} were investigated by the addition of Cl−, Br−, H\textsubscript{2}PO\textsubscript{4}− and HSO\textsubscript{4}− to CH\textsubscript{2}Cl\textsubscript{2}:CH\textsubscript{3}CN (1:1) solutions of \textbf{1.52} and \textbf{1.66} – \textbf{1.69}. All five compounds displayed a significant cathodic shift in their Fe oxidation potential (E_{pa} shifted to lower voltages) upon the introduction of the respective anions. This effect was suggested to be due to the formation of two intermolecular hydrogen bonds between the amide hydrogen atoms of \textbf{1.52} and \textbf{1.66} – \textbf{1.69} and the respective anion, an effect that was confirmed by 1H NMR titration studies. These intermolecular interactions were suggested to allow the bound anions to effectively stabilise the positively charged ferrocenium moieties of \textbf{1.52} and \textbf{1.66} – \textbf{1.69}, through donation of electron density. This donation of charge enhanced the oxidation process, as less energy (or voltage) was required to oxidise Fe(II) to Fe(III), hence the cathodic shift. This effect (cathodic shift, move to lower voltages) was found to be particularly significant in the case of H\textsubscript{2}PO\textsubscript{4}−. As a consequence of these findings, it is apparent that \textbf{1.52} and \textbf{1.66} – \textbf{1.69} could be used to electrochemically detect the presence of anions within organic solutions, through variations in the electrochemical potential of the ferrocenyl redox couple. In contrast, the free ligand \textbf{1.52} could also be used to determine the presence of transition metals via phosphorus coordination.

\textbf{1.4 Thesis Aim}

Whilst there have been many functionalised tertiary phosphines bearing polyaromatic or ferrocenyl groups reported over the years, comparatively few examples have been prepared via Mannich condensation reactions. As a result, the aim of this research is to investigate the scope of this reaction to prepare new examples of such tertiary phosphines, and to explore their coordination chemistry and physical properties.
Chapter 2

The Synthesis, Characterisation and Coordination Chemistry of Novel Tertiary Phosphines Bearing Polyaromatic Groups
2.1 Introduction

The incorporation of polyaromatic groups, such as anthracene and pyrene, into the design of new molecules has long been used as a means of imparting interesting properties upon the resulting compounds, with phosphines bearing such groups displaying notable catalytic, coordination and luminescent properties. The versatility of these medium sized polyaromatic groups (anthracene and pyrene) within phosphine synthesis can be readily illustrated by some of the diverse compounds previously reported in the literature. In these cases the aromatic groups are employed as either substituents directly bonded to phosphorus, a rigid backbone for accessing mono- and di-phosphines or as a substituent indirectly bound to phosphorus through an alkyl or aryl tether (Figure 2.1).

![Figure 2.1](image)

Figure 2.1 The versatility of anthracene and pyrene groups within phosphine synthesis.

As discussed in Chapter 1, one area of significant research involving compounds bearing anthracene and pyrene moieties has been aimed towards the development of molecular devices capable of detecting small molecules and ions (Section 1.2.1). Such molecular species are important as they play a fundamental role in several chemical, biological and environmental processes. Surprisingly, the design of pyrenyl and anthracenyl bearing molecules capable of this chemosensory behaviour has seldom involved a phosphorus donor atom, presumably due to the ease of incorporation of hard donors, such as nitrogen and oxygen, and the susceptibility
of phosphorus(III) to oxidation. However recent work by Wolf and co–workers has shown that ruthenium(II) complexes, containing a coordinated phosphine pyrene ether, can be used to detect carbon monoxide. This suggests that phosphine ligands, and particularly their coordination complexes, maybe a neglected source of new chemosensory devices. To this end, this chapter describes the preparation of a series of new tertiary phosphines based upon the known cation chemosensors (Figure 2.2), with the aim of preparing new examples of phosphine based molecular devices via simple chemical modification. The coordination chemistry of these new tertiary phosphines towards Pt(II), Pd(II), Ni(II), Ru(II), Pd(I), Rh(I), Au(I) and Mo(0) is described, in addition to the luminescent properties of selected non complexed ligands and their coordination compounds. Finally, a preliminary study into the chemosensory behaviour of four Pt(II) complexes, towards a series of readily available metal cations, is also discussed.

![Figure 2.2 Cation chemosensors.](image-url)
2.2 Preparation and Characterisation of the Ditertiary Phosphines 2.1 – 2.4

It has been demonstrated that phosphorus based Mannich condensation reactions are an extremely flexible procedure for preparing functionalised phosphines.1,21,23,58,186 These procedures routinely involve reaction of a primary or secondary amine with a tertiary phosphine synthon, such as Ph\textsubscript{2}PCH\textsubscript{2}OH.21,23 To this end, the new ditertiary phosphines 2.1 – 2.4 were prepared, in good yield (72 – 90%), by double condensation of {RCH\textsubscript{2}N(H)CH\textsubscript{2}}\textsubscript{2} (R = Ph, C\textsubscript{10}H\textsubscript{7}, C\textsubscript{14}H\textsubscript{9} and C\textsubscript{16}H\textsubscript{9}) with 2 equiv. of Ph\textsubscript{2}PCH\textsubscript{2}OH in MeOH at reflux (Equation 2.1). The known secondary amines, {RCH\textsubscript{2}N(H)CH\textsubscript{2}}\textsubscript{2}, were prepared prior to this condensation reaction by the reductive amination of the respective aromatic aldehyde (2 equiv.) with ethylene diamine (1 equiv.) (yields ranged between 96 – 100%).128,187

\[R \overset{\text{2 equiv. Ph}_2\text{PCH}_2\text{OH}}{\underset{\Delta \text{MeOH}}{\rightarrow}} \overset{\text{2.1 - 2.4}}{R} \]

Compounds 2.2 – 2.4 were deposited from solution during the course of the reaction, allowing the phosphines to be isolated in high purity (by 31P{1H} NMR) and yield (range 72 – 90%). In contrast, 2.1 did not crystallise and was frequently obtained instead as a viscous oil following complete removal of the solvent. The purity of 2.1, within this isolated oil was, however, considered sufficient to be used directly in coordination studies [purity 90\% (2.1) by 31P{1H} NMR]. The 31P{1H} NMR spectra of 2.1 – 2.4 (in freeze–thawed CDCl\textsubscript{3}) all exhibited a new phosphorus singlet at \textit{ca.} \(\delta(P)\) –28.0 ppm (Table 2.1), some 18 ppm upfield to that of the Ph\textsubscript{2}PCH\textsubscript{2}OH starting material [\(\delta(P)\) –10.0 ppm, in CDCl\textsubscript{3}]. All four ditertiary phosphines showed evidence
of aerobic oxidation over the course of several hours, when CDCl₃ solutions were left to stand. Careful monitoring of CDCl₃ solutions of 2.1 – 2.4 over a period of three days, by ³¹P{¹H} NMR spectroscopy, revealed the gradual disappearance of the singlets at ca. δ(P) –28.0 ppm and the emergence of new resonances, presumably relating to the respective monoxides and dioxides of 2.1 – 2.4 [δ(P) 13.2 – 39.7 ppm].¹⁸⁸,¹⁸⁹ This susceptibility to aerobic oxidation may be an important consideration during any investigation of the luminescent properties of 2.1 – 2.4, as the phosphorus(III) and phosphorus(V) species may have different luminescent properties (vide infra). All of the ditertiary phosphines were found to be stable in the solid state. In the case of 2.3 no oxidation was observed by ³¹P{¹H} NMR spectroscopy (in freeze–thawed CDCl₃) following exposure of the solid to air for two months.

The ¹H NMR spectra (in freeze–thawed CDCl₃) of 2.1 – 2.4 revealed three characteristic methylene resonances, of equal integral, between δ(CH₂) 2.7 – 4.4 ppm (Table 2.1). Two of these resonances appeared as singlets and were assigned to the analogous hydrogen atoms within the respective parent amines by comparison with literature values,¹³⁰,¹⁸⁵,¹⁸⁷ whilst the newly introduced CH₂P hydrogen atoms resonated as a characteristic doublet between δ(CH₂P) 3.1 – 3.4 ppm (²Jₚₕ 3.2 – 3.6 Hz) (Table 2.1).²²,²³ Furthermore, the absence of a νₙH stretch in the infrared spectra of 2.1 – 2.4 confirmed the ternary nature of both nitrogen atoms within the newly formed ditertiary phosphines.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>δ(NCH₂)</th>
<th>δ(RCH₂N)</th>
<th>δ(CH₂P)</th>
<th>²Jₚₕ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>–27.8</td>
<td>3.64</td>
<td>2.71</td>
<td>3.21</td>
<td>3.6</td>
</tr>
<tr>
<td>2.2</td>
<td>–28.2</td>
<td>4.00</td>
<td>2.78</td>
<td>3.36</td>
<td>3.6</td>
</tr>
<tr>
<td>2.3</td>
<td>–28.1</td>
<td>4.41</td>
<td>2.77</td>
<td>3.11</td>
<td>3.2</td>
</tr>
<tr>
<td>2.4</td>
<td>–27.7</td>
<td>4.23</td>
<td>2.85</td>
<td>3.26</td>
<td>3.2</td>
</tr>
</tbody>
</table>

¹ In freeze–thawed CDCl₃ solution.
² Product found to be 90% pure by ³¹P{¹H} NMR using freeze–thawed CDCl₃.

The fluorescent emission spectra of 2.3 and 2.4 (Figure 2.3) have also been recorded, and are shown along side the emission spectra of their parent amines.
Figure 2.3 Emission spectra of \(\{C_{14}H_9CH_2N(H)CH_2\}_2 \) / 2.3 (left) and \(\{C_{16}H_9CH_2N(H)CH_2\}_2 \) / 2.4 (right), in dry THF solutions containing analyte (5 µM), (slit widths 0.4 mm). \(\lambda_{ex} \) anthracene derivatives = 370 nm, \(\lambda_{ex} \) pyrene derivatives = 344 nm.

The fluorescent emission spectra of 2.3 and 2.4 both exhibited typical monomer emission bands relating to the respective fluorophores,\(^{77,79-81}\) with little change in \(\lambda_{max} \) compared to the emissions of their respective parent amines (Figure 2.3, Table 2.2).\(^{116,119,128,187}\) Weak excimer emissions were observed for the parent amines (ca. \(\lambda_{em} \) 500 and 440 nm respectively), whilst 2.3 and 2.4 afforded no excimer emissions at the concentration studied (5 µM), suggesting that the introduction of the CH\(_2\)PPh\(_2\) moieties sterically hinders the formation of excimers. The quantum yield (\(\Phi \), photons emitted / photons absorbed) of 2.4 was found to be significantly weaker than that of its parent amine, a change that is thought to be due to the incorporation of the CH\(_2\)PPh\(_2\) moieties (Figure 2.3, Table 2.2). One tentative suggestion for this quenching effect, upon incorporation of the CH\(_2\)PPh\(_2\) moieties (particularly in the case of 2.4), is an enhancement of the photoinduced electron transfer (PET) process known to occur within similar amino anthracenyl and pyrenyl systems.\(^{129,190,191}\)
Table 2.2 λ_{max} (nm) and Φ data for 2.3, 2.4 and their parent amines.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max}</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\text{C}{14}\text{H}{9}\text{CH}_2\text{N(H)CH}_2}_2$</td>
<td>391, 414, 439, 466</td>
<td>0.04</td>
</tr>
<tr>
<td>2.3</td>
<td>393, 415, 440, 469</td>
<td>0.03</td>
</tr>
<tr>
<td>${\text{C}{16}\text{H}{9}\text{CH}_2\text{N(H)CH}_2}_2$</td>
<td>376, 387, 396, 416</td>
<td>0.82</td>
</tr>
<tr>
<td>2.4</td>
<td>376, 387, 396, 416</td>
<td>0.19</td>
</tr>
</tbody>
</table>

λ_{ex} anthracene derivatives = 370 nm, λ_{ex} pyrene derivatives = 344 nm.

This process leads to the reformation of the ground state of the fluorophore's via a non–radiative decay pathway involving electron transfer from the HOMO of an electron donor (usually an amino group) to the HOMO of an excited fluorophore (Figure 2.4).190 It is therefore reasonable to speculate that modification of the amino group may affect the PET process in some manner, in this case enhancing it.

![Figure 2.4 PET process involving the HOMO and LUMO of the fluorophores and an external molecular orbital (normally a nitrogen lone pair).](image)

It is unclear why this proposed PET enhancement is not as significant for 2.3, compared to 2.4, suggesting that any change in the PET process is specific to the pyrene fluorophores.192 The enhancement of PET for 2.4 may be a product of better orbital overlap or enhanced intermolecular quenching, however further work is needed to support these suggestions.
The molecular structure of 2.4 has also been determined by single crystal X–ray diffraction (Section 2.2.1).

2.2.1 The Molecular Structure of 2.4

Colourless crystalline plates suitable for single crystal X–ray diffraction were obtained by layering MeOH onto a CH₂Cl₂ solution of 2.4. The molecular structure of 2.4 was determined by single crystal X–ray diffraction (Figure 2.5), selected bond lengths and angles are given in Table 2.3.

![Diagram of the molecular structure of 2.4.](image)

Figure 2.5 The solid solution of 2.4 and its oxide 2.6 [minor component oxide freely refined to 19.77(3)% occupancy, highlighted by dashed bond]. All hydrogen atoms, except H(2) and H(2'), have been omitted for clarity. Symmetry operator for equivalent atoms, ′ = −x+2, −y+1, −z.

The molecular structure of 2.4 shows the phosphine lies on a crystallographic inversion centre located at the mid–point of the ethylenediamine backbone. As a consequence, only half of a molecule of 2.4 and a MeOH molecule of crystallisation
were found within the asymmetric unit. The molecular structure of 2.4 also revealed the phosphorus atom, P(1), to be partially oxidised to give a “solid solution” containing 2.4 and its oxide (2.6) [occupancy of minor component oxide freely refined to 19.77(3)%]. When present, the phosphorus(V) atom was found to adopt a distorted tetrahedral arrangement [C–P–O angles ranged between 111.50(3) – 120.50(3)º], whilst the phosphorus(III) atom was found to adopt a distorted trigonal pyramidal geometry, as indicated by the relevant C–P–C angles [C–P–C ranged between 100.01(8) – 102.49(8)º (Table 2.3)]. The nitrogen atom, N(1), was also found to adopt a distorted trigonal pyramidal geometry [sum of component angles = 331º]. In the case of the minor component oxide 2.6, the P=O bond length was found to be 1.331(6) Å which, following a search of the CSD (Cambridge Structural Database), was found to be short with respect to O=PPh₃ [O=PPh₃ 1.492 Å]. This short P=O bond is probably associated with the occurrence of 2.6 as a minor disorder component. The assignment of 2.6 was however supported by electron difference mapping and intermolecular bonding (vide infra). When present, the oxygen atom of the P=O moiety was also found to form an intermolecular hydrogen bond to the neighbouring MeOH of crystallisation [O(1)–O(2) 2.775(8) Å, O(1)···H(2) 1.94 Å, O(2)–H(2A)···O(1) 171º] (Figure 2.5). Further analysis of the intermolecular packing revealed two π····π interactions between neighbouring molecules of 2.4, or 2.6. These involved, a phenyl group on one face [shortest separation = 3.32 Å, mean separation = 3.62 Å] and another pyrene group on the opposite face [shortest separation = 3.45 Å, mean separation = 3.59 Å, c.f. graphite 3.45 Å layer separation] (Figure 2.6). The mean plane of the phenyl group was found to be tilted (ca. 3.5º) with respect to the neighbouring pyrene group, whilst the two pyrene groups were found to be co-planar.
Figure 2.6 Packing plot for the solid solution of 2.4 and 2.6. Intermolecular $\pi\cdots\pi$ interactions highlighted by the dashed red box.

Table 2.3 Selected bond lengths (Å) and angles (°) for the solid solution of 2.4 and 2.6.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–O(1)</td>
<td>1.3310(6)</td>
<td>O(1)–P(1)–C(1) 111.50(3)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.8356(18)</td>
<td>O(1)–P(1)–C(7) 120.50(3)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.8294(17)</td>
<td>O(1)–P(1)–C(13) 117.80(3)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.8479(18)</td>
<td>C(7)–P(1)–C(1) 102.49(8)</td>
</tr>
<tr>
<td>C(13)–N(1)</td>
<td>1.467(2)</td>
<td>C(1)–P(1)–C(13) 100.01(8)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.472(2)</td>
<td>C(7)–P(1)–C(13) 101.72(8)</td>
</tr>
<tr>
<td>C(14)–C(14')</td>
<td>1.517(3)</td>
<td>N(1)–C(13)–P(1) 110.65(11)</td>
</tr>
<tr>
<td>N(1)–C(15)</td>
<td>1.479(2)</td>
<td>C(13)–N(1)–C(14) 110.66(13)</td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.510(2)</td>
<td>C(13)–N(1)–C(15) 109.21(13)</td>
</tr>
<tr>
<td>C(14)–N(1)–C(14')</td>
<td></td>
<td>C(14)–N(1)–C(15) 111.34(13)</td>
</tr>
<tr>
<td>N(1)–C(14)–C(14')</td>
<td></td>
<td>N(1)–C(14)–C(15) 111.52(17)</td>
</tr>
<tr>
<td>N(1)–C(15)–C(16)</td>
<td></td>
<td>N(1)–C(15)–C(16) 112.99(13)</td>
</tr>
</tbody>
</table>

Symmetry operation for equivalent atoms, $'=−x+2,−y+1,−z$.
2.3 The Chemical Oxidation of 2.3 and 2.4

Following the observed susceptibility of 2.1 – 2.4 to aerobic oxidation in CDCl₃ (by ³¹P{¹H} NMR, Section 2.2) and CH₂Cl₂ solutions (Section 2.2.1), samples of the diphosphine oxides 2.5 and 2.6 were deliberately prepared, in good yield, by treatment of 2.3 and 2.4 (in CH₂Cl₂) with hydrogen peroxide at ambient temperature (Equation 2.2). In contrast to 2.3 and 2.4, 2.6 was found to be insoluble in common deuterated solvents precluding any NMR measurement, whilst 2.5 was found to be readily soluble only in (CD₃)₂SO. The ³¹P{¹H} NMR spectrum of 2.5 showed a singlet resonance at δ(P) 26.7 ppm, some 40 ppm downfield to that of 2.3, indicating both phosphorus atoms had been oxidised.¹⁸⁸,¹⁸⁹ The ¹H NMR spectrum [in (CD₃)₂SO] of 2.5 contained the anticipated resonances relating to the oxidised diphosphine, with little change in δ(CH₂) being observed by comparison with the ¹H NMR spectrum of 2.3.

![Reaction scheme](Equation 2.2)

The infrared spectra of 2.5 and 2.6 both showed characteristically strong P=O absorption bands at νP=O 1171 and 1188 cm⁻¹ respectively.¹⁸⁸,¹⁸⁹,¹⁹⁴ The preparation of 2.5 was further confirmed by single crystal X–ray diffraction (Section 2.3.1).

The fluorescent emission spectra of 2.5 and 2.6 (in dry THF) revealed typical monomer emission bands relating to the respective fluorophores by comparison with 2.3 and 2.4 (Figure 2.7 and Table 2.4). The emissions were, however, found to be
significantly weaker than their diphosphine counterparts. This is presumably due to quenching of the excited state of the respective fluorophore by the newly formed –CH2P(O)Ph2 groups. Unfortunately, the origins of such a nonradiative decay process were not apparent following a search of the literature. However, the occurrence of a PET or charge transfer (CT) process should not be ruled out. The involvement of the –CH2P(O)Ph2 groups in some form of nonradiative decay process was however supported by consecutive fluorescent emission spectra of 2.3 (and 2.4), taken over a period of three hours, which revealed significantly weakened emissions following 1 – 3 h of exposure to air; an effect presumably due to the progressive oxidation of the tertiary phosphine groups within 2.3 and 2.4 over time (Figure 2.7). This partial oxidation, is also in agreement with the time resolved 31P{1H} NMR spectroscopy study previously discussed (Section 2.2).

![Fluorescence emission spectrum of 2.5 and the time resolved emission spectra for 2.3 over 3h (in THF); concentration: 5 µM, λex 370 nm, slit width: 0.4 mm, samples degassed with nitrogen prior to recording emission spectra, samples left to stand in air between measurements.](image)

Figure 2.7 Fluorescence emission spectrum of 2.5 and the time resolved emission spectra for 2.3 over 3h (in THF); concentration: 5 µM, λex 370 nm, slit width: 0.4 mm, samples degassed with nitrogen prior to recording emission spectra, samples left to stand in air between measurements.
Table 2.4 λ_{max} (nm) and Φ data for 2.3 – 2.6.

<table>
<thead>
<tr>
<th>Compounda,b</th>
<th>λ_{max}</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3a</td>
<td>393, 415, 440</td>
<td>0.03</td>
</tr>
<tr>
<td>2.5a</td>
<td>398, 415, 437</td>
<td>0.01</td>
</tr>
<tr>
<td>2.4b</td>
<td>376, 387, 396, 416</td>
<td>0.19</td>
</tr>
<tr>
<td>2.6b</td>
<td>376, 387, 396, 415</td>
<td>0.05</td>
</tr>
</tbody>
</table>

$^a \lambda_{\text{ex}} = 370$ nm, $^b \lambda_{\text{ex}} = 344$ nm.

This reduction in fluorescence upon oxidation is some cause for concern, as any potential fluorescence based applications involving the free phosphines would be significantly affected. Coordination of the phosphorus lone pair should offer a means of protection against aerobic oxidation,81,83 whilst also allowing 2.1 – 2.4 to be used as ligands toward the preparation of new phosphorus containing molecular devices.77,84,195
2.3.1 The Molecular Structure of 2.5

The molecular structure of 2.5 was determined from colourless crystalline blocks obtained from a (CD$_3$)$_2$SO solution of 2.5 (Figure 2.8), selected bond lengths and angles are given in Table 2.5.

![Molecular structure of 2.5](image)

Figure 2.8 Molecular structure of 2.5. All hydrogen atoms and (CD$_3$)$_2$SO molecules of crystallisation have been removed for clarity. Symmetry operator for equivalent atoms $' = -x, -y+2, -z+1$.

The molecular structure of 2.5 showed the diphosphine oxide to adopt an “open” conformation in the solid state, similar to that displayed by the previously discussed solid solution of 2.4 and 2.6 (Section 2.2.1) [P(1)···P(1’) ca. 8.517 (2.5) and 8.196 (2.6) Å]. The asymmetric unit was found to contain half a molecule of 2.5 and one and a half molecules of (CD$_3$)$_2$SO of crystallisation. The phosphorus atom was found to adopt a distorted tetrahedral geometry, as indicated by the relevant O–P–C angles [O–P–C ranged between 112.27(7) – 114.92(7)°]. The nitrogen atom adopted a distorted trigonal pyramidal geometry [sum of component angles = 331°]. The P=O bond length [P=O, 1.4912(11) Å] was found to compare well with other P=O bond
lengths found during a more detailed search of the CSD [74 hits, mean P=O 1.485 Å, range of values 1.426 to 1.523 Å, c.f. O=PPh3 1.492 Å]. No inter or intramolecular interactions of note were observed in the molecular structure of 2.5.

Table 2.5 Selected bond lengths (Å) and angles (°) for 2.5.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–O(1)</td>
<td>1.4912(11)</td>
<td>O(1)–P(1)–C(1) 112.27(7)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.8119(15)</td>
<td>O(1)–P(1)–C(7) 112.47(7)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.7966(16)</td>
<td>O(1)–P(1)–C(13) 114.92(7)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.8217(16)</td>
<td>C(7)–P(1)–C(1) 106.46(7)</td>
</tr>
<tr>
<td>C(13)–N(1)</td>
<td>1.4632(19)</td>
<td>C(1)–P(1)–C(13) 100.95(7)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.474(2)</td>
<td>C(7)–P(1)–C(13) 108.89(8)</td>
</tr>
<tr>
<td>C(14)–C(14')</td>
<td>1.517(3)</td>
<td>N(1)–C(13)–P(1) 117.35(11)</td>
</tr>
<tr>
<td>N(1)–C(15)</td>
<td>1.475(2)</td>
<td>C(13)–N(1)–C(14) 109.82(12)</td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.513(2)</td>
<td>C(13)–N(1)–C(15) 110.53(13)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(14)–N(1)–C(15) 110.35(12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)–C(14)–C(14') 110.71(17)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(1)–C(15)–C(16) 112.21(13)</td>
</tr>
</tbody>
</table>

Symmetry operation for equivalent atoms, ′ = −x,−y+2,−z+1.

2.4 The Coordination Chemistry of 2.1 – 2.4 to divalent group 10 metals

The coordination chemistry of 2.1 – 2.4 was initially investigated by reaction with a series of readily available Group 10 metal dichlorides, MCl₂(cod) (M = Pt or Pd) and NiCl₂·6H₂O (Equation 2.3). Ligand displacement of cod from PtCl₂(cod) by an equimolar amount of 2.1 – 2.4, in CH₂Cl₂ at ambient temperature, gave the platinum(II) complexes 2.7 – 2.10 in reasonable to good yield (range 43 – 87%) (Equation 2.3).
The 31P{1H} NMR spectra (in CDCl$_3$) of 2.7 – 2.10 all exhibited a new phosphorus singlet resonance between δ(P) –1.3 to –3.8 ppm (Table 2.6), some 25 ppm downfield from that observed for the free ligands. The new phosphorus resonances were all flanked by equidistant 195Pt satellites [$^1J_{PtP}$ 3593 – 3633 Hz]. The characteristically large $^1J_{PtP}$ coupling constant suggests that the platinum(II) dichloride complexes adopt a cis conformation in solution, this was also verified in the solid state by X-ray crystallography.58,186,196

Table 2.6 Selected 31P{1H}, 1H NMR [δ in ppm, J in Hz] and FT–IR data (cm$^{-1}$) for 2.7 – 2.10.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>$^1J_{PtP}$</th>
<th>δ(PCH$_2$)</th>
<th>$^3J_{PHi}$</th>
<th>δ(CH$_2$)</th>
<th>νPtCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>–1.3</td>
<td>3633</td>
<td>4.02</td>
<td>39.2</td>
<td>3.52, 3.35</td>
<td>316, 290</td>
</tr>
<tr>
<td>2.8</td>
<td>–3.6</td>
<td>3606</td>
<td>4.10</td>
<td>40.8</td>
<td>3.94, 3.97</td>
<td>317, 292</td>
</tr>
<tr>
<td>2.9</td>
<td>–2.7</td>
<td>3593</td>
<td>4.11</td>
<td>37.6</td>
<td>4.26, 3.92</td>
<td>318, 294</td>
</tr>
<tr>
<td>2.10</td>
<td>–3.8</td>
<td>3620</td>
<td>4.11</td>
<td>36.0</td>
<td>3.99, 3.95</td>
<td>316, 292</td>
</tr>
</tbody>
</table>

The 1H NMR spectra of 2.7 – 2.10 all contained the anticipated resonances relating to the coordinated ligands (Table 2.6). However, in all four cases, the characteristic δ(CH$_2$P) resonance appeared as a singlet flanked by broad equidistant satellites [δ(CH$_2$P) 4.02 – 4.11 ppm]. This splitting pattern is consistent with platinum(II)
coordination and can be explained as follows; the equidistant satellites are assigned to a \(^3J\text{PtH}\) coupling \([\^3J\text{PtH} \; 36.0 \text{ – } 40.8 \text{ Hz}]\) whilst the \(^2J\text{PH}\) couplings, previously observed in the \(^1\text{H}\) NMR spectra of the free ligands \([\delta(\text{CH}_2\text{P}) \; 3.11 \text{ – } 3.36 \text{ ppm}, \^2J\text{PH} \; 3.2 \text{ – } 3.6 \text{ Hz}]\), were unresolved when recorded on a Bruker DPX–400 FT spectrometer.

The FT–IR spectra of 2.7 – 2.10 displayed two characteristic \(\nu_{\text{PtCl}}\) absorptions bands between 290 – 318 cm\(^{-1}\), which is in agreement with values previously reported for cis–platinum(II) dichloride complexes of diphosphines.\(^{1,58,186,196}\) The positive ion FAB mass spectroscopy results for 2.7 – 2.10 also revealed the expected molecular ions and fragmentation patterns \{MS (FAB\(^+\)): \(m/z\) 903, 1103, 1151 [M\(^+\)] (2.7, 2.9, 2.10); 867, 967, 1067 and 1115 [M–Cl\(^+\)](2.7 – 2.10)\}. Moreover the elemental analysis results for 2.7 – 2.10 were also found to be satisfactory (see Experimental Section). The molecular structures of 2.7 – 2.10 have also been determined by single crystal X–Ray diffraction (Section 2.4.1).

In contrast to the platinum chemistry, reaction of 2.1 – 2.4 with an equimolar amount of PdCl\(_2\)(cod) in dichloromethane gave impure samples of 2.11 – 2.14, by solution \(^{31}\text{P}\{^1\text{H}\}\) NMR spectroscopy. The \(^{31}\text{P}\{^1\text{H}\}\) NMR spectra of 2.11 – 2.14 revealed the presence of several major phosphorus–containing species downfield of those of the free ligands \([\delta(\text{P}) \; 4.2 \text{ – } 30.4 \text{ ppm}]\). The major species were tentatively assigned to either the cis or trans–isomers of PdCl\(_2\)(2.1 – 2.4) (possibly monomeric or polymeric).\(^{57}\) Further inspection of the \(^{31}\text{P}\{^1\text{H}\}\) NMR spectra of the isolated solids, revealed two further doublets at significant downfield shifts \([\text{ca.} \; \delta(\text{P}) \; 159.0 \text{ and } 79.0 \text{ ppm}, \^2J\text{PP} \; 16 \text{ Hz}]\). This, in conjunction with the observation of a new doublet at \(\delta(\text{CH}_2) \; 3.41 \text{ ppm} \; (\^2J\text{PH} \; 6.8 \text{ Hz})\) in the \(^1\text{H}\) NMR spectra of 2.11 – 2.14, and the time resolved \(^{31}\text{P}\{^1\text{H}\}\) NMR spectroscopy studies discussed for the analogous ferrocenyl complex 3.7 (Section 3.4.1), led us to speculate that 2.11 – 2.14 undergo slow decomposition to give the five membered chelate complex PdCl\(_2\)(Ph\(_2\)PCH\(_2\)OPPh\(_2\)) by elimination of some, as of yet unidentified, arylamine byproduct(s).\(^{57}\) Support for the nonsymmetric nature of this coordinated bidentate phosphorus(III) ligand comes from previous studies with Ph\(_2\)PCH\(_2\)OPPh\(_2\) and, \(^{197}\) more recently RR’POCH\(_2\)P(\(\text{CH}_2\text{OH})\(_2\) (R, R’ = Ph, Cy),\(^{198}\) which show good agreement with the \(\delta(\text{P})\) and \(^2J\text{PP}\) coupling constants observed. Further characterisation of 2.11 – 2.14
was hampered by this decomposition process, with numerous attempts to purify the crude material or to prepare crystals suitable for X–ray diffraction proving fruitless.

The synthesis of 2.15 (Equation 2.3) was conducted in a similar manner to that described by Pringle et al., during the investigation of the coordination chemistry of the trans–spanning ditertiary phosphine \(o–C_6H_4\{CH_2P(C_8H_{14})\}_2 \), with \(H_2O \) being displaced from the nickel centre by reflux with an equimolar amount of 2.3. The \(^{31}P\{^1H\} \) NMR spectrum (in CDCl\(_3\)) of 2.15 contained a new singlet at \(\delta(P) \) 15.3 ppm, some 43 ppm downfield to that of 2.3. The \(^1H \) NMR spectrum of 2.15 contained the characteristic resonances associated with the coordinated ligand, when compared with the \(^1H \) NMR spectrum of 2.3. The \(\delta(CH_2P) \) resonance of 2.15 was, however, notably different to that observed for 2.3 [\(\Delta \delta(CH_2P) \) 1.08 ppm, \(\Delta^2J_{PH} \) 1.2 Hz], presumably due to coordination. Furthermore the elemental analysis result for 2.15 showed good agreement with the formula 2.15·1.25CH\(_2\)Cl\(_2\). Unfortunately, attempts to obtain crystals suitable for X–ray crystallography, to confirm the exact identity of this particular structural isomer, proved fruitless.

2.4.1 Molecular structures of 2.7 – 2.10

Colourless crystals suitable for X–ray crystallography were grown by either layering hexane (2.7) or MeOH (2.8) onto a CH\(_2\)Cl\(_2\) solution of the respective complexes or by slow vapour diffusion of Et\(_2\)O into a CH\(_2\)Cl\(_2\) solution of 2.9 and 2.10. The molecular structures of 2.7 and 2.10 were determined in the home laboratory, whilst the molecular structure of 2.8 was determined from reflection data collected by the EPSRC National Crystallography Service (both using a MoK\(_\alpha\) radiation source). The molecular structure of 2.9 was determined using synchrotron radiation due to the small size of the crystals (at least one dimension < 0.05 mm). Selected bond lengths and angles are given in Tables 2.7a and 2.7b.
Figure 2.9 The molecular structure of 2.10. All hydrogen atoms except H(26A) and H(26B) have been removed for clarity.

Figure 2.9 shows 2.10 as a typical example of this family of platinum(II) complexes (2.7 – 2.10). Each complex adopted a pseudo square planar geometry with respect to the platinum(II) centre [P(1)–Pt(1)–Cl(2) 169.33(2) – 172.51(4)° and P(2)–Pt(1)–Cl(1) 168.42(2) – 172.27(4)°], with 2.1 – 2.4 coordinating the metal via both phosphorus atoms to form a nine–membered cis–chelate ring [bite angle range: P(1)–Pt(1)–P(2) 94.87(10) – 99.04(4)°]. The phosphorus donor atoms were all found to adopt a distorted tetrahedral geometry, as indicated by the relevant C–P–Pt angles [C–P–Pt ranged between 105.59(10) – 121.81(14)°], whilst the nitrogen atoms adopted a distorted trigonal pyramidal arrangement [sum of component angles for N(1) and N(2) = 332°, 343° (2.7), 328°, 349° (2.8), 331°, 345° (2.9) and 331°, 344° (2.10), see Tables 2.7a and 2.7b].

All four complexes were found to contain one intramolecular C(26)–H(26A)···Pt(1) interaction [C(26)···Pt(1) 3.428 – 3.718 Å, H(26A)···Pt(1) 2.51 – 2.81 Å, C(26)–H(26A)···Pt(1) 152.5 – 153.5°], similar to that observed for the analogous platinum(II) dichloride complex 3.4 (Section 3.3.1) and in other medium ring sized
palladium(II) and platinum(II) complexes.199,200 This C(26)–H(26A)···Pt(1) interaction is thought to assist the PtP\textsubscript{2}C\textsubscript{4}N\textsubscript{2} ring to adopt a more constrained conformation than may be otherwise expected (Figure 2.10). This axial interaction between the C\textsubscript{sp3}–H of the coordinated ligand backbone and the platinum(II) centre is not significantly mirrored in the 1H NMR spectra of 2.7 -- 2.10, in which there is no evidence for any 1J\textsubscript{PtH} coupling nor notable shift in δ(CH\textsubscript{2}) \textit{[ca. $\Delta\delta$(CH\textsubscript{2}) 0.3 ppm]}.

\textbf{Figure 2.10} The PtP\textsubscript{2}C\textsubscript{4}N\textsubscript{2} ring conformation adopted by 2.7 -- 2.10. All hydrogen atoms, except H(26A) and H(26B), and C\textsubscript{6}H\textsubscript{5} moieties have been removed for clarity.

Further analysis of the molecular structure of 2.10 revealed a head--to--tail intermolecular packing arrangement, where one of the pyrene groups of 2.10 is involved in a combination of both, slipped π····π stacking [mean separation = 3.69 Å, minimum separation = 3.49 Å, \textit{c.f.} graphite layer separation, 3.45 Å]92 and four C(29)–H(29X)···C\textsubscript{6}H\textsubscript{3} π····acceptor interactions [C(29)···Ar 3.865 -- 3.918 Å, H(29X)···Ar 2.88 -- 2.93 Å, C(29)–H(29X)···Ar 115 -- 152°, X = A -- D], with a neighbouring molecule of 2.10 (Figure 2.11).
Figure 2.11 Intermolecular packing between neighbouring molecules of 2.10 in the solid state (left) and similar anti–parallel stacking between neighbouring benzyl groups (right).

Following a search of the literature, similar packing interactions have been analysed by Ciunik and Jarosz,201 who found anti–parallel benzyl groups to form diads (Figure 2.11, right) [mean separation \textit{ca.} 3.4 – 3.7 Å, C–H···Ph \textit{ca.} 2.5 – 3.0 Å, C–H···Ph \textit{ca.} 120 – 160°]. No similar intermolecular packing arrangements were observed in the molecular structures of 2.7 – 2.9, suggesting that the pyrene groups of 2.10 are the primary influence upon this novel type of solid state packing. Furthermore, following a search of the CSD, only five additional examples of nine–membered \textit{cis}–chelate complexes have been previously reported,202-205 none of which were found to contain a square planar platinum(II) centre. As a result, complexes 2.7 – 2.10 are considered to be rare examples containing this ring system.
Table 2.7a Selected bond lengths (Å) and angles (°) for 2.7 – 2.10.

<table>
<thead>
<tr>
<th></th>
<th>2.7</th>
<th>2.8</th>
<th>2.9</th>
<th>2.10</th>
<th>2.7</th>
<th>2.8</th>
<th>2.9</th>
<th>2.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.3497(11)</td>
<td>2.3489(9)</td>
<td>2.358(3)</td>
<td>2.3604(5)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
<td>85.34(4)</td>
<td>88.64(4)</td>
<td>85.33(10)</td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.3478(11)</td>
<td>2.3473(11)</td>
<td>2.345(2)</td>
<td>2.3398(6)</td>
<td>P(2)–Pt(1)–Cl(2)</td>
<td>91.26(4)</td>
<td>85.14(4)</td>
<td>93.15(10)</td>
</tr>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.2564(10)</td>
<td>2.2855(10)</td>
<td>2.255(3)</td>
<td>2.2472(5)</td>
<td>P(1)–Pt(1)–P(2)</td>
<td>96.55(4)</td>
<td>99.04(4)</td>
<td>94.87(10)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.2480(10)</td>
<td>2.2855(10)</td>
<td>2.254(3)</td>
<td>2.2435(5)</td>
<td>Cl(2)–Pt(1)–Cl(1)</td>
<td>87.92(4)</td>
<td>87.32(4)</td>
<td>87.06(10)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.820(4)</td>
<td>1.811(5)</td>
<td>1.814(11)</td>
<td>1.826(2)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>169.68(4)</td>
<td>172.51(4)</td>
<td>171.76(10)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.831(4)</td>
<td>1.830(4)</td>
<td>1.827(10)</td>
<td>1.824(2)</td>
<td>P(2)–Pt(1)–Cl(1)</td>
<td>171.50(4)</td>
<td>172.27(4)</td>
<td>170.68(10)</td>
</tr>
<tr>
<td>P(1)–C(25)</td>
<td>1.846(4)</td>
<td>1.858(4)</td>
<td>1.848(9)</td>
<td>1.837(2)</td>
<td>P(2)–Pt(1)–H(26A)</td>
<td>80</td>
<td>69</td>
<td>84</td>
</tr>
<tr>
<td>C(25)–N(1)</td>
<td>1.462(5)</td>
<td>1.448(5)</td>
<td>1.457(12)</td>
<td>1.462(3)</td>
<td>P(1)–Pt(1)–H(26A)</td>
<td>73</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>N(1)–C(26)</td>
<td>1.483(5)</td>
<td>1.486(6)</td>
<td>1.493(11)</td>
<td>1.480(3)</td>
<td>Cl(2)–Pt(1)–H(26A)</td>
<td>115</td>
<td>118</td>
<td>107</td>
</tr>
<tr>
<td>N(1)–C(29)</td>
<td>1.485(5)</td>
<td>1.484(5)</td>
<td>1.497(12)</td>
<td>1.490(3)</td>
<td>Cl(1)–Pt(1)–H(26A)</td>
<td>92</td>
<td>114</td>
<td>87</td>
</tr>
<tr>
<td>C(26)–C(27)</td>
<td>1.530(6)</td>
<td>1.511(6)</td>
<td>1.519(14)</td>
<td>1.518(3)</td>
<td>C(1)–P(1)–Pt(1)</td>
<td>119.54(13)</td>
<td>110.53(13)</td>
<td>120.6(3)</td>
</tr>
<tr>
<td>C(27)–N(2)</td>
<td>1.459(5)</td>
<td>1.439(8)</td>
<td>1.477(13)</td>
<td>1.473(3)</td>
<td>C(7)–Pt(1)–Pt(1)</td>
<td>112.53(14)</td>
<td>115.07(14)</td>
<td>112.7(4)</td>
</tr>
<tr>
<td>N(2)–C(X)a</td>
<td>1.472(5)</td>
<td>1.498(7)</td>
<td>1.472(13)</td>
<td>1.471(3)</td>
<td>Pt(1)–P(1)–C(25)</td>
<td>113.10(14)</td>
<td>120.09(14)</td>
<td>113.1(3)</td>
</tr>
<tr>
<td>N(2)–C(28)</td>
<td>1.468(5)</td>
<td>1.455(7)</td>
<td>1.450(12)</td>
<td>1.462(3)</td>
<td>P(1)–C(25)–N(1)</td>
<td>113.1(3)</td>
<td>115.2(3)</td>
<td>113.4(7)</td>
</tr>
</tbody>
</table>

\[a \text{N}(2)–\text{C}(X), \text{C}(27)–\text{N}(2)–\text{C}(X) \text{ and } \text{C}(28)–\text{N}(2)–\text{C}(X) \text{ } \text{X} = 36 \text{ (2.7), 40 (2.8), 44 (2.9), 46 (2.10).} \]
Table 2.7b Selected bond lengths (Å) and angles (°) for 2.7 – 2.10.

<table>
<thead>
<tr>
<th></th>
<th>2.7</th>
<th>2.8</th>
<th>2.9</th>
<th>2.10</th>
<th>2.7</th>
<th>2.8</th>
<th>2.9</th>
<th>2.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(2)–C(13)</td>
<td>1.811(4)</td>
<td>1.832(4)</td>
<td>1.812(10)</td>
<td>1.827(2)</td>
<td>C(25)–N(1)–C(26)</td>
<td>113.7(3)</td>
<td>108.5(3)</td>
<td>114.9(8)</td>
</tr>
<tr>
<td>P(2)–C(19)</td>
<td>1.824(4)</td>
<td>1.828(5)</td>
<td>1.846(10)</td>
<td>1.810(2)</td>
<td>C(29)–N(1)–C(26)</td>
<td>108.2(3)</td>
<td>108.2(3)</td>
<td>105.6(7)</td>
</tr>
<tr>
<td>C(28)–P(2)</td>
<td>1.864(4)</td>
<td>1.894(4)</td>
<td>1.869(10)</td>
<td>1.870(2)</td>
<td>C(25)–N(1)–C(29)</td>
<td>110.1(3)</td>
<td>111.0(3)</td>
<td>110.0(8)</td>
</tr>
<tr>
<td>Pt(1)···H(26A)</td>
<td>2.64</td>
<td>2.81</td>
<td>2.51</td>
<td>2.62</td>
<td>N(1)–C(26)–C(27)</td>
<td>111.2(3)</td>
<td>115.3(4)</td>
<td>111.6(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(26)–C(27)–N(2)</td>
<td>112.1(3)</td>
<td>115.4(5)</td>
<td>116.2(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(27)–N(2)–C(28)</td>
<td>115.6(3)</td>
<td>121.8(4)</td>
<td>116.2(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(28)–N(2)–C(X)(^a)</td>
<td>113.8(3)</td>
<td>117.3(4)</td>
<td>115.5(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(27)–N(2)–C(X)(^a)</td>
<td>113.9(3)</td>
<td>109.9(5)</td>
<td>113.4(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N(2)–C(28)–P(2)</td>
<td>108.3(3)</td>
<td>122.4(4)</td>
<td>111.8(7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(28)–P(2)–Pt(1)</td>
<td>114.30(14)</td>
<td>121.81(14)</td>
<td>111.5(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(19)–P(2)–Pt(1)</td>
<td>116.65(14)</td>
<td>112.20(17)</td>
<td>115.3(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C(13)–P(2)–Pt(1)</td>
<td>113.13(15)</td>
<td>112.22(17)</td>
<td>114.7(4)</td>
</tr>
</tbody>
</table>

\(^a\) N(2)–C(X), C(27)–N(2)–C(X) and C(28)–N(2)–C(X) X = 36 (2.7), 40 (2.8), 44 (2.9), 46 (2.10).
2.4.2 The Coordination Chemistry of 2.2 – 2.4 to Palladium(II) and Rhodium(I)

The coordination chemistry of 2.2 – 2.4 was explored further by treatment with Pd(CH₃)Cl(cod) (1 equiv.) and {Rh(µ-Cl)(CO)₂}₂ (0.5 equiv.), to afford the complexes 2.16 – 2.19 (Equation 2.4). The trans disposition of 2.16 – 2.19 about the palladium(I) and rhodium(I) centres is of particular interest, as ligands capable of trans–spanning transition metal centres are thought to have potential catalytic applications due to their ability to readily access the various bite angles, at low strain, needed during the formation of catalytic intermediates.⁹³

\[
\begin{align*}
R &= \text{N} \quad \text{N} \\
\text{PPh}_2 \quad \text{Ph}_2 \text{P} \\
M &= \text{Pd, } X = \text{CH}_3 \\
M &= \text{Rh, } X = \text{CO} \\
2.16 \quad 2.17 \quad 2.18 \quad 2.19
\end{align*}
\]

Equation 2.4 (i) Pd(CH₃)Cl(cod) (2.16 - 2.18); (ii) 0.5{Rh(µ-Cl)(CO)₂}₂ (2.19).

The reactions of 2.2 – 2.4 with equimolar amounts of Pd(CH₃)Cl(cod), gave impure samples of 2.16 – 2.18 which, by solution 31P{1H} NMR spectroscopy, revealed the presence of several phosphorus containing species downfield of those of the free ligands [δ(P) 8.6 – 32.9 ppm]. The major species in all three cases, resonated as a singlet between δ(P) 13.9 – 14.3 ppm and accounted for ca. 66% of the total 31P{1H} NMR active nuclei. These major species, were tentatively assigned to the trans isomer of Pd(CH₃)Cl(2.2 – 2.4) by comparison with the 31P{1H} NMR spectrum of the analogous ferrocenyl complex 3.9, [δ(P) 13.0 ppm, $\Delta\delta$ ca. 1 ppm] (Section 3.4.1).⁵⁷ The 1H NMR
spectra (in CDCl₃) of 2.16 – 2.18 also supported the proposed symmetrical trans–P–PdCl(CH₃)–P disposition, with the presence of a major new CH₃ triplet resonance at δ(CH₃) ~0.19 to 1.21 ppm, (JₚH ranged between 12.4 – 14.0 Hz). The preparation, and trans arrangement, of 2.17 was further supported by single crystal X–ray diffraction (Sections 2.4.2.1). The nature of the minor singlets within the 3¹P{¹H} NMR spectra of 2.16 – 2.18 remains uncertain [δ(P) 8.6 – 32.9 ppm]. However, these resonances may relate to further coordination complexes (monomeric / polymeric) or even the component oxides of the respective ligands [δ(P) 26.7 ppm (in (CD₃)₂SO) (2.5)]. Further work is clearly required to fully understand these unassigned signals. The preparation of 2.16 – 2.18 was further supported by infrared spectroscopy which displayed a characteristic νPdCl absorption band between νPdCl 261 – 263 cm⁻¹. The positive ion FAB mass spectra of 2.16 and 2.18 also revealed the expected fragmentation patterns \{MS (FAB⁺): m/z 857, 1005 [M–Cl]+ (2.16 and 2.18) and 990 [M–Cl–CH₃]+ (2.18)\}.

Treatment of 2.3 with half an equiv. of {Rh(µ–Cl)(CO)₂}₂, in CH₂Cl₂, afforded the new rhodium chlorine carbonyl complex 2.19 via halogen bridge cleavage (Equation 2.4). Unfortunately, whilst 2.19 was prepared in good yield, the complex was found to be insoluble in common deuterated solvents precluding any NMR measurement. As a consequence the preparation of 2.19 could only be confirmed by solid state characterisation methods. Elemental analysis showed good agreement with the formula 2.19·0.5H₂O (see Experimental Section) whilst the infrared spectra of 2.19 revealed a characteristic terminal carbonyl absorption band at νCO 1969 cm⁻¹. The coordination mode of 2.3 about the rhodium centre is therefore unclear. However, comparison of 2.19 with the analogous ferrocenyl complex 3.10 (Section 3.4.2) and the previously discussed trans–Pd(CH₃)Cl analogues (2.16 – 2.18) suggests that 2.19 is likely to be of a trans–disposition (monomeric / polymeric).
2.4.2.1 Molecular structure of 2.17

Colourless crystalline plates of **2.17** were grown by slow evaporation of an Et₂O / CH₂Cl₂ solution of **2.17**. The molecular structure of **2.17** was determined in the home laboratory (Figure 2.12). Selected bond lengths and angles are given in Table 2.8.

![Molecular structure of 2.17](image)

Figure 2.12 Molecular structure of **2.17**. All hydrogen atoms have been removed for clarity.

The molecular structure of **2.17** shows the asymmetric unit to contain one molecule of the palladium complex. The complex was found to adopt a distorted square planar geometry with respect to the metal centre, with **2.3** coordinating the metal *via* both phosphorus atoms to form a nine–membered *trans–chelate* ring \[P(1)–Pd(1)–P(2) 154.97(2)° \] and \[C(59)–Pd(1)–Cl(1) 170.25(8)°\]. The phosphorus atoms were found to adopt a distorted pyramidal geometry, as indicated by the relevant C–P–Pd angles [C–P–
Pd ranged between 107.59(9)° and 124.22(9)°, Table 2.8]. The nitrogen atoms, N(1) and N(2), both adopted a distorted trigonal pyramidal geometry [sum of component angles = 337° and 336° respectively]. No inter or intramolecular interactions of note were observed.

Following a search of the CSD, 2.17 was found to represent the first crystallographically characterised nine–membered trans–chelate complex of palladium. Further comparison with similar complexes reported in the CSD database, highlighted the constraining effect of the P2C4N2 backbone, with the P–Pd–P angle within the unconstrained di–monophosphine complexes 2A and 2B (Figure 2.13), being significantly closer to the idealised angle for a trans disposition of groups, than the bite angle found within 2.17 [P–Pd–P angle = 177.49(2)° (2A), 177.59(2)° (2B) and 154.97(2)° (2.17)].

![Chemical Structure](image)

Figure 2.13 Trans–bis(triphenylphosphine)chloro(methyl)palladium(II) (2A) and trans–bis(triphenylphosphine)chloro(chloromethyl)palladium(II) (2B).
Table 2.8 Selected bond lengths (Å) and angles (°) for 2.17.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)–Cl(1)</td>
<td>2.4148(7)</td>
<td>P(1)–Pd(1)–Cl(1)</td>
<td>96.52(3)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)–C(59)</td>
<td>2.066(3)</td>
<td>C(59)–Pd(1)–P(1)</td>
<td>90.23(8)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)–P(1)</td>
<td>2.3303(7)</td>
<td>C(59)–Pd(1)–P(2)</td>
<td>89.54(8)</td>
<td></td>
</tr>
<tr>
<td>Pd(1)–P(2)</td>
<td>2.3077(7)</td>
<td>P(2)–Pd(1)–Cl(1)</td>
<td>87.31(3)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.817(3)</td>
<td>P(1)–Pd(1)–P(2)</td>
<td>154.97(2)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.835(3)</td>
<td>C(59)–Pd(1)–Cl(1)</td>
<td>170.25(8)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(25)</td>
<td>1.854(3)</td>
<td>C(1)–P(1)–Pd(1)</td>
<td>117.59(9)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.469(3)</td>
<td>C(7)–P(1)–Pd(1)</td>
<td>124.22(9)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(26)</td>
<td>1.460(3)</td>
<td>C(25)–P(1)–Pd(1)</td>
<td>107.59(9)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(29)</td>
<td>1.477(3)</td>
<td>C(1)–P(1)–C(7)</td>
<td>101.79(12)</td>
<td></td>
</tr>
<tr>
<td>C(26)–C(27)</td>
<td>1.528(4)</td>
<td>C(1)–P(1)–C(25)</td>
<td>105.81(12)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(27)</td>
<td>1.488(3)</td>
<td>C(7)–P(1)–C(25)</td>
<td>96.77(12)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(28)</td>
<td>1.456(3)</td>
<td>N(1)–C(25)–P(1)</td>
<td>118.39(18)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(44)</td>
<td>1.484(3)</td>
<td>C(26)–N(1)–C(25)</td>
<td>116.3(2)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(13)</td>
<td>1.823(3)</td>
<td>C(25)–N(1)–C(29)</td>
<td>110.8(2)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(19)</td>
<td>1.823(3)</td>
<td>C(26)–N(1)–C(29)</td>
<td>112.4(2)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(28)</td>
<td>1.870(3)</td>
<td>N(1)–C(26)–C(27)</td>
<td>116.3(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)–C(27)–C(26)</td>
<td>108.9(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(27)–N(2)–C(28)</td>
<td>114.0(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(27)–N(2)–C(44)</td>
<td>111.2(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(28)–N(2)–C(44)</td>
<td>110.6(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N(2)–C(28)–P(2)</td>
<td>114.95(17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(13)–P(2)–C(28)</td>
<td>104.05(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(19)–P(2)–C(28)</td>
<td>103.07(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(28)–P(2)–Pd(1)</td>
<td>111.13(9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(13)–P(2)–C(19)</td>
<td>102.71(12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(19)–P(2)–Pd(1)</td>
<td>116.05(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(13)–P(2)–Pd(1)</td>
<td>118.11(9)</td>
<td></td>
</tr>
</tbody>
</table>
2.4.3 The Ruthenium(II), Gold(I) and Molybdenum(0) coordination chemistry of 2.3

Treatment of 2.3 with \{RuCl(\mu–Cl)(p–cym)}_2 (1 equiv.) and AuCl(tht) (2 equiv.), in dichloromethane at ambient temperature, gave the bimetallic complexes 2.20 and 2.21 in good yield (97 and 87% respectively) (Scheme 2.1). In both cases 2.20 and 2.21 were found to be insoluble in common deuterated solvents precluding any NMR measurement. As a consequence the bimetallic nature of the complexes was alluded to by elemental analysis, which showed good agreement with the proposed empirical formulae (see Experimental Section). The infrared spectrum of 2.21 was also found to contain a characteristic Au–Cl absorption band at \nu_{AuCl} 331 cm-1.23

\[
\text{ML}_n = \text{RuCl}_2(p\text{-cym}) \quad 2.20 \\
\text{ML}_n = \text{AuCl} \quad 2.21
\]

\textbf{Scheme 2.1} (i) \{RuCl(\mu–Cl)(p–cym)}_2 or 2 AuCl(tht); (ii) Mo(CO)_4(nbd), under nitrogen, reflux. Solvent; CH\textsubscript{2}Cl\textsubscript{2}.

In contrast, treatment of 2.3 with an equimolar amount of Mo(CO)_4(nbd) afforded the CDCl\textsubscript{3} soluble octahedral complex 2.22, in good yield (Scheme 2.1). The 31P\{1H\} NMR spectrum (in CDCl\textsubscript{3}) of 2.22 revealed a new singlet resonance at \delta(P) 19.1 ppm. The proposed \textit{cis} conformation of 2.22 was not apparent from the 31P\{1H\} NMR spectrum, as both the \textit{cis} and \textit{trans} conformers of Mo(CO)_4(2.3) are symmetrical about the metal centre. The infrared spectrum of 2.22 also failed to reveal the exact stereochemistry, with only two broad terminal \nu_{CO} absorption bands being observed [\nu_{CO} 2017 and 1893 cm-1].203,208 The preparation of the proposed \textit{cis} isomer of 2.22 was however confirmed by X–ray crystallography, which showed 2.3 to coordinate the metal centre via both
phosphorus atoms to form a nine–membered cis–chelate complex (Section 2.4.3.1). However, this cis arrangement must be treated with caution, when referring to the bulk sample of 2.22, due to the nature of single crystal X–ray diffraction. Nevertheless, the preparation of a new molybdenum tetracarbonyl complex was further supported by elemental analysis, which agreed with the formula 2.22·3H₂O, and by the positive ion FAB mass spectrum which displayed the anticipated parent ion and fragmentation pattern \{MS (FAB⁺): m/z 1045 [M]⁺, 989 [M–2CO]⁺.\}
2.4.3.1 Molecular structure of 2.22

Colourless crystalline slabs of 2.22 suitable for X–ray crystallography were grown by layering MeOH onto a CH₂Cl₂ solution of 2.22. The molecular structure of 2.22 was determined from reflection data collected by the EPSRC National Crystallography Service (Figure 2.14). Selected bond lengths and angles are given in Table 2.9.

![Molecular structure of 2.22](image)

Figure 2.14 Molecular structure of 2.22. All hydrogen atoms and CH₂Cl₂ solvent molecules have been removed for clarity.

The molecular structure of 2.22 showed the asymmetric unit to consist of one molecule of 2.22 and two dichloromethane molecules of crystallisation. The complex was found to adopt a distorted octahedral geometry with respect to the molybdenum centre [C(60)–Mo(1)–P(1) 174.14(6)°, C(62)–Mo(1)–P(2) 174.22(7)° and C(59)–Mo(1)–C(61) 172.49(9)° (Table 2.9)] with 2.3 coordinating the metal via both phosphorus atoms, to
form a nine–membered cis–chelate ring [bite angle, P(1)–Mo(1)–P(2) 96.549(17)°]. The Mo–P and Mo–C bond lengths (Table 2.9) were found to compare well with previously reported molybdenum tetracarbonyl diphosphine complexes,202,203 with the carbonyl bond lengths appearing to be unaffected by the close proximity of the two dichloromethane molecules of crystallisation. The phosphorus atoms were found to adopt a distorted tetrahedral arrangement, as indicated by the relevant C–P–Mo angles [C–P–Mo ranged between; 106.86(6) – 124.42(7)°]. The nitrogen atoms were found to adopt a distorted pyramidal geometry [sum of component angles for N(1), N(2) = 340, 331° respectively]. No inter– or intramolecular packing, of note, was observed.

A search of the CSD revealed only four analogous molybdenum diphosphine cis–chelate complexes have been previously reported (Figure 2.15),202-204 suggesting that 2.22 is a rare example of such an intermediate size diphosphine chelate.

![Known nine–membered cis–chelate complexes.](image)

Figure 2.15 Known nine–membered cis–chelate complexes.202-204

The molecular structure of cis–Mo(CO)₄[{CH₃N(CH₂PPh₂)CH₂}₂] (Figure 2.15, left)²⁰² offered the most closely analogous example to 2.22. Unfortunately only limited comparison between the reported Mo···N separations of cis–Mo(CO)₄[{CH₃N(CH₂PPh₂)CH₂}₂] and 2.22 was achieved, due to a lack of atomic coordinate data within the CSD archive [Mo···N; 3.92, 4.44²⁰² and 4.57, 4.45 (2.22) Å]. Nevertheless this limited comparison revealed the respective chelate rings to be different in conformation, with cis–Mo(CO)₄[{CH₃N(CH₂PPh₂)CH₂}₂] adopting a more twisted...
ethylenediamine backbone with respect to the molybdenum centre. Moreover in both cases, no coordination of the molybdenum centre by the nitrogen atoms of the ethylenediamine moiety is observed.202 Grim \textit{et al.} also highlight the fact that the preparation of intermediate sized chelate ring structures such as \textbf{2.22} may be difficult, due to the instability caused by the inherent flexibility within such compounds.202 Such comments further emphasise the rarity of \textbf{2.22} and any analogous nine–membered chelate complexes discussed herein.

\textbf{Table 2.9} Selected bond lengths (Å) and angles (º) for \textbf{2.22}.

\begin{tabular}{lll}
\hline
Mo(1)–P(1) & 2.5516(6) & C(59)–Mo(1)–P(1) 94.75(6) \\
Mo(1)–P(2) & 2.5700(5) & C(60)–Mo(1)–P(1) 174.14(6) \\
Mo(1)–C(59) & 2.032(2) & C(61)–Mo(1)–P(1) 92.58(7) \\
Mo(1)–C(60) & 1.998(2) & C(62)–Mo(1)–P(1) 86.62(7) \\
Mo(1)–C(61) & 2.047(2) & P(1)–Mo(1)–P(2) 96.549(17) \\
Mo(1)–C(62) & 1.990(2) & C(1)–P(1)–Mo(1) 117.98(7) \\
P(1)–C(1) & 1.836(2) & C(7)–P(1)–Mo(1) 109.60(7) \\
P(1)–C(7) & 1.840(2) & C(25)–P(1)–Mo(1) 123.54(7) \\
P(1)–C(25) & 1.857(2) & C(25)–N(1)–C(26) 115.16(16) \\
N(1)–C(25) & 1.459(3) & C(25)–N(1)–C(29) 112.16(16) \\
N(1)–C(26) & 1.461(3) & C(26)–N(1)–C(29) 113.12(15) \\
N(2)–C(27) & 1.478(3) & N(1)–C(26)–C(27) 117.88(19) \\
N(2)–C(28) & 1.474(3) & N(2)–C(27)–C(26) 112.89(16) \\
C(26)–C(27) & 1.525(3) & C(27)–N(2)–C(28) 110.24(16) \\
P(2)–C(19) & 1.833(2) & C(27)–N(2)–C(44) 111.62(16) \\
P(2)–C(28) & 1.865(2) & C(28)–N(2)–C(44) 109.20(15) \\
C(28)–N(2)–P(2) & 115.63(14) & N(2)–C(28)–P(2) 115.63(14) \\
C(13)–P(2)–Mo(1) & 106.86(6) & C(13)–P(2)–Mo(1) 106.86(6) \\
C(19)–P(2)–Mo(1) & 118.56(7) & C(19)–P(2)–Mo(1) 118.56(7) \\
C(28)–P(2)–Mo(1) & 124.42(7) & \\
\hline
\end{tabular}

68
2.5 Luminescent Properties of Coordination Compounds of 2.3 and 2.4

In order to evaluate how coordination of 2.3 and 2.4 affects their fluorescent properties, the fluorescent emission spectra of the THF soluble complexes, 2.9, 2.17, 2.19, 2.22 and 2.10 were recorded. The results are summarised in Table 2.10.

Table 2.10 λ\textsubscript{max} (nm) and Φ data for the phosphines 2.3 and 2.4, and the coordination complexes 2.9, 2.17, 2.19, 2.22 and 2.10.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ\textsubscript{max}</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3a</td>
<td>393, 415, 440</td>
<td>0.03</td>
</tr>
<tr>
<td>2.9a</td>
<td>394, 416, 442</td>
<td>0.01</td>
</tr>
<tr>
<td>2.17a</td>
<td>392, 415, 438</td>
<td>0.01</td>
</tr>
<tr>
<td>2.19a</td>
<td>392, 416, 441</td>
<td>0.01</td>
</tr>
<tr>
<td>2.22a</td>
<td>393, 415, 442</td>
<td>0.01</td>
</tr>
<tr>
<td>2.4b</td>
<td>376, 387, 396, 416</td>
<td>0.19</td>
</tr>
<tr>
<td>2.10b</td>
<td>376, 387, 396, 418</td>
<td>0.05</td>
</tr>
</tbody>
</table>

aλ\textsubscript{ex} = 370 nm, bλ\textsubscript{ex} = 344 nm

The emission spectra of the complexes in Table 2.10 all revealed a characteristic monomer emission relating to the respective fluorophores,77,79-81,116 with little change in λ\textsubscript{max} being observed relative to the free ligands. In contrast, the emission intensities (Φ) of all the complexes studied were found to be significantly diminished, compared to 2.3 and 2.4 (Table 2.10). This reduction in fluorescent emission, upon coordination, is presumably due to a charge transfer process between the respective fluorophores and the d–orbitals of the coordinated metal.77,78,81,195 The observation that the pyrenyl and anthracenyl monomer emissions are not completely quenched by this charge transfer process also suggests that, either the difference in energy between the d–orbitals of the coordinated metal and those of the fluorophore singlet state is not sufficient to allow complete quenching, or that the fluorophore is not close enough to the metal centre to be significantly quenched.81,209
Interestingly this reduction in emission intensity (Φ), upon coordination of 2.3 and 2.4, is similar to that observed upon the oxidation of the respective phosphines [Φ 0.01 (2.5) and 0.05 (2.6)] (Figure 2.16). This highlights, that whilst coordination prevents aerobic oxidation of the phosphorus atoms, and the associated “enhanced” PET quenching process previously discussed (Section 2.2), the excited state of the fluorophore is still significantly affected. Nevertheless, pyrenyl and anthracenyl bearing molecular devices that start in a monomer quenched state and progress into a more fluorescent state, are common within the literature,\cite{116, 118, 119} and as a result 2.9, 2.17, 2.19, 2.22 and 2.10 may also behave in a similar manner, upon addition of an analyte.

No excimer emissions were observed for any of the complexes studied. This suggests that any changes in conformation upon coordination of 2.3 and 2.4 were insufficient to cause any “OFF–ON” excimer emission, similar to that observed within other pendant arm bearing ligands upon coordination.\cite{81, 83, 210} This observation is in agreement with the

Figure 2.16 The fluorescence emission spectra of 2.3, 2.5, 2.9, 2.17, 2.19 and 2.22, in THF; concentration: 5 µM, λ_{ex} 370 nm, slit width: 0.4 mm.
single crystal X–ray diffraction data previously discussed, which shows only weak intermolecular $\pi\cdots\pi$ stacking, in the case of 2.10, in the solid state structure. The pursuit of phosphines that are capable of this OFF–ON excimer formation upon coordination or introduction of an analyte, may be important towards the preparation of new chemosensors based upon 2.3 and 2.4, due to their naturally weak monomer emission upon oxidation or coordination. One potential reason for the absence of an excimer emission upon coordination of 2.3 and 2.4, is the restraining effects caused by the ethylene diamine backbone, which is evident from the previously discussed X–ray diffraction data (Section 2.4.3.1). Therefore one means of promoting excimer formation within coordination compounds similar to those discussed above, maybe to break the ethylene diamine backbone within 2.3 and 2.4, and prepare bis–monophosphine complexes, where the fluorophores potentially have significantly more conformational freedom (Section 2.6).

2.6 Preparation and Characterisation of 2.23 – 2.25

To this end, the methodology used to prepare 2.1 – 2.4 was utilised to prepare the analogous monophosphines 2.23 – 2.25 (Scheme 2.2).

![Scheme 2.2](image)

In the case of 2.23, the desired tertiary phosphine deposited during the course of the reaction allowing the ligand to be isolated in a high purity, by 31P{1H} NMR spectroscopy (96% by integral) and in reasonable yield (67%). In contrast, 2.24 and 2.25 did not crystallise during the reaction of their parent amines with Ph$_2$PCH$_2$OH. In the case of 2.24, complete evaporation of the solvent after stirring for three days at ambient
temperature repeatedly yielded a viscous oil which was thought to be sufficiently pure, by 31P{1H} NMR spectroscopy (81% by integration) to be used directly in coordination and luminescent studies. Attempts to prepare 2.25 at ambient temperature failed, with only the Ph$_2$PCH$_2$OH starting material being observed by in–situ 31P{1H} NMR spectroscopy under the same reaction conditions. Further efforts to prepare 2.25 using harsher reaction conditions also proved inadequate, with the extreme case being a 5 d reflux of an equimolar solution of (C$_{16}$H$_9$)CH$_2$N(H)Ph and Ph$_2$PCH$_2$OH, which afforded 2.25 with a purity of 4% by in–situ 31P{1H} NMR spectroscopy [δ(P) –25.1 ppm, 4% by integration], by comparison with the 31P{1H} NMR spectra of 2.23 and 2.24 [\Delta\delta(P) ca. 3 ppm]. The repeatedly low yields of 2.25, for the above, were attributed to delocalisation of the parent amine lone pair into the neighbouring phenyl ring, thereby significantly reducing its availability to be involved in the desired condensation process.

The 31P{1H} NMR spectra of 2.23 and 2.24 (in freeze–thawed CDCl$_3$) both revealed new phosphorus singlet resonances at δ(P) –27.6 and –27.7 ppm respectively, some 18 ppm upfield to that observed for the Ph$_2$PCH$_2$OH starting material. Furthermore, both phosphines appeared to show evidence of aerobic oxidation over the course of several hours, when CDCl$_3$ solutions were left to stand, with the formation of presumably oxide resonances at ca. δ(P) 32 ppm.188,189 The 1H NMR spectra (in CDCl$_3$) of 2.23 and 2.24 contained the anticipated δ(CH$_2$) and δ(CH$_2$CH$_3$) resonances previously observed in the 1H NMR spectra of the parent amines. The newly introduced CH$_2$P moieties resonated as characteristic doublets at δ(H) 3.35 and 3.34 ppm respectively, (2J_{PH} 2.8 and 3.6 Hz).22,23 Comparison between the δ(CH$_2$P) and 2J_{PH} values of 2.23 and 2.24 with those of their ditertiary phosphine analogues (2.3 and 2.4), revealed relatively little change (ca. $\Delta\delta$ 0.2 ppm, ca. $\Delta^2$$J_{PH}$ 0.4 Hz) (Section 2.2). Furthermore, the absence of a significant ν_{NH} absorption band in the infrared spectrum of 2.23 and 2.24 supported the ternary nature of the phosphine nitrogen atoms. The positive ion FAB mass spectroscopy results for 2.23 and 2.24 also gave the anticipated molecular fragments {MS (FAB$^+$): m/z 432 [M]$^+$ (2.23) and 456 [M–H]$^+$ (2.24).
The fluorescent emission spectra of 2.23 and 2.24 both exhibited typical monomer emission bands relating to their respective fluorophores,77,79-81 with little change in λ_{max} being observed relative to the emissions of 2.3, 2.4 and the parent amines (Figure 2.17 and Table 2.11).

Figure 2.17 Emission spectra of C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}CH\textsubscript{3} / 2.23 (left) and C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}CH\textsubscript{3} / 2.24 (right), in dry THF solutions containing analyte (5 μM), slit widths 0.4 mm. λ_{ex} anthracene derivatives = 370 nm, λ_{ex} pyrene derivatives = 344 nm.

Table 2.11 λ_{max} (nm) and Φ data for 2.3, 2.4, 2.23, 2.24 and the parent amines of the monophosphines.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max} (nm)</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}CH\textsubscript{3} a</td>
<td>393, 415, 440</td>
<td>0.97</td>
</tr>
<tr>
<td>2.23 a</td>
<td>394, 415, 439</td>
<td>0.11</td>
</tr>
<tr>
<td>2.3 a</td>
<td>393, 415, 440</td>
<td>0.03</td>
</tr>
<tr>
<td>C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}CH\textsubscript{3} b</td>
<td>376, 387, 395, 416</td>
<td>1.08</td>
</tr>
<tr>
<td>2.24 b</td>
<td>376, 387, 396, 416</td>
<td>0.46</td>
</tr>
<tr>
<td>2.4 b</td>
<td>376, 387, 396, 416</td>
<td>0.19</td>
</tr>
</tbody>
</table>

aλ_{ex} anthracene derivatives = 370 nm, bλ_{ex} pyrene derivatives = 344 nm.
The emissions of 2.23 and 2.24 were found to be weaker than those observed for the parent amines (Table 2.11, Figure 2.17), which is in agreement with the suggested PET quenching process previously observed for 2.3 and 2.4. The intensity of the emissions of 2.23 and 2.24 were, however, found to be significantly greater than those of their ditertiary phosphine counterparts (Table 2.11). No excimer emissions were observed for 2.23 or 2.24 at the concentrations studied.

2.7.1 Platinum(II) Coordination Chemistry of 2.23 and 2.24

The coordination chemistry of 2.23 and 2.24 was briefly explored by treatment of two equiv. of the respective monophosphines with one equiv. of PtCl2(cod), to afford the dichloroplatinum complexes 2.26 and 2.27 (Equation 2.5).

\[
\text{R} \quad \text{N} \quad \text{Et} \quad \text{PtCl}_2(\text{cod}) \quad \text{CH}_2\text{Cl}_2
\]

\[
\begin{align*}
\text{2.23 or 2.24} & \quad \rightarrow \\
\text{2.26 or 2.27}
\end{align*}
\]

In contrast to the analogous diphosphine coordination chemistry (2.3 and 2.4, Section 2.4), both 2.23 and 2.24 were found to afford impure samples of 2.26 and 2.27, by \(^{31}\text{P}\{^1\text{H}\}\) NMR spectroscopy. In the case of 2.26, the \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum (in CDCl\(_3\)) revealed a new singlet resonance flanked by equidistant \(^{195}\text{Pt}\) satellites at \(\delta(P) 2.6\) ppm (\(^{1}J_{\text{PtP}} 3636\) Hz, 88% pure by \(^{31}\text{P}\{^1\text{H}\}\) NMR integration), in addition to several minor \(^{31}\text{P}\{^1\text{H}\}\) NMR active species between \(\delta(P) -0.5\) to 9.1 ppm. Similarly the \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum (in CDCl\(_3\)) of 2.27, revealed a new singlet resonance flanked by equidistant \(^{195}\text{Pt}\) satellites at \(\delta(P) 3.7\) ppm (\(^{1}J_{\text{PtP}} 3628\) Hz, 64% pure by \(^{31}\text{P}\{^1\text{H}\}\) NMR integration),
in addition to a minor species which resonated between $\delta(P) -9.7$ to 19.3 ppm. In both instances, these major resonances were assigned to the desired platinum dichloride complexes (2.26 and 2.27) by comparison with the 31P{H} NMR spectrum of the analogous diphosphine complexes 2.9 and 2.10 [ca. $\Delta \delta(P)$ 6.4 ppm, ca. ΔJ_{PP} 26 Hz]. Further inspection of the 31P{H} NMR spectra of 2.26 and 2.27 suggested that the observed impurities related to aerobic oxidation products of 2.23 and 2.24 or various new mixed phosphine platinum complexes of 2.23 / 2.24, Ph$_2$PCH$_2$OH and PHPh$_2$ (all of which were observed in the 31P{H} NMR spectra of 2.23 and 2.24). As a result, the minor species observed in the 31P{H} NMR spectrum of 2.27, which resonated as two doublets flanked by equidistant 195Pt satellites [$\delta(P)$ 1.3 and 7.7 ppm, $^2J_{PP}$ 13.0 Hz, $^1J_{PP}$ 3764 and 3565 Hz respectively], was assigned to the unsymmetrical cis–platinum dichloride complex 2.27A [(cis–PtCl$_2${(C$_{16}$H$_9$)CH$_2$N(CH$_2$PPh$_2$)CH$_2$CH$_3$} {Ph$_2$PR}, R = H or CH$_2$OH] (Figure 2.18) due to the characteristically large $^1J_{PP}$ and $^2J_{PP}$ splitting pattern.

![Figure 2.18](image_url)

Figure 2.18 Suggested minor species observed in the 31P{H} NMR spectrum of 2.27.

The 1H NMR spectra of 2.26 and 2.27 were assigned by comparison with the 1H NMR spectra of 2.23 and 2.24 and showed the anticipated resonances relating to the coordinated ligands, with little change in δ(H). The characteristic δ(CH$_2$P) doublets, previously observed in the 1H NMR spectra of the free ligands, did however resonate as broad singlets within the 1H NMR spectra of 2.26 and 2.27, presumably due to
coordination. Furthermore the positive ion FAB mass spectra of 2.26 and 2.27 both revealed the expected fragmentation patterns \{MS (FAB⁻): m/z 1097 (2.26) and 1145 (2.27) [M–Cl]⁻\}. Attempts to recrystallise 2.26 and 2.27 from the crude solids obtained, using a variety of organic solvents, proved unsuccessful. The purity of 2.26 and 2.27 was however thought to be sufficient enough to provide insight into the luminescent properties of the platinum dichloride complexes (Section 2.8).

2.7.2 Gold(I) Coordination Chemistry of 2.23 and 2.24

The coordination chemistry of 2.23 and 2.24 was explored further by reaction with an equimolar amount of AuCl(tht) at ambient temperature, to afford 2.28 and 2.29 in reasonable yield (69 and 63% respectively) (Equation 2.6).

\[
\begin{align*}
R &= \text{C}_{14}\text{H}_9 (2.23 \text{ and } 2.28), \text{C}_{16}\text{H}_9 (2.24 \text{ and } 2.29) \\
\text{Equation 2.6}
\end{align*}
\]

The \(^{31}\text{P}\{\text{H}\}\) NMR spectra (in CDCl\(_3\)) of 2.28 and 2.29 exhibit a new phosphorus singlet resonance at \(\delta(P)\) 18.9 and 18.5 ppm respectively, some 45 ppm downfield to those of 2.23 and 2.24 [\(\delta(P)\) –27.6 and –27.7 ppm respectively]. The \(^1\text{H}\) NMR spectra (in CDCl\(_3\)) of 2.28 and 2.29 contained the anticipated resonances relating to the coordinated ligand, with little change in \(\delta(H)\) being observed compared to 2.23 and 2.24. The characteristic \(\delta(\text{CH}_2\text{P})\) doublet, previously observed in the \(^1\text{H}\) NMR spectra of the free ligands, resonated as broad singlets in both cases, presumably due to coordination. Furthermore, the positive ion FAB mass spectra of 2.28 and 2.29 both contained the expected molecular fragments \{MS (FAB⁺): m/z 630 and 654 [M–Cl]⁺ respectively\}. The
elemental analysis results for 2.28 and 2.29 were also found to be satisfactory, agreeing with the formulae (2.28 or 2.29)·0.25C₆H₁₄ (see Experimental Section).

2.8 Luminescent Properties of the Coordination Compounds of 2.23 and 2.24

The fluorescent emission spectra of 2.23, 2.24 and their respective platinum (2.26 and 2.27) and gold (2.28 and 2.29) complexes are given in Figure 2.19.

![Emission spectra of 2.23, 2.26 and 2.28 (left), and 2.24, 2.27 and 2.29 (right), in dry THF solutions (5 μM), slit widths 0.4 mm. λ_ex anthracene derivatives = 370 nm, λ_ex pyrene derivatives = 344 nm.](image-url)

Figure 2.19 Emission spectra of 2.23, 2.26 and 2.28 (left), and 2.24, 2.27 and 2.29 (right), in dry THF solutions (5 μM), slit widths 0.4 mm. λ_ex anthracene derivatives = 370 nm, λ_ex pyrene derivatives = 344 nm.

The emission spectra of 2.23, 2.24, 2.26 – 2.29 all revealed characteristic monomer emissions relating to the respective fluorophores, with little change in λ_max compared to the emissions of the respective ligands (Figure 2.19, Table 2.12). No excimer emissions were observed at the concentration studied (5 μM). The emissions of 2.26, 2.27 and 2.29 were found to be significantly diminished compared with the free ligands, presumably due to a charge transfer between the respective fluorophores and the coordinated metal (Table 2.19, Figure 2.12), which is in agreement with previous diphosphine coordination chemistry (Section 2.5). In contrast, complex 2.28
gave an enhanced emission relative to 2.23 (Table 2.19, Figure 2.12). This increase in emission strength was attributed to the inhibition of the PET process previously observed in the free ligand, owing to phosphorus coordination to the gold atom, and is in agreement with a similar monophosphine gold chloride complex described by Zhang et al.77

Table 2.12 λ_{max} (nm) and Φ data for 2.23, 2.24, 2.26 – 2.29 in dry THF solutions containing analyte (5 μM), slit widths 0.4 mm. λ_{ex} anthracene derivatives = 370 nm, λ_{ex} pyrene derivatives = 344 nm.

<table>
<thead>
<tr>
<th>Compound</th>
<th>λ_{max}</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.23a</td>
<td>394, 415, 439</td>
<td>0.05</td>
</tr>
<tr>
<td>2.26a</td>
<td>394, 415, 440</td>
<td>0.01</td>
</tr>
<tr>
<td>2.28a</td>
<td>393, 415, 439</td>
<td>0.05</td>
</tr>
<tr>
<td>2.24b</td>
<td>376, 387, 396, 416</td>
<td>0.23</td>
</tr>
<tr>
<td>2.27b</td>
<td>376, 387, 396, 417</td>
<td>0.15</td>
</tr>
<tr>
<td>2.29b</td>
<td>376, 387, 396, 416</td>
<td>0.09</td>
</tr>
</tbody>
</table>

aλ_{ex} = 370 nm, bλ_{ex} = 344 nm

2.9 Preliminary Study into the Chemosensory Behaviour of 2.3, 2.4, 2.23 and 2.24

In order to obtain insight into the potential use of 2.3, 2.4, 2.23 and 2.24 as ligands for phosphine based molecular devices, the chemosensory behaviour of the platinum complexes 2.9, 2.10, 2.26 and 2.27 towards a series of readily available metal cations (Li$^+$, K$^+$, Na$^+$, Ag$^+$, Ba$^{2+}$, Mg$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Co$^{2+}$ and Fe$^{3+}$) were briefly investigated.

Initially, a qualitative–screening approach was used to very–crudely assess the binding properties of 2.9, 2.10, 2.26 and 2.27 towards these metal cations, due to the known chromatic response of some pyrenyl and anthracenyl chemosensors toward various ions,82,130 and the limited time available in the laboratory. To this end, saturated
solutions of perchlorate salts of Li⁺, K⁺, Na⁺, Ag⁺, Ba²⁺, Mg²⁺, Cu²⁺, Ni²⁺, Co²⁺ and Fe³⁺ (in dry THF) were added dropwise to pale yellow solutions of 2.9, 2.10, 2.26 and 2.27 (in dry THF, ca. 1 mM), and any visual responses noted. Interestingly, the only significant response observed was upon addition of Fe(ClO₄)₃ to 2.27, which afforded a pale green fluorescence, presumably due to some form of recognition response between 2.27 and Fe³⁺. As a result the luminescent properties of 2.27 were explored further, in order to gain some insight into the source of this change in fluorescence, whilst 2.9, 2.10 and 2.26 were left for future study. The fluorescent emission spectrum of 2.27 was therefore recorded in the absence and presence of increasing amounts of Fe³⁺ (Figure 2.20).

![Fluorescent emission spectra, and normalised fluorescent emission spectra](image)

Figure 2.20 Fluorescent emission spectra, and normalised fluorescent emission spectra (insert top right) of 2.27 following the progressive addition of Fe(ClO₄)₃ in dry THF solutions; concentration of 2.27 (5 μM), λₑₓ 344 nm.
The emission spectrum of \textbf{2.27} alone gave rise to the previously observed pyrene monomer fluorescence at \textit{ca.} 376 nm76,80,81 whilst the addition of Fe3+ caused a marked change in the emission of the complex, with substantial quenching of the monomer emission accompanied by the emergence of a broad structureless emission at 556 nm (Figure 2.20). This change in emission was attributed to the formation a new excimer emitting complex of \textbf{2.27} upon addition of Fe3+116,211 and is in agreement with the pale green fluorescence observed during the qualitative testing of \textbf{2.27}; \(\lambda_{(\text{green})}\ \textit{ca.} 520 – 570\) nm212

The formation of an excimer emitting complex, in this manner, is normally associated with a change in the conformation of a “chemosensor” upon association of a target analyte; particularly by chemosensors bearing anthracene and pyrene fluorophores73,116,211 The continuous decline in the pyrene monomer emission, and the seeming ratiometric growth of the excimer emission, upon addition of up to 1.25 equiv. of Fe(ClO\textsubscript{4})\textsubscript{3}, also suggests that the excimer emitting complex maybe of a 1:1 \textbf{2.27}:Fe3+ stoichiometry211. One tentative suggestion towards the nature of such a complex, is \textbf{2.27B} (Figure 2.21), where the lone pairs of the ternary nitrogen atoms of \textbf{2.27} coordinate Fe3+ to form an eight–membered bimetallocycle, which in turn induces the anticipated conformational change within \textbf{2.27}, leading to formation of an intramolecular excimer. The occurrence of a complex such as \textbf{2.27B} may also explain why no visual response was observed for \textbf{2.9} and \textbf{2.10} upon addition of various metal cations studied during the qualitative testing; as the ethylene diamine linker between the two respective pyrenyl (\textbf{2.9}) and anthracenyl (\textbf{2.10}) groups may sterically hinder coordination by the nitrogen atoms, whilst also inhibiting the fluorophores from adopting an excimer emitting conformation.
Figure 2.21 Suggested monomer (left) and excimer (right) emitting conformations of 2.27, observed by fluorescent emission spectroscopy.

The binding properties of 2.27 towards other readily available metal cations were briefly investigated by fluorescent emission spectroscopy, in an attempt to determine if the formation of an excimer emitting complex of 2.27 was specific to just ferric ions. Interestingly, addition of Na$^+$ and Cu$^{2+}$ to THF solutions of 2.27 resulted in a marked enhancement of the pyrene monomer emission and no excimer emission (Figures 2.22).
Figure 2.22 Fluorescent emission spectra of 2.27 following the progressive addition of M(ClO₄)ₓ, in dry THF solutions; M = Na⁺ and Cu²⁺ (insert, top right), x = 1 (Na) and 2 (Cu), concentration of 2.27 (5 μM), λₑₓ 344 nm.

In the case of Na⁺, this enhancement appeared to be ratiometric, with the monomer emission increasing in intensity up to the addition of an equimolar amount of NaClO₄ (Figure 2.22), suggesting that the resulting fluorescent enhanced complex maybe of a 1:1 2.27:Na⁺ stoichiometry. However, in the case of Cu²⁺, the maximum enhancement of the monomer emission was reached following the addition of only 0.1 equiv. of Cu(ClO₄)₂ (Figure 2.22, insert).

In both cases, this fluorescent enhancement was attributed to an inhibition of the photoinduced electron transfer (PET) process, previously credited to the quenching of the monomer emission of the free ligand (2.24) (Section 2.6, Figure 2.17 left). This type of fluorescent enhancement, upon coordination of a target ion, is a common
phenomenon exploited within chemosensor design,116,118,119,189,190,209 and is thought to result from an increase in the redox potential of the nitrogen atom upon coordination to the respective cations. This, in turn, lowers the energy of the nitrogen HOMO below that of the fluorophore HOMO, therefore preventing any PET process from taking place (Figure 2.23, right).190 Hence fluorescent intensity is enhanced upon coordination of Na+ or Cu2+, by the nitrogen lone pairs of 2.24, as radiative decay becomes more likely.

![Figure 2.23](image)

Figure 2.23 Mechanism of fluorescence enhancement upon cation coordination.

Further work is clearly required to fully understand the true binding mechanism of 2.27 to Fe3+, Na+ and Cu2+, as well as the selectivity and binding strength of 2.27 towards these, and other metal cations. However this preliminary work does show that the emission of 2.27 can be significantly affected by the presence of metal cations, in THF solution, with both variation of the PET process and the formation of excimer emitting complexes of 2.27 being observed.73,189,190,211

2.10 Preparation and Characterisation of 2.30

Following on from the preparation, diverse coordination chemistry and interesting luminescent properties of the mono and ditertiary phosphines discussed thus far, preliminary efforts to prepare less sterically restricted diphosphines based on the general formula \{RCH\textsubscript{2}N(CH\textsubscript{2}PPh\textsubscript{2})CH\textsubscript{2}\}\textsubscript{2}X (where R = aryl group, X = backbone variation) were made, in an attempt to prepare further coordination compounds with interesting luminescent properties. To this end the known secondary amine,
{(C_{16}H_{9})CH_{2}N(H)CH_{2}}_{2}CH_{2} was reacted with two equiv. of Ph_{2}PCH_{2}OH at reflux for 3 d (Equation 2.7).

\[\text{NH} \quad \text{HN} \quad \text{Pyr} \quad \text{HN} \quad \text{Pyr} \quad \text{MeOH, toluene} \quad \text{Pyr} \quad \text{NH} \quad \text{HN} \quad \text{Pyr} \quad \text{PPh}_{2} \quad \text{PPh}_{2} \]

\text{2.30}

Equation 2.7

Unfortunately 2.30 did not crystallise during the course of the reaction, in contrast to the ethylenediamine analogue 2.4. However, following the complete removal of the solvent, a viscous oil was repeatedly isolated. The $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum of the isolated oil (in freeze–thawed CDCl$_3$) exhibited a new phosphorus singlet resonance at $\delta(P)$ –28.1 ppm (purity 83% by $^{31}\text{P} \{^1\text{H}\}$ NMR), which was assigned to 2.30 by comparison with the $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum of 2.4 [$\delta(P)$ –27.7 ppm, $\Delta\delta(P)$ 0.4 ppm]. The $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum also revealed the reaction to be incomplete, with the remaining 17% of the $^{31}\text{P} \{^1\text{H}\}$ NMR active nuclei assigned to the Ph$_2$PCH$_2$OH starting material. The incomplete nature of the reaction was also evident in the ^1H NMR spectrum (in freeze–thawed CDCl$_3$) of the isolated material, which showed unreacted amine and Ph$_2$PCH$_2$OH. Assignment of the characteristic CH$_2$ resonances of 2.30 was however possible by comparison with the ^1H NMR spectrum of the parent amine and Ph$_2$PCH$_2$OH (see Experimental Section). The newly introduced CH$_2$P hydrogen atoms were found to resonate as a characteristic doublet at $\delta(H)$ 3.24 ppm ($^2J_{PH}$ 4.0 Hz),22,23 which compared well with the same hydrogen atoms in 2.1 – 2.4 [$^2J_{PH}$ 3.2 – 3.6 Hz]. Further characterisation proved inconclusive.
2.11 Conclusion

In summary, a range of new tertiary phosphines with polyaromatic appendages have been prepared, characterised and coordinated to several transition metal centres. The coordination chemistry of 2.1 – 2.4 was extensively studied and revealed this family of ditertiary phosphines to be capable of bridging two transition metal centres as well as forming new examples of rare, nine–membered cis and trans chelate complexes. Variation of the chemistry used to prepare 2.1 – 2.4 also allowed the synthesis of two analogous monophosphines 2.23 and 2.24 and the diphosphine 2.30. The luminescent properties of selected compounds have also been discussed, in addition to preliminary studies into the cation sensing abilities of the platinum complexes 2.9, 2.10, 2.26 and 2.27. Further study into the luminescent properties of all the tertiary phosphines and coordination compounds reported in this Chapter is required. However, this preliminary work does show promise towards the preparation of new phosphine based molecular devices, as the fluorescent emission of 2.27 is significantly affected by the presence of metal cations, with both variation of PET and the formation of excimer emitting complexes being observed.
Chapter 3

The Synthesis, Characterisation and Coordination Chemistry of Novel Ferroceny1 Phosphines
3.1 Introduction

The ferrocenyl (Fc) group continues to play a fundamental role in the design of new mono– and poly-phosphorus containing ligands and some of their transition metal complexes have been studied as homogenous catalysts. The Fc group can be employed either as a substituent bonded to phosphorus or alternatively as a backbone for accessing primary and secondary phosphines, di– and poly-phosphines, nonsymmetric ligands and chiral systems. To date, 1,10–bis(diphenylphosphino)ferrocene (dppf) (Figure 3.1) possibly remains the most iconic example of a phosphorus(III) based ligand containing the Fc moiety. Furthermore the ferrocenyl group continues to attract much attention because of its redox active metal centre, thereby allowing studies of electronic communication for the development of new electronic materials and devices.

Recently Tucker and co–workers have shown how ferrocenyl modified ureas (Figure 3.1, right) can be used as electrochemical sensors for chiral carboxylates. Surprisingly phosphines bearing ferrocenyl groups have been seldom investigated for such a “sensory” role. To this end, modification of the general ligand design discussed in the previous chapter to include a ferrocenyl groups at the R position, \{RCH₂N(CH₂PPh₂)CH₂\}₂, may afford new examples of novel phosphines possessing similar electrochemical properties, whilst providing further examples of this new class of novel ditertiary phosphine.

Figure 3.1 The versatility of the ferrocenyl group.
3.2 Preparation and Characterisation of 3.1 – 3.3

The new ditertiary phosphines 3.1 – 3.3 were prepared via the double Mannich–base condensation of the known bis secondary amine\(^\text{218}\) \{FeCH\(_2\)N(H)CH\(_2\)\}_\text{2} with two equiv. of the relevant tertiary phosphine synthon, RPCH\(_2\)OH (RP = Ph\(_2\)P, Cy\(_2\)P or AdP = 1,3,5,7-tetramethyl–2,4,8–trioxo–6–phospha–adamantane) (Equation 3.1).

\[
\text{Fe} \quad \text{N} \quad \text{Fe} \quad \begin{array}{c}
\text{NH}
\end{array} \quad \text{2 equiv.}
\begin{array}{c}
\text{RPCH}_2\text{OH}
\end{array} \quad \text{MeOH} \quad \text{Fe} \quad \text{N} \quad \text{Fe}
\]

\[
\text{PR} \quad \text{RP}
\]

\[
\begin{array}{c}
\text{PR} = \text{PPh}_2 \\
\text{PR} = \text{PCy}_2 \\
\text{PR} = \text{PAd}
\end{array}
\]

\[
3.1 \quad 3.2 \quad 3.3
\]

Equation 3.1

All three new phosphines precipitated during the course of the reaction, allowing the ligands to be isolated to a high purity (by \(^{31}\text{P}\)\(^{1}\text{H}\) NMR), whilst yields varied across the series (yields ranged between 34 – 72\%). The \(^{31}\text{P}\)\(^{1}\text{H}\) NMR spectra (in CDCl\(_3\)) of 3.1 – 3.3 all exhibited a characteristic phosphorus singlet upfield to that of the PRCH\(_2\)OH starting material (Table 3.1).\(^{21,58,186}\) The \(^1\text{H}\) NMR spectra (in CDCl\(_3\)) of 3.1 and 3.2 displayed three distinct CH\(_2\) environments of characteristic integral and \(\delta\text{(CH}_2\text{)}\), by comparison with the analogous polyaromatic phosphines 2.1 – 2.4. In the case of 3.1, the newly introduced CH\(_2\)P hydrogen atoms resonated as a characteristic doublet [\(\delta\text{(PCH}_2\text{)} 3.11 \text{ ppm}, \ 2J_{PH} 3.6 \text{ Hz}\)] whilst the same hydrogens appeared as a broad singlet in the spectrum of 3.2 [\(\delta\text{(PCH}_2\text{)} 2.49 \text{ ppm}\)] (Table 3.1).

<table>
<thead>
<tr>
<th></th>
<th>(\delta\text{(P)})</th>
<th>(\delta\text{(CH}_2\text{N)})</th>
<th>(\delta\text{(FeCH}_2\text{)})</th>
<th>(\delta\text{(PCH}_2\text{)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>–27.3</td>
<td>3.54</td>
<td>2.58</td>
<td>3.11</td>
</tr>
<tr>
<td>3.2</td>
<td>–18.1</td>
<td>3.52</td>
<td>2.46</td>
<td>2.49</td>
</tr>
<tr>
<td>3.3</td>
<td>–42.8</td>
<td>3.59, 3.42</td>
<td>2.54</td>
<td>2.71, 2.31</td>
</tr>
</tbody>
</table>

Table 3.1 Selected \(^{31}\text{P}\)\(^{1}\text{H}\) and \(^1\text{H}\) NMR [\(\delta\) in ppm] for 3.1 – 3.3.
In contrast, the 1H NMR spectrum of 3.3 contained a series of broad multiplets of similar δ(H) to the analogous CH$_2$ hydrogen atoms within 3.1 and 3.2 [signals ranged between δ(H) 2.28 – 3.61 ppm]. The broad resonances were therefore assigned to the respective CH$_2$ hydrogen atoms within 3.3 (Table 3.1), with the observed increase in multiplicity being cautiously assigned to a combination of diastereotopic hydrogen atoms, in the case of δ(CH$_2$N) and δ(PCH$_2$), and the enantiomeric nature of the phosphaadamantane cages. Previous work by ourselves has shown similar CH$_2$ hydrogen atoms, close to phosphaadamantyl cages, to display this diastereotopic CH$_2$ effect.58 Furthermore other research groups have shown compounds containing phosphaadamantyl cages to exist as racemic mixtures of α and β enantiomers (Figure 3.2).10,13,219,220

![Figure 3.2 Enantiomeric structures of the PAd moiety.](image)

Further work is clearly required to fully characterise the various 1H environments observed in the 1H NMR spectrum of 3.3, however additional characterisation methods support the synthesis of this phosphine. The absence of a ν_{NH} absorption band from the infrared spectra of 3.1 – 3.3 further confirmed the ternary nature of the nitrogen atoms within the newly formed ditertiary phosphines, whilst the elemental analysis results for 3.1 – 3.3 were also found to be satisfactory (see Experimental Section). The positive ion FAB mass spectra of 3.1 and 3.2 also revealed predictable molecular fragments (MS (FAB$^+$)): m/z = 667 [M–PPh$_2$]$^+$ (3.1) and 875 [M–H]$^+$ (3.2)), and the molecular structures of 3.1 and 3.3 have been determined by single crystal X–ray diffraction (Sections 3.2.1 and 3.2.2).
3.2.1 Molecular Structure of 3.1

Orange crystalline blocks suitable for single crystal X–ray diffraction were grown by slow evaporation of a MeOH / CH₂Cl₂ solution of 3.1. The molecular structure was then determined using synchrotron radiation due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature (Figure 3.3). Selected lengths and angles are given in Table 3.2.

![Molecular structure of 3.1](image)

Figure 3.3 Molecular structure of 3.1, all hydrogen atoms have been removed for clarity. Symmetry operator for equivalent atoms ' = −x+1, −y+1, −z+1.

The molecular structure of 3.1 showed the phosphine to lie across a crystallographic inversion centre located at the mid–point of the ethylenediamine backbone. As a consequence, only half a molecule of 3.1 was found within the asymmetric unit. Compound 3.1 was found to adopt a significantly open conformation (symmetry imposed), similar to that of the analogous polyaromatic phosphine oxide 2.5 previously
discussed (Chapter 2, Section 2.3.1), with the phosphorus atoms orientated in an anti conformation with respect to each other \([P(1)\cdots P(1')\text{ ca. 7.548 Å, Fe(1)\cdots Fe(1') ca. 11.181 Å, symmetry operator }' = −x+1,−y+1,−z+1]\). The phosphorus atom adopts a distorted pyramidal geometry, as indicated by the relevant C–P–C angles (Table 3.2). The nitrogen atom, N(1), was found to adopt a distorted pyramidal geometry [sum of component angles = 336°]. The two Fe(II) cyclopentadienyl rings were found to be eclipsed and essentially coplanar [torsional twist about C(15)–C_{acent}–C_{acent}–C(21) = 3.4°].

Table 3.2 Selected lengths (Å) and angles (°) for 3.1.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Selected Lengths (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–C(1)</td>
<td>1.8324(13)</td>
<td>C(1)–P(1)–C(7) 105.06(6)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.8332(13)</td>
<td>C(1)–P(1)–C(13) 102.09(6)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.8922(12)</td>
<td>C(7)–P(1)–C(13) 97.99(5)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.4573(15)</td>
<td>N(1)–C(13)–P(1) 115.74(8)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.4721(15)</td>
<td>C(13)–N(1)–C(14) 110.69(9)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.4653(15)</td>
<td>C(13)–N(1)–C(25) 112.97(9)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.4972(17)</td>
<td>C(14)–N(1)–C(25) 112.77(9)</td>
</tr>
<tr>
<td>C(25)–C(25')</td>
<td>1.522(2)</td>
<td>N(1)–C(14)–C(15) 112.80(9)</td>
</tr>
<tr>
<td>Fe(1)–C_{acent}</td>
<td>1.6426(6)</td>
<td>C(15)–C_{acent}–C_{acent}–C(21) 3.4</td>
</tr>
<tr>
<td>Fe(1)–C_{acent}</td>
<td>1.6455(6)</td>
<td>C(15)–C_{acent}–C_{acent}–C(21) 3.4</td>
</tr>
</tbody>
</table>

Symmetry operator for equivalent atoms \(' = −x+1,−y+1,−z+1\).

C_{acent} = C(15) to C(19), C_{acent} = C(20) to C(24).
3.2.2 Molecular Structure of 3.3

Orange crystalline tablets suitable for single crystal X–ray diffraction were grown by the slow evaporation of a CH$_2$Cl$_2$ solution of 3.3. The molecular structure was determined using synchrotron radiation due to the small crystal dimensions (at least one dimension < 0.05 mm) and their poorly diffracting nature (Figure 3.4). Selected lengths and angles are given in Table 3.3.

![Molecular structure of 3.3](image)

Figure 3.4 Molecular structure of 3.3. All hydrogen atoms have been removed for clarity.

The molecular structure of 3.3 shows the asymmetric unit to contain one unique molecule of 3.3, with the two bulky phosphaadamantyl cages adopting an anti conformation with respect to each other (not symmetry imposed) [P(1)···P(2) ca. 7.167 Å, Fe(1)···Fe(2) 9.682 Å]. The open conformation of 3.3 is consistent with that previously described for 3.1 [P(1)···P(2) ca. 7.548 Å, Fe(1)···Fe(1′) 11.181 Å]. The phosphorus atoms within 3.3 were found to adopt a distorted pyramidal arrangement, as
indicated by the relevant C–P–C angles (Table 3.3). The nitrogen atoms were also found to adopt a distorted pyramidal geometry [sum of component angles = 334 and 331° respectively]. The Fe(II) cyclopentadienyl rings within 3.3 were found to be essentially eclipsed [torsional twist about C(A–D)–Cpcent–Cpcent–C(A–D) = 9.3 and 4.3° (Table 3.3)] and coplanar, which is consistent with that previously described for 3.1 [torsional twist about C(15)–Cpcent–Cpcent–C(21) = 3.4° for 3.1] (Table 3.2).

Table 3.3 Selected lengths (Å) and angles (°) for 3.3.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–C(2)</td>
<td>1.867(2)</td>
<td>C(2)–P(1)–C(11)</td>
<td>101.93(10)</td>
<td>P(1)–C(9)</td>
<td>1.877(2)</td>
</tr>
<tr>
<td>P(1)–C(9)</td>
<td>1.877(2)</td>
<td>C(2)–P(1)–C(11)</td>
<td>100.57(10)</td>
<td>P(1)–C(11)</td>
<td>1.858(2)</td>
</tr>
<tr>
<td>N(1)–C(11)</td>
<td>1.470(3)</td>
<td>C(2)–P(1)–C(9)</td>
<td>92.43(10)</td>
<td>N(1)–C(11)</td>
<td>1.476(2)</td>
</tr>
<tr>
<td>N(1)–C(12)</td>
<td>1.476(2)</td>
<td>C(11)–N(1)–C(23)</td>
<td>110.32(16)</td>
<td>N(1)–C(23)</td>
<td>1.459(3)</td>
</tr>
<tr>
<td>C(12)–C(13)</td>
<td>1.501(3)</td>
<td>C(11)–N(1)–C(23)</td>
<td>113.25(15)</td>
<td>C(12)–C(13)</td>
<td>1.501(3)</td>
</tr>
<tr>
<td>C(23)–C(24)</td>
<td>1.522(3)</td>
<td>N(1)–C(12)–C(13)</td>
<td>114.52(16)</td>
<td>C(23)–C(24)</td>
<td>1.522(3)</td>
</tr>
<tr>
<td>N(2)–C(24)</td>
<td>1.460(3)</td>
<td>N(1)–C(23)–C(24)</td>
<td>114.47(16)</td>
<td>N(2)–C(24)</td>
<td>1.460(3)</td>
</tr>
<tr>
<td>N(2)–C(25)</td>
<td>1.472(3)</td>
<td>N(2)–C(24)–C(23)</td>
<td>114.39(16)</td>
<td>N(2)–C(25)</td>
<td>1.472(3)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.494(3)</td>
<td>C(24)–N(2)–C(36)</td>
<td>109.86(17)</td>
<td>C(25)–C(26)</td>
<td>1.494(3)</td>
</tr>
<tr>
<td>P(2)–C(36)</td>
<td>1.860(2)</td>
<td>C(25)–N(2)–C(36)</td>
<td>110.09(16)</td>
<td>P(2)–C(36)</td>
<td>1.860(2)</td>
</tr>
<tr>
<td>P(2)–C(38)</td>
<td>1.872(3)</td>
<td>N(2)–C(25)–C(26)</td>
<td>113.78(17)</td>
<td>P(2)–C(38)</td>
<td>1.872(3)</td>
</tr>
<tr>
<td>P(2)–C(45)</td>
<td>1.869(2)</td>
<td>N(2)–C(36)–P(2)</td>
<td>110.32(15)</td>
<td>P(2)–C(45)</td>
<td>1.869(2)</td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
<td>1.6404(9)</td>
<td>C(36)–P(2)–C(45)</td>
<td>102.24(11)</td>
<td>Fe(1)–CpAcent</td>
<td>1.6404(9)</td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
<td>1.6476(10)</td>
<td>C(36)–P(2)–C(38)</td>
<td>102.30(11)</td>
<td>Fe(1)–CpBcent</td>
<td>1.6476(10)</td>
</tr>
<tr>
<td>Fe(2)–CpCcent</td>
<td>1.6484(12)</td>
<td>C(38)–P(2)–C(45)</td>
<td>92.64(10)</td>
<td>Fe(2)–CpCcent</td>
<td>1.6484(12)</td>
</tr>
<tr>
<td>Fe(2)–CpDcent</td>
<td>1.6447(10)</td>
<td>C(13)–CpAcent–CpBcent–C(19)</td>
<td>9.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(26)–CpCcent–CpDcent–C(32)</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CpAcent = C(13) to C(17), CpBcent = C(18) to C(22), CpCcent = C(26) to C(30), CpDcent = C(31) to C(35).
3.3 Platinum(II) Coordination Chemistry of 3.1 – 3.3

The coordination chemistry of this new family of bimetalloligands (3.1 – 3.3) was briefly investigated by treatment of each with an equimolar amount of PtCl₂(cod) to afford the four coordinate complexes 3.4 – 3.6 (Equation 3.2). Yields of the isolated solids varied across the series, with 3.4 isolated in good yield (86%) whilst 3.5 and 3.6 were isolated in relatively poor yields (36 and 39% respectively).

\[\text{PR = PPh}_2 \quad 3.1 \]
\[\text{PR = PCy}_2 \quad 3.2 \]
\[\text{PR = PAd} \quad 3.3 \]

\[\text{PtCl}_2(\text{cod}) \]
\[\text{i) CH}_2\text{Cl}_2 \]
\[\text{ii) Et}_2\text{O / Hexane} \]

3.4
3.5
3.6

Equation 3.2

The \(^{31}\text{P}\{^1\text{H}\} \) NMR spectrum (in CDCl₃) of 3.4 exhibited a new phosphorus singlet at \(\delta(P) \) 2.6 ppm, ca. \(\delta(P) \) 30 ppm downfield from that of the free ligand. The new phosphorus resonance was flanked by equidistant \(^{195}\text{Pt} \) satellites \([J_{\text{PtP}} 3666 \text{ Hz}] \). The inference from the characteristically large \(J_{\text{PtP}} \) coupling constant is that the platinum(II) complex adopts a cis conformation in solution.\(^{58,93,186,196}\) The \(^1\text{H} \) NMR spectrum (in CDCl₃) of 3.4 was also found to contain the anticipated resonances relating to the coordinated ligand, by direct comparison with the \(^1\text{H} \) NMR spectrum of 3.1.

In contrast the \(^{31}\text{P}\{^1\text{H}\} \) NMR spectra (in CDCl₃) of the isolated solids gained after treatment of 3.2 and 3.3 with an equimolar amount of PtCl₂(cod), were more complicated than expected. In the case of the reaction between 3.3 and PtCl₂(cod), the isolated solid revealed several new phosphorus containing species between \(\delta(P) \) 26.3 and –38.2 ppm [\(\delta(P) \) –42.8 (3.3) ppm]. Closer inspection of the \(^{31}\text{P}\{^1\text{H}\} \) NMR spectrum revealed two major species which resonated as singlets flanked by equidistant \(^{195}\text{Pt} \) satellites, which accounted for ca. 70% of the total NMR active \(^{31}\text{P} \) nuclei [\(\delta(P) \) 2.9 ppm, \(J_{\text{PtP}} 3411 \text{ Hz} \) and –27.5 ppm, \(J_{\text{PtP}} 3397 \text{ Hz} \), respective ratio 1:2 by integration].
The inference from the characteristically large J_{PtP} coupling constants, in both cases, is that the majority of the isolated material consisted of two platinum complexes of 3.3, both of which adopt a cis conformation in solution.58,93,186,196 The species at $\delta(P)$ 2.9 ppm was assigned to the expected cis–platinum dichloride complex (3.6) (Equation 3.2), by comparison with the $^{31}P\{^1H\}$ NMR spectrum of 3.4 [$\Delta\delta(P)$ 0.3 ppm, Δ^1J_{PtP} 255 Hz], whilst the remaining species at $\delta(P)$ –27.5 ppm was cautiously assigned to a $[\text{cis, cis–}\{\text{PtCl}_2(3.3)\}]_2$ dimeric complex of 3.3 (3.6A, Figure 3.5).

![Figure 3.5 Proposed monomeric (3.6) and dimeric (3.6A) complexes observed by $^{31}P\{^1H\}$ NMR spectroscopy (in CDCl3).](image)

Following a search of the literature, there are few examples of large platinum–bimetallocyclophanes that are similar to 3.6A.221–223 Of those that are observed, a downfield $\delta(P)$ is common,221–223 which is in contrast to the significant upfield $\delta(P)$ suggested to relate to 3.6A [$\delta(P)$ –27.5 ppm]. However the synthesis of 3.6A was supported further by the Pd(II) and Rh(I) coordination chemistry of 3.1, which afforded two further examples of 18–membered bimetallocyclophanes (Section 3.4.2). The 1H NMR spectrum (in CDCl\textsubscript{3}) of the isolated solid (3.6 / 3.6A) also revealed the anticipated CH\textsubscript{2} and ferrocenyl hydrogen atoms as broad resonances, an effect that may be expected if such a mixture of analogous mono and dimeric complexes were to exist [$\delta(C_5H_5$ and C\textsubscript{5}H\textsubscript{4}) 4.13 – 4.19; $\delta(CH_2)$ 4.03, 3.70 and 2.96 ppm].

The $^{31}P\{^1H\}$ NMR spectrum (in CDCl\textsubscript{3}) of the isolated solid that was gained following treatment of 3.2 with PtCl\textsubscript{2}(cod) was also unexpected, with the spectrum revealing several phosphorus containing species between $\delta(P)$ 33.5 – 5.4 ppm. The downfield
nature of these resonances, compared to that of 3.2 [δ(P) −18.1 ppm], suggested a change in the electronic properties of the phosphorus atoms within 3.2 (presumably coordination / oxidation), however no platinum satellites were observed. Analysis of the filtrate residue did however reveal two distinct platinum complexes by 31P{¹H} NMR spectroscopy (in CDCl$_3$) [δ(P) 18.8 ppm, $^1J_{PtP}$ 3586 Hz; δ(P) 17.9 ppm, $^1J_{PtP}$ 3402 Hz]. The characteristically large $^1J_{PtP}$ coupling constants and downfield nature of the singlets implies that the two platinum complexes adopt a cis conformation in solution (possibly monomeric / dimeric). Further analysis of the filtrate residue supported the preparation of 3.5 (monomeric / dimeric) with the elemental analysis result agreeing with the formula, 3.5·2CH$_2$Cl$_2$.

Further support for the preparation of 3.4 – 3.6 comes from positive ion FAB mass spectroscopy results which gave the expected fragmentation patterns (monomeric only) {MS (FAB$^+$): m/z = 1118 [M]$^+$ (3.4), 1071 [M–Cl]$^+$ (3.5) and 1071 [M–2Cl]$^+$ (3.6)}. The elemental analysis results of 3.4 and 3.6 were also found to be satisfactory (see Experimental Section). The preparation of 3.4 and 3.6 was further supported by the FT–IR spectra which contained two characteristic ν$_{PtCl}$ absorption bands between 290 – 318 cm$^{-1}$. Observation of the ν$_{PtCl}$ absorption bands within the FT–IR spectrum of 3.5 (filtrate residue) was not possible due to a lack of a spectrometer with appropriate scan range. The molecular structure of 3.4 has also been determined by single crystal X–ray diffraction (Sections 3.3.1).
3.3.1 Molecular Structure of 3.4

Yellow crystalline blocks suitable for single crystal X–ray diffraction were grown by the slow evaporation of a CH₂Cl₂ / Et₂O solution of 3.4. The molecular structure was determined (Figure 3.6) with selected lengths and angles given in Table 3.4.

Figure 3.6 Molecular structure of 3.4. All hydrogen atoms, except those on the ethylenediamine backbone, and a CH₂Cl₂ molecule of crystallisation have been removed for clarity.

The molecular structure of 3.4 shows the asymmetric unit to contain one unique molecule of 3.4 and one disordered molecule of CH₂Cl₂ [major disorder component 59.2(9)%]. The platinum(II) dichloride complex was found to adopt a distorted square planar geometry with respect to the metal centre [P(1)–Pt(1)–Cl(2) 166.34(5)°, P(2)–Pt(1)–Cl(1) 170.42(5)°, Table 3.4], with 3.1 coordinating to the platinum(II) centre via
both phosphorus atoms to form a nine-membered chelate ring [bite angle, P(1)–Pt(1)–P(1), 103.05(5)°]. The phosphorus atoms were found to adopt a distorted tetrahedral arrangement, as indicated by the relevant Pt–P–C angles (Table 3.4). The nitrogen atoms were found to adopt a distorted pyramidal geometry [sum of component angles = 336 and 331° respectively]. The Fe(II) cyclopentadienyl rings were found to be essentially eclipsed and coplanar, as previously observed in the molecular structure of 3.1 [torsional twist about C(15)–Cp_cent–Cp_cent–C(21) = 1.6°, C(28)–Cp_cent–Cp_cent–C(34) = 8.9°]. The Fe(1)···Fe(2) separation was found to be shorter than that observed in the molecular structure of 3.1 [Fe(1)···Fe(2) ca. 6.510 Å (3.4) and 11.181 Å (3.1)] and is thought to be a direct consequence of coordination. This change in Fe(1)···Fe(2) separation [ΔFe(1)···Fe(2) ca. 5 Å] could be important when comparing the interaction between iron centres during an investigation of the electrochemical properties of 3.4 and the free ligand (vide infra).

One feature of the molecular structure of 3.4 that has been observed for analogous platinum(II) dichloride complexes (2.14 – 2.17) and in other medium ring sized palladium(II) and platinum(II) complexes,199,200 is the close contact between H(26A) of the coordinated ligand and the platinum(II) centre [C(26)···Pt(1) 3.477 Å, H(26A)···Pt(1) 2.4871 Å, Pt(1)···H(26A)–C(26) 147.6°] (Figure 3.6). This axial interaction between the Csp^3–H bond of the ligand backbone and the metal centre is not significantly mirrored in the ^1H NMR spectrum of 3.4, in which there is only a small downfield shift [ca. δ(CH2) 0.6 ppm]. Upon further inspection of the crystal structure of 3.4 a slipped intramolecular π···π interaction between the phenyl rings containing C(7) and C(45) was also observed [minimum separation = 3.04 Å, c.f. graphite 3.45 Å.92 The phenyl ring containing C(45) is slanted 12.5°, with respect to phenyl ring containing C(7)].
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.2551(15)</td>
<td>P(1)–Pt(1)–P(2)</td>
<td>103.05(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.2401(14)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
<td>84.71(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.3535(14)</td>
<td>P(2)–Pt(1)–Cl(2)</td>
<td>84.29(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.3558(15)</td>
<td>Cl(1)–Pt(1)–Cl(2)</td>
<td>87.00(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.824(6)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>166.34(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.819(6)</td>
<td>P(2)–Pt(1)–Cl(1)</td>
<td>170.42(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.871(6)</td>
<td>C(1)–P(1)–Pt(1)</td>
<td>113.38(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.456(7)</td>
<td>C(7)–P(1)–Pt(1)</td>
<td>124.84(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.472(7)</td>
<td>C(13)–P(1)–Pt(1)</td>
<td>104.4(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.484(7)</td>
<td>N(1)–C(13)–P(1)</td>
<td>113.3(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)–C(26)</td>
<td>1.485(7)</td>
<td>N(1)–C(14)–C(15)</td>
<td>115.1(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)–C(27)</td>
<td>1.492(7)</td>
<td>N(1)–C(25)–C(26)</td>
<td>114.1(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(27)–C(28)</td>
<td>1.485(8)</td>
<td>N(2)–C(26)–C(25)</td>
<td>113.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P(2)–C(38)</td>
<td>1.822(6)</td>
<td>C(26)–N(2)–C(27)</td>
<td>109.6(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(26)–N(2)–C(27)</td>
<td>1.482(6)</td>
<td>C(27)–N(2)–C(38)</td>
<td>109.5(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt(1)–H(26A)</td>
<td>2.49</td>
<td>N(2)–C(27)–C(28)</td>
<td>112.2(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
<td>1.6418(28)</td>
<td>N(2)–C(38)–P(2)</td>
<td>112.8(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
<td>1.6536(31)</td>
<td>C(38)–P(2)–Pt(1)</td>
<td>107.77(19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–CpCcent</td>
<td>1.6488(26)</td>
<td>C(39)–P(2)–Pt(1)</td>
<td>111.90(18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–CpDcent</td>
<td>1.6544(29)</td>
<td>C(45)–P(2)–Pt(1)</td>
<td>123.9(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24), CpCcent = C(28) to C(32), CpDcent = C(33) to C(37).

Table 3.4 Selected lengths (Å) and angles (°) for 3.4.
3.4 Coordination Chemistry of 3.1

Following on from the successful preparation of 3.4, the coordination chemistry of the new bimetalloligand 3.1 was explored further by reaction with a series of transition metal precursors, in an attempt to gain a greater understanding of the coordination modes available to this type of novel ditertiary phosphine.

3.4.1 Palladium(II) and Platinum(II) Coordination Chemistry of 3.1.

The ability of 3.1 to form further examples of 9–membered precious metal chelate complexes was explored further by treatment of the bimetalloligand with an equimolar amount of four readily available platinum and palladium precursors; PdCl$_2$(cod), PdCl$_2$(PhCN)$_2$, Pd(CH$_3$)$_2$Cl(cod) and Pt(CH$_3$)$_2$(cod) (Scheme 3.1).

In contrast to the PtCl$_2$(cod) chemistry previously discussed, reaction of 3.1 with an equimolar amount of PdCl$_2$(cod) or PdCl$_2$(PhCN)$_2$ gave an impure sample of 3.7 by 31P{1H} NMR spectroscopy (in CDCl$_3$). The 31P{1H} NMR spectrum revealed the presence of several phosphorus containing species between δ(P) 20.8 ppm and 11.1 ppm, the major species were tentatively assigned to either cis– or trans–isomers of PdCl$_2$(3.1) (possibly monomeric or dimeric) due to their downfield nature compared to that of the free ligand [δ(P) –27.3 ppm (3.1)]. Careful monitoring of CDCl$_3$, CD$_2$Cl$_2$ or C$_6$D$_6$ solutions containing an equimolar amount of 3.1 and PdCl$_2$(cod) or PdCl$_2$(PhCN)$_2$,
over a period of four days, revealed the gradual disappearance of these signals and the emergence of two new doublets at significant downfield shifts [δ(P) 159.9 ppm, 79.1 ppm, $^2J_{PP}$ 17 Hz]. This in conjunction with the observation of a new doublet at δ(CH$_2$) 3.41 ppm ($^2J_{PH}$ 6.8 Hz) in the 1H NMR spectrum led us to speculate that PdCl$_2$(3.1) undergoes slow decomposition to give the five-membered chelate complex PdCl$_2$(Ph$_2$PCH$_2$OPPh$_2$) (3.7A) with the elimination of some, as of yet unidentified, ferrocenylamine by-products. Support for the nonsymmetric nature of this coordinated bidentate phosphorus(III) ligand comes from previous studies with Ph$_2$PCH$_2$OPPh$_2$ and, more recently, RR’POCH$_2$P(CH$_2$OH)$_2$ (R, R’ = Ph, Cy), which support the characteristic δ(P) and $^2J_{PP}$ coupling constants observed. The same transformation was also observed for 3.4 upon monitoring of the 31P{1H} and 1H NMR spectra over time, however the rate of decomposition was notably slower as would be expected, owing to the different reactivity between Pd(II) and Pt(II) square-planar metal centres. This decomposition effect has also been observed in the previously discussed 31P{1H} NMR spectra of the analogous aryl substituted palladium complexes 2.11 – 2.14, and appears to be an intrinsic property of this family of palladium dichloride complexes [PdCl$_2${RCH$_2$N(CH$_2$PPh$_2$)CH$_2$}$_2$, R = ferrocenyl or aryl group]. Moreover 3.7A has been prepared on a preparative scale following the 4 d ambient temperature reaction of an equimolar CH$_2$Cl$_2$ solution of 3.1 and PdCl$_2$(cod) [δ(P) in (CDCl$_3$): 159.9 and 79.9 ppm, $^2J_{PP}$ 17.0 Hz; MS (FAB$^+$): m/z 542 [M–Cl]$^+$; νPdCl 308 and 289 cm$^{-1}$].

In contrast, treatment of 3.1 with Pt(CH$_3$)$_2$(cod) in CH$_2$Cl$_2$ at ambient temperature gave the cis-platinum(II) complex 3.8, in poor yield (33%), following recrystallisation from hexane (Scheme 3.1). The 31P{1H} NMR spectrum (in CDCl$_3$) of the isolated solid exhibited two new phosphorus species with resonances shifted significantly downfield from that of the free ligand at δ(P) 28.3 and 19.7 ppm respectively. The new singlet at δ(P) 19.7 ppm, accounted for 82% of the 31P{1H} NMR active nuclei, and was flanked by equidistant 195Pt satellites [$^1J_{Pip}$ 1866 Hz], and was assigned to 3.8. The characteristically small $^1J_{Pip}$ coupling constants supported the proposed cis conformation by comparison with literature examples. The remaining singlet at δ(P) 28.3 ppm, was assigned to the symmetrical phosphine oxide of 3.1 by comparison with the analogous
aryl substituted diphosphine oxides 2.5 [δ(P) 26.7 ppm (2.5)], previously discussed. The 1H NMR spectrum (in CDCl₃) of 3.8 was found to contain the anticipated resonances relating to the coordinated ligand in addition to a new CH₃ multiplet at δ(CH₃) 0.25 ppm [²J(CH₃) 69.2 Hz, ³J(CH₃) 13.2 Hz, ²J(PH) and ³J(PH) 12.8 Hz]. Furthermore the positive ion FAB mass spectrum of 3.8 gave the expected fragmentation pattern {MS (FAB⁺): m/z 1062 [M–CH₃]+}, and the elemental analysis result supported the formulation 3.8·0.75H₂O.

Reaction of 3.1 with Pd(CH₃)Cl(cod) in CH₂Cl₂ afforded the trans–spanning diphosphine complex 3.9, in reasonable yield (61%) (Scheme 3.1). The ³¹P{¹H} NMR spectrum (in CDCl₃) of the isolated solid exhibited a new ³¹P{¹H} singlet significantly downfield compared to 3.1, at δ(P) 13.0 ppm. The proposed trans disposition of the complex (monomeric or dimeric) was supported by the characteristic splitting pattern observed in the ³¹P{¹H} NMR spectrum, as a symmetrical P–Pd–P centre is only possible for such a trans–conformation. The 1H NMR spectrum (in CDCl₃) of 3.9 also supported this trans disposition, with a new CH₃ triplet resonance [δ(CH₃) 0.00, ³J(CH₃) 12 Hz], characteristic of a symmetrical trans–P–PdCl(CH₃)–P environment, being observed in addition to the anticipated resonances relating to the coordinated ligand. Further support for the preparation of 3.9 came from positive ion FAB mass spectroscopy, which revealed the expected fragmentation pattern {MS (FAB⁺): m/z 973 [M–Cl]+}, in addition to elemental analysis, which agreed with the formula 3.9·2.5H₂O. Moreover the FT–IR spectrum of 3.9 contained a νPdCl absorption band at νPdCl 263 cm⁻¹.²¹

Interestingly, closer inspection of the FAB mass spectrum of 3.9 suggested that the complex could be of a trans, trans–[Pd(CH₃)Cl{3.1}]₂ dimeric disposition, rather than its anticipated monomeric form, with the spectrum revealing dimeric fragments {FAB–MS: m/z 2018 [2M]+, 1983 [2M–Cl]+}. Following a search of the literature no nitrogen containing trans,trans–Pd(CH₃)Cl diphosphine complexes have previously been reported, however an analogous alkyl diphosphine dimer has previously been discussed [(dpph)PdCl₂]₂ (dpph = 1,6–bis(diphenylphosphino)hexane).²² The isolated solid, 3.9, is therefore considered to be monomeric in nature, due to the lack of reported examples and the unreliability of FAB mass spectroscopy at high molecular weights (> 1000 m/z).
The dimeric form may also be possible and has been seen in subsequent rhodium coordination chemistry (vide infra). Further analysis of 3.9 by MALDI mass spectroscopy would be useful in order to accurately determination the dimers high molecular weight.

3.4.2 Rhodium(I) Coordination Chemistry of 3.1

Reaction of 3.1 with half an equiv. of \{Rh(µ–Cl)(CO)\}_2\ in CH_2Cl_2 afforded a new example of a trans,trans–diphosphine complex (3.10) (Equation 3.3).

![Chemical structure](image)

Equation 3.3

The \(^{31}\text{P}\{^1\text{H}\} \) NMR spectrum (in CDCl\(_3\)) of 3.10 revealed a new doublet significantly downfield to that of the free ligand at δ(P) 16.6 ppm, \(^1\text{J}_{\text{RhP}}\ 130\ \text{Hz}. The proposed trans disposition of the complex was supported by the characteristic splitting pattern observed in the \(^{31}\text{P}\{^1\text{H}\} \) NMR spectrum, as a symmetrical P–Rh–P centre is only possible for such a trans– conformation. The \(^1\text{J}_{\text{RhP}}\ coupling constant is also consistent with other trans– rhodium complexes.\(^{93,206}\) The \(^1\text{H} \) NMR spectrum (in CDCl\(_3\)) of 3.10 was found to contain the anticipated resonances relating to the coordinated ligand. The molecular structure of 3.10 has also been determined and displayed the proposed trans,trans–\{Rh(CO)Cl\} disposition, which was not apparent from the NMR data. Following a search of the literature a similar dimeric species with a trans,trans–\{Rh(CO)Cl\}
structure has recently been proposed [{RhCl(CO){Ph₂P(CH₂)nPPh₂}]₂ (n = 1, 3 or 4),²⁰⁶ adding further support to the bulk of 3.10 adopting a similar connectivity. Analysis of the bulk material by MALDI mass spectroscopy did not support the dimeric nature of 3.10. The nature of 3.10 is therefore tentatively considered to be dimeric, owing to similarity to known literature examples and also the molecular structure; which must be treated with caution owing to the nature of single crystal X–ray diffraction. The preparation of 3.10 (monomeric or dimeric) is further supported by positive ion FAB mass spectroscopy, which showed the anticipated fragmentation pattern {MS (FAB⁺): m/z 983 [0.5M–Cl]⁺}, and also by elemental analysis (see Experimental Section). The FT–IR spectrum of 3.10 also contained a characteristic νC≡O absorption band [νC≡O 1970 cm⁻¹].¹⁹⁴,²⁰⁶

3.4.2.1 Molecular Structure of 3.10

Yellow crystalline plates suitable for X–ray diffraction were grown by the slow evaporation of a CH₂Cl₂ / Et₂O filtrate of 3.10. The molecular structure of 3.10 was determined using synchrotron radiation due to the size of the crystals (at least one dimension < 0.05 mm) (Figure 3.7). Selected lengths and angles are given in Table 3.5. The molecular structure of 3.10 shows 3.1 to bridge two RhCl(CO) fragments, via both phosphorus atoms, to form a large 18–membered metallomacrocyclic dimer. The dimer was found to lie on a crystallographic inversion centre located at the centroid of the 18–membered ring. As a consequence the asymmetric unit was found to contain half a molecule of 3.10. The geometry about the rhodium centres was distorted square planar, with the P(1)–Rh(1)–P(2) bite angle deviating by some 18º from the idealised 180º angle for a trans disposition of groups [C(51)–Rh(1)–Cl(1) 178.02(12), P(1)–Rh(1)–P(2) 161.97(3)°]. The phosphorus atoms adopted a distorted tetrahedral arrangement, as indicated by the relevant Rh–P–C angles. The nitrogen atoms were found to adopt a distorted pyramidal geometry [sum of component angles = 336 and 342° respectively]. The Fe(II) cyclopentadienyl rings were found to be essentially eclipsed and coplanar [torsional twist about C(15)–Cpcent–Cpcent–C(21) = 13.0º, C(28)–Cpcent–Cpcent–C(34) =
3.4°]. This compares well with the value observed in the free ligand (3.1) [torsional twist about C(15)–Cpcent–Cpcent–C(21) = 3.4°].

Figure 3.7 Molecular structure of 3.10. All hydrogen atoms and phenyl carbons, except ipso carbons, have been removed for clarity. Symmetry operator for equivalent atoms ‘ = –x+1, –y+1, –z+1.

Following a search of the CSD, 3.10 was found to represent the first crystallographically characterised metallacycle containing an Rh₂Fe₄ arrangement of metal centres. In comparison, other large metallocycles have been observed in the literature with the analogous ligand dpf being shown to bridge various metal fragments of different geometry and coordination number; {Cu(ClO₄)}₂,²²⁶ (trans–PdCl₂),²²⁵ CoCl₂,²²⁷ and (trans–Mo(CO)₄).²²⁸
Table 3.5 Selected lengths (Å) and angles (°) for 3.10.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rh(1)–P(1)</td>
<td>2.3063(9)</td>
</tr>
<tr>
<td>Rh(1)–P(2)</td>
<td>2.3130(9)</td>
</tr>
<tr>
<td>Rh(1)–Cl(1)</td>
<td>2.3739(9)</td>
</tr>
<tr>
<td>Rh(1)–C(51)</td>
<td>1.809(4)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.834(3)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.818(3)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.845(3)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.458(4)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.470(4)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.476(4)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.499(5)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.516(4)</td>
</tr>
<tr>
<td>N(2)–C(26)</td>
<td>1.475(4)</td>
</tr>
<tr>
<td>N(2)–C(27)</td>
<td>1.470(4)</td>
</tr>
<tr>
<td>N(2)–C(38)</td>
<td>1.451(4)</td>
</tr>
<tr>
<td>C(27)–C(28)</td>
<td>1.506(4)</td>
</tr>
<tr>
<td>P(2)–C(38)</td>
<td>1.859(3)</td>
</tr>
<tr>
<td>P(2)–C(39)</td>
<td>1.817(3)</td>
</tr>
<tr>
<td>P(2)–C(45)</td>
<td>1.816(3)</td>
</tr>
<tr>
<td>Fe(1)–CpA</td>
<td>1.6426(17)</td>
</tr>
<tr>
<td>Fe(1)–CpB</td>
<td>1.6415(19)</td>
</tr>
<tr>
<td>Fe(2)–CpC</td>
<td>1.6456(16)</td>
</tr>
<tr>
<td>Fe(2)–CpD</td>
<td>1.6495(18)</td>
</tr>
<tr>
<td>C(15)–CpA–CpB–C(21)</td>
<td>13.0</td>
</tr>
<tr>
<td>C(28)–CpC–CpD–C(34)</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Symmetry operations for equivalent atoms

' = −x+1,−y+1,−z+1.
CpA = C(15) to C(19), CpB = C(20) to C(24), CpC = C(28) to C(32),
CpD = C(33) to C(37).
3.4.3 Molybdenum(0) Coordination Chemistry of 3.1

The displacement of nbd from Mo(CO)$_4$(nbd) with an equimolar amount of 3.1 afforded the octahedral complex 3.11, in reasonable yield (58%), following a 10 d reflux under nitrogen (Equation 3.4).

$$\text{Mo(CO)}_4(\text{nbd}) \xrightarrow{i) \text{CH}_2\text{Cl}_2 \atop \text{ii) Et}_2\text{O}} \text{3.11}$$

The 31P{1H} NMR spectrum (in CDCl$_3$) of 3.11 exhibited a new singlet resonance downfield to that of the free ligand at δ(P) 29.0 ppm [δ(P) –27.3 ppm (3.1)], indicating a symmetrical coordination complex had been prepared. The conformation of 3.11 was however not apparent from the 31P{1H} NMR data, as both cis and trans conformers of Mo(CO)$_4$(3.1) are possible. The preparation of the cis isomer of 3.11 was however confirmed by the complex’s molecular structure which shows ligand 3.1 to coordinate the molybdenum centre via both phosphorus atoms. This cis conformation was further supported by the complexes infrared spectrum which contained four characteristic terminal νC≡O absorption bands [νC≡O 2018, 1918, 1898, 1870 cm$^{-1}$]. The preparation of the new trimetallic six–coordinate complex was further supported by elemental analysis, which agreed with the formula 3.11·1.75CH$_2$Cl$_2$. Furthermore the positive ion FAB mass spectrum contained the expected parent ion and fragmentation pattern {MS (FAB$^+$): m/z 1061 [M]$^+$, 1005 [M–2CO]$^+$}.
3.4.3.1 Molecular Structure of 3.11

Orange crystalline blocks of 3.11 suitable for single crystal X–ray diffraction were grown by the slow diffusion of Et₂O into a CHCl₃ solution of 3.11. The molecular structure of 3.11 was determined from reflection data collected by the EPSRC National Crystallography Service (Figure 3.8). Selected lengths and angles are given in Table 3.6.

![Molecular structure of 3.11](image)

Figure 3.8 Molecular structure of 3.11. All hydrogen atoms and solvent molecules have been omitted for clarity.

The molecular structure of 3.11 showed the asymmetric unit to consist of one unique molecule of 3.11 and half a disordered molecule of CHCl₃ of crystallisation. The solvating CHCl₃ was modelled as a diffuse region of electron density (Platon squeeze procedure).²²⁹ The trimetallic complex was found to adopt a distorted octahedral geometry with respect to the molybdenum centre \([\text{C}(51)–\text{Mo}(1)–\text{P}(2) 172.82(9)°, \text{C}(52)–\text{Mo}(1)–\text{P}(1) 169.51(9)° \text{ and } \text{C}(53)–\text{Mo}(1)–\text{C}(54) 178.49(12)°]\) with 3.1...
coordinating the metal via both phosphorus atoms, to form a nine-membered chelate ring [bite angle, P(1)–Mo(1)–P(2) 101.83(2)°]. The Mo–P and Mo–C bond lengths are broadly as anticipated,202,203 whilst the P(1)–Mo(1)–P(2) bite angle was similar to that found in the analogous four coordinate platinum dichloride complex \textbf{3.4} [bite angle, P(1)–Pt(1)–P(2) 103.05(5)°]. The phosphorus atoms were found to adopt a distorted tetrahedral arrangement as indicated by the relevant C–P–Mo angles, whilst the nitrogen atoms were found to adopt a distorted pyramidal geometry [sum of component angles for N(1), N(2) = 331 and 340° respectively]. The Fe(II) cyclopentadienyl rings were found to be essentially eclipsed and coplanar [torsional twist about C(15)–Cp\textsubscript{cent}–Cp\textsubscript{cent}–C(21) = 11.8°, C(28)–Cp\textsubscript{cent}–Cp\textsubscript{cent}–C(34) = 13.2°], as previously observed in the free ligand [torsional twist about C(15)–Cp\textsubscript{cent}–Cp\textsubscript{cent}–C(21) = 3.4°]. The molecular structure of \textbf{3.11} was also found to compare well with the analogous polyaromatic derivative \textbf{2.22} (Section 2.4.3.1).
Table 3.6 Selected lengths (Å) and angles (°) for 3.11.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo(1)–C(51)</td>
<td>1.980(3)</td>
</tr>
<tr>
<td>Mo(1)–C(52)</td>
<td>1.995(3)</td>
</tr>
<tr>
<td>Mo(1)–C(53)</td>
<td>2.022(3)</td>
</tr>
<tr>
<td>Mo(1)–C(54)</td>
<td>2.063(3)</td>
</tr>
<tr>
<td>Mo(1)–P(1)</td>
<td>2.5416(7)</td>
</tr>
<tr>
<td>Mo(1)–P(2)</td>
<td>2.5547(8)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.839(3)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.844(3)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.861(3)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.465(3)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.478(4)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.469(3)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.500(4)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.519(4)</td>
</tr>
<tr>
<td>N(2)–C(26)</td>
<td>1.461(3)</td>
</tr>
<tr>
<td>N(2)–C(27)</td>
<td>1.474(3)</td>
</tr>
<tr>
<td>N(2)–C(38)</td>
<td>1.457(4)</td>
</tr>
<tr>
<td>C(27)–C(28)</td>
<td>1.509(4)</td>
</tr>
<tr>
<td>P(2)–C(38)</td>
<td>1.867(3)</td>
</tr>
<tr>
<td>P(2)–C(39)</td>
<td>1.843(3)</td>
</tr>
<tr>
<td>P(2)–C(45)</td>
<td>1.842(3)</td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
<td>1.6516(15)</td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
<td>1.6537(16)</td>
</tr>
<tr>
<td>Fe(2)–CpCcent</td>
<td>1.6424(17)</td>
</tr>
<tr>
<td>Fe(2)–CpDcent</td>
<td>1.6475(20)</td>
</tr>
</tbody>
</table>

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24), CpCcent = C(28) to C(32),

CpDcent = C(33) to C(37).

| C15–CpAcent–CpBcent–C(21) | 11.8 |
| C28–CpCcent–CpDcent–C(34) | 13.2 |
3.4.4 Ruthenium(II) and Gold(I) Coordination Chemistry of 3.1

Treatment of 3.1 with [RuCl(μ–Cl)(p–cym)]_2 (1 equiv.) and AuCl(tht) (2 equiv.), in dichloromethane at ambient temperature, gave the tetrametallic complexes 3.12 and 3.13 in good yield (86 and 84% respectively) (Equation 3.5).

\[
\text{Equation 3.5} \quad (i) \quad [\text{RuCl}(\mu–\text{Cl})(p–\text{cym})]_2 \quad \text{for } 3.12 \quad \text{or} \quad 2 \text{ AuCl(tht)} \quad \text{for } 3.13; \quad \text{solvent } \text{CH}_2\text{Cl}_2.
\]

The 31P{^1}H NMR spectra [in CD$_2$Cl$_2$ (3.12) or CDCl$_3$ (3.13)] of 3.12 and 3.13 both exhibited a new phosphorus singlet significantly downfield of that of the free ligand at δ(P) 25.2 (3.12) and 19.4 (3.13) ppm respectively [δ(P) –27.3 ppm (3.1)]. The 1H NMR spectra (in CDCl$_3$) of both coordination complexes also contained the anticipated resonances relating to the coordinated diphosphines, in addition to the distinct resonances relating to the p–cym auxiliary ligand. Additional support for the preparation of 3.12 and 3.13 comes from the positive ion FAB mass spectra which contained the expected molecular fragments and parent ions {MS (FAB$^+$): m/z 1651 [M]$^+$ (3.12) and 1233 [M–AuCl$_2$] (3.13)}. The elemental analysis results for 3.12 and 3.13 were also found to be satisfactory (see Experimental Section). Moreover the preparation of both complexes, and the anticipated P,P–bridging mode of 3.1, was further confirmed by single crystal X–ray diffraction studies (Section 3.4.4.1).

3.4.4.1 Molecular Structures of 3.12 and 3.13

Orange crystalline blocks of 3.12 and yellow crystalline tablets of 3.13, suitable for single crystal X–ray diffraction were grown by the slow vapour diffusion of hexane into a CH₂Cl₂ solution of the respective complexes. The molecular structure of 3.12 was determined using reflection data collected in the home laboratory (Figure 3.9), whilst the molecular structure of 3.13 was determined from reflection data collected by the EPSRC National Crystallography Service (Figure 3.10). Selected lengths and angles for 3.12 and 3.13 are given in Table 3.7.

![Molecular structure of 3.12](Image)

Figure 3.9 Molecular structure of 3.12. All hydrogen atoms and solvent molecules have been removed for clarity. Symmetry operator for equivalent atoms ’ = −x+1, −y+1, −z+1.

The molecular structures of 3.12 and 3.13 (Figure 3.9 and 3.10) both show 3.1 to coordinate two separate metal centres via both phosphorus atoms. In both instances (3.12 and 3.13), the phosphorus atoms were found to adopt a distorted tetrahedral
geometry as indicated by the respective C–P–M angles. The nitrogen atoms were found to adopt a distorted pyramidal geometry [sum of component angles 338° (3.12), 338° and 337° (3.13)]. The Fe(II) cyclopentadienyl rings within both tetrametallic complexes were found to be essentially eclipsed and coplanar, as previously observed in the molecular structure of 3.1. In contrast the conformation of the P–C–N–C–N–C–P backbone of 3.1 was found to differ between the two complexes, with 3.12 adopting a “more–open” conformation compared to 3.13 [P(1)···P(1') ca. 8.707 Å (3.12) and P(1)···P(2), ca. 6.383 (3.13) Å]. This observation highlights the flexibility of the ligand.

In the case of 3.12, each ruthenium centre was found to adopt a classical “piano–stool” geometry comprising of a p–cym ligand, two chlorides and one of the phosphorus donors of 3.1. The geometry of both ruthenium centres was found to be similar to those reported for other ruthenium–phosphine piano–stool complexes.22 The auxiliary p–cym ligand itself was found to adopt a distorted geometry, with respect to the phenyl ring mean plane, with the CH₃ and iPr groups tilted slightly towards the ruthenium centre [deviation from phenyl ring mean plane CH₃ = 0.0015 Å and iPr = 0.0406 Å]. The geometry of the gold(I) centres within 3.13 were found to be pseudo–linear [P(1)–Au(1)–Cl(1) 178.53(3)°, P(2)–Au(2)–Cl(2) 176.30(4)°], as anticipated.23,144 Further inspection of the molecular structure of 3.13 revealed the presence of an intermolecular Au···Cl interaction (Figure 3.10). This interaction allowed the formation of discrete dimers between neighbouring inversion–related molecules of 3.13 [Au···Cl 3.950 Å] (Figure 3.10). The Au···Cl contacts were found to be slightly longer than the sum of the Van der Waals radii (rᵥ) [rᵥCl = 1.75 Å, rᵥAu = 1.70 Å, sum of rᵥ = 3.45 Å, Au···Cl 3.950 Å], suggesting that the interactions are weak.23,230
Figure 3.10 The Au···Cl contacts observed between adjacent molecules of 3.13. Symmetry operator for equivalent molecules $^1 = -x+1, -y, -z+1$.
Table 3.7 Selected lengths (Å) and angles (°) for 3.12 and 3.13.

<table>
<thead>
<tr>
<th></th>
<th>3.12</th>
<th>3.13</th>
<th>3.12</th>
<th>3.13</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(1)–P(1)</td>
<td>2.3448(4)</td>
<td>2.2277(9)</td>
<td>83.435(14)</td>
<td>178.53(4)</td>
</tr>
<tr>
<td>M(1)–Cl(1)</td>
<td>2.4088(4)</td>
<td>2.2836(10)</td>
<td>88.397(14)</td>
<td></td>
</tr>
<tr>
<td>M(1)–Cl(2)</td>
<td>2.4173(4)</td>
<td>2.0044(9)</td>
<td>85.276(14)</td>
<td></td>
</tr>
<tr>
<td>M(2)–P(2)</td>
<td>2.2384(10)</td>
<td>P(2)–M(2)–Cl(2)</td>
<td>176.30(4)</td>
<td></td>
</tr>
<tr>
<td>M(2)–Cl(2)</td>
<td>2.3004(10)</td>
<td>C(1)–P(1)–M(1)</td>
<td>112.23(5)</td>
<td>114.13(13)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.8239(1)</td>
<td>C(7)–P(1)–M(1)</td>
<td>118.23(5)</td>
<td>110.29(13)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.8182(1)</td>
<td>C(13)–P(1)–M(1)</td>
<td>111.97(5)</td>
<td>114.04(13)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.8575(1)</td>
<td>N(1)–C(13)–P(1)</td>
<td>114.40(10)</td>
<td>109.5(3)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.4560(1)</td>
<td>C(13)–N(1)–C(14)</td>
<td>111.07(12)</td>
<td>112.5(3)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.473(2)</td>
<td>C(14)–N(1)–C(25)</td>
<td>115.17(12)</td>
<td>114.0(3)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.503(2)</td>
<td>C(13)–N(1)–C(25)</td>
<td>112.15(13)</td>
<td>111.0(3)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.460(2)</td>
<td>N(1)–C(14)–C(15)</td>
<td>112.65(13)</td>
<td>115.9(3)</td>
</tr>
<tr>
<td>C(25)–C(25′)</td>
<td>1.521(3)</td>
<td>N(1)–C(25)–C(25′)</td>
<td>111.29(17)</td>
<td></td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.524(5)</td>
<td>N(1)–C(25)–C(26)</td>
<td>113.6(3)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(26)</td>
<td>1.475(5)</td>
<td>N(2)–C(26)–C(25)</td>
<td>109.8(3)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(27)</td>
<td>1.477(5)</td>
<td>C(26)–N(2)–C(27)</td>
<td>113.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(27)–C(28)</td>
<td>1.496(5)</td>
<td>C(27)–N(2)–C(38)</td>
<td>109.8(3)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(38)</td>
<td>1.467(5)</td>
<td>C(26)–N(2)–C(38)</td>
<td>113.7(3)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(38)</td>
<td>1.848(4)</td>
<td>N(2)–C(27)–C(28)</td>
<td>111.6(3)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(39)</td>
<td>1.811(4)</td>
<td>N(2)–C(38)–P(2)</td>
<td>109.3(3)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(45)</td>
<td>1.820(4)</td>
<td>C(38)–P(2)–M(2)</td>
<td>116.10(13)</td>
<td></td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
<td>1.6423(8)</td>
<td>C(39)–P(2)–M(2)</td>
<td>115.00(13)</td>
<td></td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
<td>1.6417(9)</td>
<td>C(45)–P(2)–M(2)</td>
<td>110.97(13)</td>
<td></td>
</tr>
<tr>
<td>Fe(2)–CpCcent</td>
<td>1.652(2)</td>
<td>C(15)–CpAcent</td>
<td>1.1</td>
<td>21.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>−CpBcent−C(21)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(2)–CpDcent</td>
<td>1.653(2)</td>
<td>C(28)–CpCcent−</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CpDcent−C(34)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ru–Cymcent</td>
<td>1.6929(7)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

M = Ru (3.12), Au (3.13). Symmetry operator for equivalent atoms ’ = −x+1,−y+1,−z+1 (3.12).

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24), CpCcent = C(28) to C(32), CpDcent = C(33) to C(37).
3.5 Electrochemical Properties of 3.1 and its Coordination Complexes

The electrochemical properties of 3.1 and its related mononuclear and binuclear complexes have been investigated by cyclic voltammetry, using a standard electrochemical cell (Figure 3.11 left). All of the compounds studied were found to display a single reversible ferrocene/ferrocenium redox (Fc/Fc⁺) couple similar to that of ferrocene and, as a result, all electrochemical potential values are reported relative to the ferrocene/ferrocenium couple (Figure 3.11, right and 3.12 left).

<table>
<thead>
<tr>
<th>Compound</th>
<th>E₁/₂ (V)ᵃ, Fe²⁺/³⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>+0.055</td>
</tr>
<tr>
<td>3.4</td>
<td>+0.075</td>
</tr>
<tr>
<td>3.9</td>
<td>+0.021</td>
</tr>
<tr>
<td>3.11</td>
<td>+0.135</td>
</tr>
<tr>
<td>3.12</td>
<td>−0.018</td>
</tr>
<tr>
<td>3.13</td>
<td>+0.012</td>
</tr>
</tbody>
</table>

ᵃAll experiments were performed in a 0.1M [NBu₄][BF₄]/dry–degassed CH₂Cl₂ solution using a standard electrochemical cell consisting of a Pt disc working electrode (d = 1.6 mm), Ag/AgCl reference electrode in a 3 M NaCl solution and a Pt gauze counter electrode at a scan rate of 50 mV/s.

ᵇE₁/₂ = (Epc + Epa)/2 reported relative to the ferrocene/ferrocenium couple.

Figure 3.11 Standard electrochemical cell (left), electrochemical dataᵇ for 3.1 and its mononuclear and binuclear complexes (right).

For 3.1, the half–wave potentials of the Fc groups were found to be E₁/₂ +0.055 V, whereas for complexes 3.4, 3.9, 3.11, 3.12 and 3.13 the half wave potentials were observed in the range E₁/₂ −0.018 to +0.135 V. The similarity between the half wave potentials of 3.1 and the coordination complexes suggests that the ferrocene groups
within 3.1 are not severely affected by coordination. The observation of a single Fe/Fe$^+$ wave for 3.1, 3.9, 3.11 and 3.13 also indicates that no direct or indirect electronic communication between the two ferrocene groups takes place, i.e. no electronic interaction \(\text{via} \) (saturated) covalent bonds or any significant coulombic interaction through space, as the two ferrocene centres are spaced too far apart from each other. Thus from an electrochemical view point 3.1, 3.9, 3.11 and 3.13 are composed of two, electrochemically equivalent, monoelectronic redox groups. In contrast, the platinum(II) complex (3.4) displays a broad cyclic voltammogram suggesting that the two ferrocene/ferrocenium redox couples are marginally different. The cyclic voltammogram of 3.1 (Figure 3.12, right) is also more complex than may have been anticipated, showing two further irreversible oxidation potentials at $E_{pa} -0.015$ and $+0.215$ V (Figure 3.12).

![Cyclic voltammogram of Fe (left) and 3.1 (right) in dry CH$_2$Cl$_2$, 0.1 M [NBu$_4$][BF$_4$] at a scan rate of 50 mVs$^{-1}$.](image)

These irreversible potentials are tentatively assigned to the irreversible oxidation of both tertiary phosphine groups within 3.1, whilst the appearance of two potentials, one more anodic than the other, suggests sequential electrochemical oxidation of 3.1. This notion, of progressive oxidation is supported by the loss of the irreversible oxidation peaks from
subsequent voltammograms of preformed coordination complexes of 3.1, and also by comparison with analogous ligands discussed herein (vide infra).

In addition to the Fc/Fc\(^+\) redox couple, the binuclear ruthenium(II) complex 3.12 was found to exhibit a more complex cyclic voltammogram with several oxidation peaks also being observed at more anodic potentials, between 0.7 – 1.5 V. These peaks may tentatively result from two consecutive irreversible single electron (per ruthenium metal centre) Ru\(^{II}/III\) oxidations\(^{216,231,232}\). Similarly 3.11 showed further irreversible oxidation potentials, between 0.75 – 1.23 V, which presumably correspond to the Mo\(^0\)/Mo\(^I\) and Mo\(^I\)/Mo\(^{II}\) oxidations respectively of the molybdenum tetracarbonyl fragment\(^{208}\).

3.6 Preparation and Characterisation of 3.14

The ferrocenyl monophosphine 3.14 was prepared in order to observe how the properties of a comparable monophosphine compared to those of the diphosphine 3.1. To this end, 3.14 was prepared by condensation of the known secondary amine FcCH\(_2\)N(H)CH\(_2\)CH\(_3\)\(^{233}\) with one equiv. of Ph\(_2\)PCH\(_2\)OH (Equation 3.6).

\[
\begin{align*}
\text{Fc} & \quad \text{NH} \\
\text{Fe} & \quad \text{Ph}_2\text{PCH}_2\text{OH} \\
\text{MeOH} & \quad \rightarrow \\
\text{Fc} & \quad \text{N} \\
\text{Fe} & \quad \text{PPh}_2 \\
\text{3.14} & \\
\end{align*}
\]

Equation 3.6

In a similar manner to the analogous aryl substituted monophosphines 2.23 and 2.24, 3.14 did not crystallise during the reaction. Complete evaporation of the solvent did however repeatedly yield a viscous oil that was found to be sufficiently pure [by \(^{31}\text{P}\)\({\text{^1H}}\) NMR, 79% by integration] to be used directly in coordination studies. The \(^{31}\text{P}\)\({\text{^1H}}\) NMR spectrum of this viscous oil (in freeze–thawed CDCl\(_3\)) exhibited a new phosphorus singlet resonance at \(\delta(P) \approx 27.7\) ppm, some ca. 18 ppm upfield from that observed for the Ph\(_2\)PCH\(_2\)OH starting material. The chemical shift of the characteristic
singlet compared well with analogous polyaromatic monophosphines previously discussed [δ(P) –27.6 (2.23) and –27.7 (2.24) ppm respectively], and also with the comparable diphosphine 3.1 [δ(P) –27.3 ppm, Δδ(P) 0.4 ppm]. The 1H NMR spectrum (in CDCl₃) of 3.14 revealed the anticipated δ(CH₂) and δ(CH₂CH₃) resonances previously observed in the 1H NMR spectrum of the parent amine, whilst the newly introduced CH₂P moiety resonated as a characteristic doublet at δ(H) 3.16 ppm [J₂PH 3.2 Hz]. Moreover, the successful preparation of 3.14 was supported by positive ion FAB mass spectroscopy which gave a predictable molecular fragment {MS (FAB⁺): m/z 457 [M+O]⁺}. The molecular structure of 3.14 has also been determined by single crystal X–ray diffraction (Section 3.6.1). The electrochemical properties of 3.14 were also briefly investigated by cyclic voltammetry. The cyclic voltammogram of 3.14 contains a ferrocene/ferrocenium redox (Fc/Fc⁺) couple at E₁/₂ 0.139 V, in addition to a further oxidation peak at E_pα 0.006V (Figure 3.13); values quoted relative to the ferrocene/ferrocenium redox (Fc/Fc⁺) couple.

![Figure 3.13](image-url)

Figure 3.13 Cyclic voltammogram of 3.14 in dry CH₂Cl₂, 0.1 M [NBu₄][BF₄] at a scan rate of 50 mVs⁻¹.
The oxidation peak at $E_{pa} 0.006 \text{V}$ was tentatively assigned to the irreversible oxidation of the phosphorus atom within \textbf{3.14} due to the lack of a corresponding reduction potential and similar electrochemical potential to the first phosphine oxidation peaks found in the voltammogram of \textbf{3.1} [$E_{pa} -0.015 \text{ V (3.1)}$, difference in P(III)/P(V) E_{pa} between \textbf{3.1} and \textbf{3.14} = 0.021 \text{ V}]. Comparison of the $E_{1/2}$ ferrocene/ferrocenium values of \textbf{3.14} with that of \textbf{3.1}, revealed an anodic shift of +0.084 V suggesting that the ferrocene group within the monophosphine is harder to oxidise compared to the analogous Fe(II)/Fe(III) couple within the \textbf{3.1}.

\subsection*{3.6.1 Molecular Structure of 3.14}

Orange crystalline plates of \textbf{3.14} were grown directly from the previously described viscous oil, following storage of the oil at ambient temperature, under a nitrogen atmosphere, for \textit{ca.} 2 months. The molecular structure was determined (Figure 3.14), selected lengths and angles are given in Table 3.8.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{molecular_structure.png}
\caption{Molecular structure of \textbf{3.14}. All hydrogen atoms have been removed for clarity.}
\end{figure}
The molecular structure of 3.14 shows the phosphine to have crystallised in the chiral space group $P1$ [racemic twin with major enantiomer freely refined to 56.0(6)%]. The asymmetric unit contained one unique molecule of 3.14. The phosphorus and nitrogen atoms within 3.14 were both found to adopt a distorted pyramidal arrangement, as indicated by the relevant C–P–C angles and the sum of component angles about N(1) [sum of component angles for N(1) = 337°]. The Fe(II) cyclopentadienyl rings within 3.14 were found to be essentially eclipsed and coplanar [torsional twist about C(15)–Cpcent–Cpcent–C(21) = 6.7°], similar to those found within the molecular structure of 3.1. In general, 3.14 was found to have similar structural characteristics to the analogous diphosphine 3.1 [i.e. sum of component angles for N(1) = 336° (3.1) and 337° (3.14), geometry of phosphorus atoms for 3.1 and 3.14 = distorted pyramidal; C–P–C ranged between 97.99(5) – 105.06(6)Å] (Table 3.2 and 3.8).

<table>
<thead>
<tr>
<th>Table 3.8 Selected lengths (Å) and angles (°) for 3.14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–C(1)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
</tr>
</tbody>
</table>

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24).
3.7 Gold(I) Coordination Chemistry of 3.14

The coordination chemistry of 3.14 was briefly explored by reaction with an equimolar amount of AuCl(tht), at ambient temperature, to afford the bimetallic gold complex 3.15 in reasonable yield (56%) (Equation 3.7).

\[
\begin{align*}
\text{Fe} & \quad \text{N} \quad \text{PPh}_2 \quad \text{AuCl(tht)} \quad \text{CH}_2\text{Cl}_2 \\
\text{3.14} & \quad \rightarrow \quad \text{Fe} \quad \text{N} \quad \text{PPh}_2 \\
& \quad \text{AuCl}
\end{align*}
\]

Equation 3.7

The $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of the isolated solid exhibited a new phosphorus singlet resonance at $\delta(P)$ 17.4 ppm, in addition to several new $^{31}\text{P}\{^1\text{H}\}$ NMR active species between $\delta(P)$ 29.8 – 50.1 ppm. The singlet at $\delta(P)$ 17.4 ppm accounted for 18% of the total $^{31}\text{P}\{^1\text{H}\}$ NMR active nuclei and was assigned to 3.15, by comparison with the analogous gold complexes 2.28 and 2.29 [$\delta(P)$ 18.9 (2.28) and 18.5 ppm (2.29) respectively]. The remaining 82% of the phosphorus containing species were speculatively assigned to the dimeric complex 3.15A (Equation 3.8), by comparison with the coordination chemistry of \{FeCH$_2$)$_2$NCH$_2$PPh$_2$ (3.20); which showed the monophosphine (3.20) to be capable of both mono–P and bidentate–P,N coordination modes.

\[
\begin{align*}
\text{Fe} & \quad \text{N} \quad \text{PPh}_2 \quad \text{AuCl} \quad 2\text{Cl} \\
\text{2} & \quad \text{Fe} \quad \text{N} \quad \text{PPh}_2 \quad \text{AuCl} \\
& \quad \text{Fe} \quad \text{N} \quad \text{Au} \quad \text{PPh}_2 \\
& \quad \text{3.15} \quad \leftrightarrow \quad \text{3.15A}
\end{align*}
\]

Equation 3.8 Proposed species observed by $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy. Dashed line indicates a potential aurophilic interaction.
A search of the CSD revealed no previously reported examples of such a \((\text{Au}\{\text{PCN}\})_2\) dimer (3.15A), although examples of \(\text{R}_3\text{N}–\text{Au}–\text{PPh}_3\) salts [\(\text{R} = \text{alkyl} \text{ and aryI}\)] have been previously discussed\(^{234,235}\) suggesting that a P,N coordination mode may be possible for 3.14. Analysis of the \(^1\text{H}\) NMR spectrum of the isolated solid also suggested that the CDCl\(_3\) solution contained a mixture of coordination complexes, with the \(\delta(\text{CH}_2)\), \(\delta(\text{CH}_2\text{CH}_3)\) and \(\delta(\text{Fc})\) regions of the spectrum containing several broad resonances. Further work is clearly required to fully characterise 3.15 by NMR spectroscopy. The preparation of 3.15 / 3.15A was further supported by elemental analysis, which showed good agreement with the formula 3.15-0.75CH\(_2\)Cl\(_2\). The molecular structure of 3.15 has also been determined by single crystal X–ray diffraction (Section 3.7.1).

3.7.1 Molecular Structure of 3.15

Yellow crystalline plates suitable for single crystal X–ray diffraction were grown by the slow evaporation of a CH\(_2\)Cl\(_2\)/Et\(_2\)O filtrate of 3.15. The molecular structure of 3.15 was determined in the home laboratory (Figure 3.15), selected lengths and angles are given in Table 3.9.

Figure 3.15 Molecular structure of 3.15. All hydrogen atoms have been removed for clarity.
The asymmetric unit of 3.15 was found to contain one molecule of the bimetallic complex. The geometry about the metal centre was found to be pseudo-linear, with the P–Au–Cl angle deviating marginally from the idealised angle for a linear disposition [P(1)–Au(1)–Cl(1) 179.79(5)°]. The phosphorus atom was found to adopt a distorted tetrahedral arrangement, as indicated by the relevant C–P–Au angles, whilst the nitrogen atom adopted a distorted pyramidal geometry [sum of component angles = 339°]. In contrast to 3.14, the Fe(II) cyclopentadienyl rings were found to be essentially staggered and coplanar [torsional twist about C(15)–Cp cent–Cp cent–C(21) = 28.9°], suggesting that the cyclopentadienyl rings of the ferrocenyl group have some conformational freedom. Furthermore there was no evidence of any aurophilic interactions [minimum Au···Au separation ca. 8 Å] or nitrogen coordination of the gold(I) centre [Au···N 3.864 Å].

Table 3.9 Selected lengths (Å) and angles (°) for 3.15.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au(1)–Cl(1)</td>
<td>2.2910(12)</td>
<td>P(1)–Au(1)–Cl(1) 179.79(5)</td>
</tr>
<tr>
<td>Au(1)–P(1)</td>
<td>2.2435(11)</td>
<td>C(1)–P(1)–Au(1) 111.89(13)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.812(4)</td>
<td>C(7)–P(1)–Au(1) 114.03(15)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.817(5)</td>
<td>C(13)–P(1)–Au(1) 115.90(13)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.874(4)</td>
<td>N(1)–C(13)–P(1) 120.5(3)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.448(5)</td>
<td>C(13)–N(1)–C(14) 113.6(3)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.479(5)</td>
<td>C(25)–N(1)–C(14) 110.0(3)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.473(6)</td>
<td>C(13)–N(1)–C(25) 115.2(3)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.498(6)</td>
<td>N(1)–C(14)–C(15) 114.0(3)</td>
</tr>
<tr>
<td>C(25)–C(26)</td>
<td>1.501(7)</td>
<td>N(1)–C(25)–C(26) 113.7(4)</td>
</tr>
<tr>
<td>Fe(1)–CpA cent</td>
<td>1.636(2)</td>
<td>C(15)–CpA cent–CpB cent–C(21) 28.9</td>
</tr>
<tr>
<td>Fe(1)–CpB cent</td>
<td>1.655(2)</td>
<td></td>
</tr>
</tbody>
</table>

CpA cent = C(15) to C(19), CpB cent = C(20) to C(24).

124
3.8 Preparation and Characterisation of 3.16 and 3.17

Following the efficient preparation and diverse coordination chemistry of the ferrocenyl phosphines discussed thus far, efforts to vary the diaminyl linker within the general formula, \{\text{FeCH}_2\text{N(}\text{CH}_2\text{PPh}_2\text{)CH}_2\}_2\text{R}, were made in an attempt to explore how the coordination and electrochemical properties of the resulting phosphines were effected (Figure 3.16).

![Figure 3.16 Variations made to the general formula, \{\text{FeCH}_2\text{N(}\text{CH}_2\text{PPh}_2\text{)CH}_2\}_2\text{R.}]

To this end the new trimetallophosphine 3.16 was prepared by double condensation of the parent amine, \{\text{FcCH}_2\text{N(}\text{H}\text{)CH}_2\}_2\text{Fc}, with two equiv. of the tertiary phosphine synthon \text{Ph}_2\text{PCH}_2\text{OH}. To the best of our knowledge the triferoceynl imine \{\text{FcCH}_2\text{N(}\text{C(}\text{H}\text{)}\}_2\text{Fc}, and parent amine \{\text{FcCH}_2\text{N(}\text{H}\text{)CH}_2\}_2\text{Fc}, have not been previously reported in the literature (see Experimental Section). The trimetallophosphine did not crystallise during the course of the reaction and, as a result, was obtained as a viscous oil following complete removal of the solvent. The \text{^31P}\{\text{^1H}\} NMR spectrum (in CDCl\textsubscript{3}) of the isolated oil exhibited a new phosphorus singlet at \(\delta(\text{P}) -27.8\) ppm, which accounted for 87% of the total \text{^31P} NMR active nuclei and was assigned to 3.16 by comparison with the \text{^31P}\{\text{^1H}\} NMR spectrum of 3.1 [\(\delta(\text{P}) -27.3\) ppm (3.1), \(\Delta\delta(\text{P}) 0.5\) ppm]. The remainder of the \text{^31P} NMR active nuclei corresponded to unreacted \text{Ph}_2\text{PCH}_2\text{OH}. The \text{^1H} NMR spectrum (in CDCl\textsubscript{3}) of the isolated oil revealed the newly introduced CH\textsubscript{2}P hydrogen atoms to resonate as a characteristic doublet at \(\delta(\text{CH}_2\text{P}) 3.02\) ppm (\(^2J_{\text{PH}} 3.6\) Hz),22,23 whilst the remaining two CH\textsubscript{2} environments resonated as singlets at \(\delta(\text{H}) 3.55\) and 3.51 ppm. Furthermore the preparation of an impure sample of 3.16 was further
supported by a marked reduction of the ν_{NH} absorption band in the infrared spectrum of the isolated oil, compared to that of $\{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{Fc}$. Moreover the preparation of 3.16 was further supported by the subsequent coordination chemistry of the isolated oil.

In contrast, preliminary reactions of the known parent amine $\{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{CH}_2$236,237 with two equiv. of Ph$_2$PCH$_2$OH, were found to be significantly incomplete by 31P{1H} NMR spectroscopy following 14 d of stirring at ambient temperature. The 31P{1H} NMR spectrum (in CDCl$_3$) of the resulting oil, following complete removal of the solvent, revealed three new singlets at $\delta(P)$ –26.9, –27.6 and –28.5 ppm, in addition to that of the Ph$_2$PCH$_2$OH starting material. The three new singlets accounted for 79% of the 31P NMR active nuclei and appeared in a ratio of ca. 1:5:1 by 1H NMR integration. The major resonance at $\delta(P)$ –27.6 ppm accounted for 55% of the total 31P NMR active nuclei and was assigned to 3.17 by comparison with 3.1 [($\delta(P)$ –27.3 ppm (3.1), $\Delta\delta(P)$ 0.3 ppm]. Further work is clearly required to produce 3.17 to a higher purity, however this preliminary work does suggest that preparation of 3.17 is feasible.
3.9 Coordination Chemistry of 3.16

The coordination chemistry of the new trimetalloligand, 3.16, was briefly explored by reaction with three readily available transition metal centres [Au(I), Ru(II) and Pt(II)]. Treatment of 3.16 with AuCl(tht) (2 equiv.) or {RuCl(µ–Cl)(p–cym)}₂ (1 equiv.) in dichloromethane at ambient temperature, gave the pentametallic complexes 3.18 and 3.19 in reasonable to excellent yield (61 and 87% respectively) (Equation 3.9).

Equation 3.9 (i) 2 AuCl(tht) (3.18) or {RuCl(µ–Cl)(p–cym)}₂ (3.19). Solvent: CH₂Cl₂.

The ³¹P{¹H} NMR spectrum (in CDCl₃) of 3.18 displayed a new characteristic singlet resonance at δ(P) 17.4 ppm.²² In contrast, the ³¹P{¹H} NMR spectrum (in CDCl₃) of 3.19 contained three distinct singlet resonances at δ(P) 26.1, 21.0 and 16.1 ppm. The singlet at δ(P) 26.1 ppm accounted for 78% of the ³¹P NMR active nuclei and was assigned to 3.19, by comparison with the ³¹P{¹H} NMR spectrum (in CDCl₃) of the analogous ruthenium p–cym complex 3.12 [³¹P{¹H} NMR 25.19 ppm (3.12)]. In both instances the ¹H NMR (in CDCl₃) spectrum contained the anticipated resonances relating to the coordination complexes. Further support for the preparation of the new pentametallic complexes 3.18 and 3.19 comes from positive ion FAB mass spectroscopy which revealed predictable molecular fragments {MS (FAB⁺): m/z 1233 [M–AuCl–Cl]⁺ (3.18) and 1651 [M⁺ (3.19)]}. The elemental analysis results for 3.18 and 3.19 were also found to be satisfactory, agreeing with the formulae 3.18·0.75C₆H₁₄ and 3.19. The
molecular structure of 3.19 has also been determined, by single crystal X–ray diffraction, and confirms the bridging nature of the trimetalloligand 3.16 (Section 3.9.1). In contrast, reaction of 3.16 with an equimolar amount of PtCl₂(cod) gave an impure sample of PtCl₂{3.16} by ³¹P{¹H} NMR spectroscopy (in CDCl₃), with the spectrum revealing several phosphorus containing species between ca. δ(P) 26 to –9 ppm. Comparison of these resonances with other platinum diphosphine complexes suggests that they may relate to a platinum coordination complex of 3.16 (monomeric or polymeric), however no platinum satellites were apparent. The preparation of some form of PtCl₂{3.16} complex was supported by the positive ion FAB mass spectroscopy, which gave a predictable fragmentation pattern for a platinum dichloride complex [FAB–MS: m/z 1266 [M–Cl], in addition to elemental analysis, which showed good agreement with the formula PtCl₂(3.16)·1.5H₂O (see Experimental Section). The FT–IR spectrum of the isolated material also contained two characteristic νₚc1 absorptions bands at 313 and 288 cm⁻¹, which is in agreement with values previously reported for cis–platinum(II) chloride complexes of diphosphines discussed herein and in the literature. Further work is required to fully understand the coordination chemistry of 3.16, as there are clearly a range of coordination modes (monomeric or polymeric) potentially available to such a novel ligand; as indicated by ³¹P{¹H} NMR spectroscopy.
3.9.1 Molecular Structure of 3.19

Orange crystalline plates suitable for single crystal X–ray diffraction were obtained by the slow diffusion of Et₂O into a CH₂Cl₂ solution of 3.19 and the molecular structure was determined in the home laboratory (Figure 3.17). Selected lengths and angles are given in Table 3.10.

![Molecular structure of 3.19](image)

Figure 3.17 Molecular structure of 3.19. All hydrogen atoms and solvent molecules have been removed for clarity.

The molecular structure of 3.19 was found to contain one molecule of the metal complex and five solvating molecules of CH₂Cl₂ within the asymmetric unit. Two of the CH₂Cl₂ molecules of crystallisation were found to be significantly disordered and were modelled as diffuse regions of electron density (Platon squeeze procedure). The trimetalloligand 3.16 was shown to bridge two [RuCl₂(π–cym)] fragments by coordination to both phosphorus atoms. The ruthenium centres were both shown to adopt a characteristic piano–stool geometry; Ru–Cl, Ru–P and Ru–(π–cym) distances were as expected. The phosphorus atoms were found to adopt a distorted pyramidal geometry, as indicated by the relevant C–P–Ru angles [C–P–Ru ranged between 111.50(19) – 116.7(2)°], whilst
the nitrogen atoms adopted a distorted trigonal pyramidal arrangement [sum of component angles = 328 and 343° respectively]. The Fe(II) cyclopentadienyl rings were found to be essentially eclipsed and coplanar, with little variation between the six Cpcent···Fe lengths (Table 3.10). The cyclopentadiene ring containing C(43) to C(47) was found to be disordered over two sets of equivalent positions [major occupancy 54.29(2)%] and, as a result, the geometry and anisotropic displacement parameters of both the disorder components were restrained.

Table 3.10 Selected lengths (Å) and angles (°) of 3.19.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(1)–Cl(1)</td>
<td>2.4107(18)</td>
<td>P(1)–Ru(1)–Cl(2)</td>
<td>89.28(6)</td>
<td></td>
</tr>
<tr>
<td>Ru(1)–Cl(2)</td>
<td>2.4079(18)</td>
<td>P(1)–Ru(1)–Cl(1)</td>
<td>83.57(6)</td>
<td></td>
</tr>
<tr>
<td>Ru(2)–Cl(3)</td>
<td>2.4107(16)</td>
<td>Cl(1)–Ru(1)–Cl(2)</td>
<td>87.83(6)</td>
<td></td>
</tr>
<tr>
<td>Ru(2)–Cl(4)</td>
<td>2.4160(17)</td>
<td>P(2)–Ru(2)–Cl(3)</td>
<td>86.96(6)</td>
<td></td>
</tr>
<tr>
<td>P(1)–Ru(1)</td>
<td>2.3597(16)</td>
<td>P(2)–Ru(2)–Cl(4)</td>
<td>85.34(6)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.818(6)</td>
<td>Cl(3)–Ru(2)–Cl(4)</td>
<td>87.21(6)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.821(6)</td>
<td>C(1)–P(1)–Ru(1)</td>
<td>111.50(19)</td>
<td></td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.838(6)</td>
<td>C(7)–P(1)–Ru(1)</td>
<td>115.5(2)</td>
<td></td>
</tr>
<tr>
<td>P(2)–Ru(2)</td>
<td>2.3403(16)</td>
<td>C(13)–P(1)–Ru(1)</td>
<td>112.04(19)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(48)</td>
<td>1.854(6)</td>
<td>N(1)–C(13)–P(1)</td>
<td>117.6(4)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(49)</td>
<td>1.833(6)</td>
<td>C(13)–N(1)–C(14)</td>
<td>109.8(4)</td>
<td></td>
</tr>
<tr>
<td>P(2)–C(55)</td>
<td>1.823(6)</td>
<td>C(13)–N(1)–C(25)</td>
<td>110.1(4)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.467(7)</td>
<td>C(14)–N(1)–C(25)</td>
<td>108.5(4)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.489(7)</td>
<td>C(37)–N(2)–C(48)</td>
<td>115.8(5)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.500(7)</td>
<td>C(36)–N(2)–C(37)</td>
<td>114.8(5)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(36)</td>
<td>1.469(7)</td>
<td>C(36)–N(2)–C(48)</td>
<td>112.5(5)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(37)</td>
<td>1.458(8)</td>
<td>N(2)–C(48)–P(2)</td>
<td>109.9(4)</td>
<td></td>
</tr>
<tr>
<td>N(2)–C(48)</td>
<td>1.463(7)</td>
<td>C(48)–P(2)–Ru(2)</td>
<td>116.42(19)</td>
<td></td>
</tr>
<tr>
<td>Ru(1)···cymcent</td>
<td>1.701(3)</td>
<td>C(49)–P(2)–Ru(2)</td>
<td>116.7(2)</td>
<td></td>
</tr>
<tr>
<td>Ru(2)···cymcent</td>
<td>1.703(3)</td>
<td>C(55)–P(2)–Ru(2)</td>
<td>112.5(2)</td>
<td></td>
</tr>
<tr>
<td>Fe(1)···CpAcent</td>
<td>1.621(3)</td>
<td>C(15)–CpAcent–CpBcent–C(21)</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Fe(1)···CpBcent</td>
<td>1.643(3)</td>
<td>C(26)–CpCcent–CpDcent–C(32)</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>Fe(2)···CpCcent</td>
<td>1.645(3)</td>
<td>C(38)–CpEcent–CpFcent–C(44)</td>
<td>13.8</td>
<td></td>
</tr>
<tr>
<td>Fe(2)···CpDcent</td>
<td>1.649(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(3)···CpEcent</td>
<td>1.640(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe(3)···CpFcent</td>
<td>1.652(15)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24), CpCcent = C(26) to C(30),
CpDcent = C(31) to C(35), CpEcent = C(38) to C(42), CpFcent = C(43) to C(47).
3.10 Electrochemical Properties of 3.16 and 3.18

The electrochemical properties of 3.16, 3.18 and their precursor imine and amine compounds have been investigated by cyclic voltammetry, and their oxidation (E_{pa}) and reduction (E_{pc}) potentials summarised in Table 3.11. For the imine \{FcCH_2NC(H)\}_2Fc, the cyclic voltammogram displayed a reversible ferrocene/ferrocenium redox (Fc/Fc\(^+\)) couple similar to that of ferrocene, at E\(_{1/2}\) –0.042 V, in addition to a further ferrocene/ferrocenium oxidation peak (E_{pa}) at +0.279 V (Figure 3.18).

![Cyclic voltammogram of \{FcCH_2NC(H)\}_2Fc in dry CH_2Cl_2, 0.1 M [NBu_4][BF_4] at a scan rate of 50 mVs\(^{-1}\). Suggested reduction peak (E_{pc}) of bridging ferrocenyl moiety (*). Electrical potentials quoted relative to the ferrocene/ferrocenium redox (Fc/Fc\(^+\)) couple.]

The reversible ferrocene/ferrocenium redox (Fc/Fc\(^+\)) couple at E\(_{1/2}\) –0.042 V was found to be similar to that of the diferrocenyl phosphines 3.1 – 3.3 (E\(_{1/2}\) ranged between –0.018 – 0.075 V, relative to Fc/Fc\(^+\)), suggesting that the terminal ferrocenyl groups (Fc\(_t\)) within \{FcCH_2NC(H)\}_2Fc also undergoing simultaneous oxidation and reduction. The second oxidation potential at E_{pa} +0.279 V was assigned to the bridging ferrocene moiety (Fc\(_b\)).
within the imine. Closer inspection of the voltammogram revealed a slight shoulder at 0.096 V (Figure 3.18, highlighted by *), which was cautiously assigned to the reversible reduction peak (E_{pc}) of the bridging ferrocene moiety, to give a ferrocene/ferrocenium redox (Fe/Fe\(^+\)) couple for Fc\(_{b}\) at E_{1/2} +0.188 V. The assignment of these two distinct ferrocenyl environments, within the cyclic voltammogram of \{FeCH\(_2\)NC(H)\}\(_{2}\)Fc, is supported by the characteristic distribution of charge between the two redox waves, ca. 2:1 by integration; terminal (Fc\(_{t}\)):bridging (Fc\(_{b}\)) ferrocenyl groups.

Table 3.11 Electrochemical data\(^a\) for 3.16, 3.18 and the precursor compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E_{pa} (V), Fe(^{II/III})</th>
<th>E_{pc} (V), Fe(^{II/III})</th>
</tr>
</thead>
<tbody>
<tr>
<td>{FeCH(2)NC(H)}({2})Fc</td>
<td>+0.006, +0.279</td>
<td>-0.090</td>
</tr>
<tr>
<td>{FeCH(_2)N(H)CH(2)}({2})Fc</td>
<td>+0.016, +0.154</td>
<td>+0.022</td>
</tr>
<tr>
<td>3.16</td>
<td>+0.218</td>
<td>+0.064</td>
</tr>
<tr>
<td>3.18</td>
<td>+0.105</td>
<td>-0.034</td>
</tr>
</tbody>
</table>

\(^a\)All experiments were performed in a 0.1M [NBu\(_4\)][BF\(_4\)]/dry CH\(_2\)Cl\(_2\) solution using a standard electrochemical cell at a scan rate of 50 mV/s.

\(^b\)E_{pc} and E_{pa} reported relative to the ferrocene/ferrocenium couple.

In contrast the voltammogram of the trimetalloligand 3.16, and it’s parent amine \{FeCH\(_2\)N(H)CH\(_2\)\}\(_{2}\)Fc, showed less resolved ferrocene/ferrocenium redox (Fe/Fe\(^+\)) couples compared to \{FeCH\(_2\)NC(H)\}\(_{2}\)Fc, suggesting that as the bonds / atoms between the neighbouring ferrocenyl groups become more saturated, the more electrochemically similar the distinct ferrocenyl environments become. This increasing similarity between the various ferrocene/ferrocenium environments was mirrored in the voltammogram of the pentametallic gold(I) complex 3.18, which contained a single broad ferrocene/ferrocenium redox couple at E_{1/2} 0.036 V, indicating that the three redox couples are only marginally different. The E_{1/2} of 3.18 was also found to be similar to that of the analogous gold complex 3.13 [E_{1/2} +0.012 V (3.13), ΔE_{1/2} 0.024 V], suggesting that the electrochemical properties of the terminal ferrocenyl groups are not significantly affected by variation of the “linker” between the electrochemically active termini.
3.11 Preparation and Characterisation of 3.20 – 3.22

The versatility of the synthetic route used thus far, reductive amination followed by phosphine–based Mannich condensation, was explored further by the preparation of a series of diferrocenyl monophosphines (3.20 – 3.22) (Equation 3.10). In all three cases the new bimetalloligophosphines precipitated during the course of the reaction, allowing the ligands to be isolated to a high purity (by $^{31}\text{P}\{^1\text{H}\}$ NMR), and in reasonable yield (47 – 59% range).

$$\text{PRCH}_2\text{OH} \xrightarrow{\text{RPCH}_2\text{OH}} \text{PR} = \text{PPh}_2, 3.20$$

$$\text{PRCH}_2\text{OH} \xrightarrow{\text{RPCH}_2\text{OH}} \text{PR} = \text{PCy}_2, 3.21$$

$$\text{PRCH}_2\text{OH} \xrightarrow{\text{RPCH}_2\text{OH}} \text{PR} = \text{PAd}, 3.22$$

Equation 3.10

The $^{31}\text{P}\{^1\text{H}\}$ NMR spectra (in CDCl$_3$) of 3.20 – 3.22 all revealed a new phosphorus singlet upfield to that of the PRCH$_2$OH starting material [δ(P) –27.9 (3.20), –19.3 (3.21) and –44.5 ppm (3.22) respectively]. The chemical shift of each singlet was found to be similar to those previously reported for the bimetallogands $\{\text{FcCH}_2\text{N(CH}_2\text{PR})\text{CH}_2\}_2$ (3.1 – 3.3) [ca. $\Delta\delta$(P) 1.0 ppm]. Closer inspection of the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum (in CDCl$_3$) of 3.22 suggested that the slightly broad resonance may be due to coinciding enantiomers of the phosphine [δ(P) –44.5 ppm; $W_{1/2}$ ca. 5 Hz]. The ^1H NMR spectra (in CDCl$_3$) of 3.22 supported this with the newly introduced CH$_2$P hydrogen atoms resonating as a multiplet at δ(CH$_2$P) 2.49 ppm. The multiplet was more complex than the double doublet that may have been expected for such an enantiomer, presumably owing to the CH$_2$P hydrogen atoms also being diastereotopic. 58 The FcC$_2\text{H}_2\text{N}$ hydrogen atoms within 3.22 were also found to be diastereotopic, with a classic AB “roof effect” being observed [δ(CH$_2$) 3.56 and 3.31 ppm; $^2J_{HH}$ 13.2 and 13.6 Hz respectively]. The assignment of these three distinct CH$_2$ environments was supported by their characteristic chemical shifts and also by their characteristic integrals (FcCH$_2$:CH$_2$P...
2:1). In contrast the 1H NMR spectra (in CDCl$_3$) of 3.20 and 3.21 contained the anticipated CH$_2$ and ferrocenyl environments previously observed in the parent amine. The newly introduced CH$_2$P hydrogen atoms resonated as characteristic doublets at δ(PCH$_2$) 3.04 and 2.41 ppm respectively [J$_{PH}$ 4.0 and 1.6 Hz respectively].22,23 The tertiary nature of the nitrogen atom within 3.20 – 3.22 was further confirmed by the absence of a ν$_{NH}$ absorption band from the infrared spectra. Moreover the positive ion FAB mass spectra of 3.20 – 3.22 revealed the expected fragmentation patterns {MS (FAB+): m/z 413 [M–CH$_2$Fc]$^+$ (3.20), 623 and 641 [M]$^+$ (3.21 and 3.22)}, whilst the elemental analysis results were satisfactory (see Experimental Section).

The electrochemical properties of 3.20 – 3.22 have also been briefly investigated by cyclic voltammetry and their oxidation (E$_{pa}$), reduction (E$_{pc}$) and E$_{1/2}$ potentials summarised in Table 3.12.

Table 3.12 Electrochemical dataa for 3.20 – 3.22.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E$_{1/2}$ (V), FeIII</th>
<th>E$_{pa}$ (V), FeIII</th>
<th>E$_{pc}$ (V), FeIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20</td>
<td>+0.142</td>
<td>-0.009, +0.194</td>
<td>+0.092</td>
</tr>
<tr>
<td>3.21</td>
<td>+0.08</td>
<td>-0.070, +0.151</td>
<td>+0.009</td>
</tr>
<tr>
<td>3.22</td>
<td>+0.156</td>
<td>+0.074</td>
<td>-0.043</td>
</tr>
</tbody>
</table>

aAll experiments were performed in a 0.1M [NBu$_4$][BF$_4$]/dry CH$_2$Cl$_2$ solution using a standard electrochemical cell at a scan rate of 50 mV/s. All chemical potentials (E$_{1/2}$, E$_{pc}$ and E$_{pa}$) are reported relative to the ferrocene/ferrocenium couple.

The cyclic voltammograms of all three phosphines revealed a reversible ferrocene/ferrocenium redox (Fc/Fc$^+$) couple similar to that of ferrocene. The observation of a single Fc/Fc$^+$ wave for 3.20 – 3.22 suggests that each ferrocene moiety behaves as an electrochemically equivalent monoelectronic redox group, undergoing oxidation and reduction simultaneously. In the case of 3.20 and 3.21, the cyclic voltammograms displayed the Fc/Fc$^+$ couple at E$_{1/2}$ 0.142 and 0.080 V respectively, in addition to a further oxidation peak at E$_{pa}$ 0.009 (Figure 3.19, left) and 0.070 V respectively. This additional oxidation peak was tentatively assigned to the irreversible
oxidation of the phosphorus(III) atom. Due to the lack of a corresponding reduction potential and by comparison to other suggested phosphorus oxidation potentials, discussed herein [$E_{pa} 0.006 \text{ V (3.14)}$]. In contrast the voltammogram of 3.22 only displayed a reversible Fc/Fc$^+$ couple at $E_{1/2} 0.015 \text{ V}$ (Figure 3.19, right), suggesting that the phosphaadamantyl group was not electrochemically oxidised over the potential window studied.

Figure 3.19 Cyclic voltammograms of 3.20 (left) and 3.22 (right) in dry CH$_2$Cl$_2$, 0.1 M [NBu$_4$][BF$_4$] at a scan rate of 50 mVs$^{-1}$.
3.12 Ruthenium(II) Coordination Chemistry of 3.20 – 3.22

The coordination chemistry of 3.20 – 3.22 was briefly investigated by treatment with \{RuCl(\mu–Cl)(p–cym)}_2 (0.5 equiv.), to afford the trimetallic complexes 3.23 – 3.25 in good yield (83 – 88% range) (Equation 3.11).

\[
\begin{align*}
\text{Fe} & \quad \text{N} & \quad \text{PR} & \quad \text{Fe} \\
\text{PR} = \text{PPh}_2 & \quad 3.20 & \quad \text{and} & \quad 3.23 \\
\text{PR} = \text{PCy}_2 & \quad 3.21 & \quad \text{and} & \quad 3.24 \\
\text{PR} = \text{PAd} & \quad 3.22 & \quad \text{and} & \quad 3.25
\end{align*}
\]

Equation 3.11 (i) 0.5 equiv. \{RuCl(\mu–Cl)(p–cym)}_2, solvent CH_2Cl_2.

The 31P\{^1H\} NMR spectrum [in CDCl_3] of 3.23 – 3.25 exhibited a new phosphorus singlet significantly downfield of that of the free ligands at δ(P) 26.1 (3.23), 32.3 (3.24) and 20.7 (3.25) ppm respectively. The 1H NMR spectra (in CDCl_3) of 3.23 – 3.25 contained the anticipated resonances relating to the coordinated monophosphines, in addition to the distinct resonances of the p–cym auxiliary ligand. Further support for the preparation of 3.23 – 3.25 comes from positive ion FAB mass spectroscopy, which gave the expected parent ion and fragmentation patterns {MS (FAB$^+$): m/z 1453 and 894 [M–Cl]$^+$ (3.23 and 3.25) and 917 [M]$^+$ (3.24)}. The elemental analyses for this series of complexes were also found to be satisfactory (see Experimental Section). The electrochemical properties of 3.23 were investigated by cyclic voltammetry. The voltammogram of 3.23 displayed a reversible Fc/Fc$^+$ redox couple similar to that of 3.12, at $E_{1/2}$ 0.003 V ($\Delta E_{1/2}$ 0.02 V with respect to 3.12), suggesting that the ferrocenyl groups within both complexes are electrochemically similar. In addition to the Fc/Fc$^+$ couple, the voltammogram of 3.23 also exhibited several oxidation peaks between 0.7 – 1.5 V. These peaks may tentatively be assigned to two consecutive irreversible single
electron RuII/RuIII oxidations (per ruthenium metal centre), and this feature was also observed in the voltammogram of 3.12.231,232

3.13 Platinum(II) Coordination Chemistry of 3.20

The coordination chemistry of 3.20 was investigated further by treatment with half an equiv. of PtCl\textsubscript{2}(cod), to afford the pentametallic complex 3.26, in low yield (41%), following recrystallisation from hexane (Equation 3.12).

![Equation 3.12](image)

The 31P\text{(^1}H\text{)} NMR spectrum (in CDCl\textsubscript{3}) of the isolated solid was found to contain two new 31P\text{(^1}H\text{)} NMR active species between $\delta(P) = -69.5$ and 4.9 ppm. The species centred at $\delta(P) = 4.9$ ppm (49% by 31P\text{(^1}H\text{)} NMR integral) resonated as a singlet flanked by equidistant 195Pt satellites [$^{1}J_{PtP}$ 3625 Hz], and was assigned to the anticipated pentametallic complex 3.26 by comparison with previously reported \textit{cis}–platinum dichloride phosphine complexes.58,93,186,196 The second, unanticipated species, resonated as two doublets flanked by equidistant platinum satellites at $\delta(P) = -2.6$ and -69.5 ppm [$^{2}J_{pp}$ 3.2 Hz, $^{1}J_{PtP}$ 3222, 3163 Hz respectively]; suggesting that both in–equivalent phosphorus environments coordinated the same platinum centre in an unsymmetrical \textit{cis}–P,P,P manner. One tentative suggestion towards the nature of this unanticipated species is the formation of the unsymmetrical P,N chelate complex 3.26A in CDCl\textsubscript{3} solution (Equation 3.13).
The assignment of this unknown species as 3.26A is also in agreement with several other features observed by 31P{1H} NMR spectroscopy:

i) The large difference in δ(P) between the two neighbouring phosphorus environments [P_A = coordinated, P_B = uncoordinated; Δ\$\delta(P_A P_B)$ 66.9 ppm].

ii) The similarity between the upfield doublet at δ(P) –69.5 ppm [\$J_{PPt} 3222\] and that observed for the well known four–membered chelate PtCl$_2$(dppm) (1,1–bis(diphenylphosphino)methane) [δ(P) –64.6 ppm (\$J_{PPt} 3074 Hz), Δ\$\delta(P)$ with respect to 3.26A = 5.0 ppm].

iii) The size of the $\$J_{PPt}$ coupling constants (\$J_{PPt} 3222$ and 3163 Hz, respectively) with respect to that of 3.26 (\$J_{PPt} 3625 Hz), i.e. $\$J_{PPt}$ of Pt–P trans to a chloride > $\$J_{PPt}$ Pt–P trans to an amine.

A search of the literature revealed few examples of previously reported P,N four membered platinum complexes, presumably due to the strained nature of the chelate ring. The proposed dissociation of chloride ions from 3.26, thought to afford 3.26A, was then explored further via two in–situ 31P{1H} NMR experiments. The first in–situ 31P{1H} NMR experiment was performed to show that chloride dissociation from 3.26 was a plausible mechanism by which 3.26A could be prepared, and involved the addition of 3.20 to a CDCl$_3$ solution of PtMe$_2$(cod) (2:1 equiv. respectively). The resulting in–situ 31P{1H} NMR spectrum revealed only the characteristic “ring–open” cis–platinum(II) dimethyl complex [δ(P) 10.2 ppm (s), \J_{PPt} 1840 Hz], presumably due
to the strong σ-donating nature of the CH$_3$ groups preventing P,N chelation; thereby supporting the proposed dissociation mechanism.224 The second in–situ 31P{1H} NMR experiment was conducted to verify if dissociation of chloride ions from 3.26 could be enhanced, thereby allowing an in–situ sample of 3.26A to be prepared. Here addition of MeOH (5 drops) to a CDCl$_3$ solution of 3.20 and PtCl$_2$(cod) (1:2 equiv. respectively) was carried out. The resulting 31P{1H} NMR spectrum in this case, revealed only two characteristic phosphorus environments relating to the P,N chelate 3.26A at δ(P) –2.1 and –66.5 ppm [1J$_{PP}$, 3233 and 3220 Hz, 2J$_{PP}$ 3.2 Hz], presumably due to increased dissociation of chloride ions from 3.26 in the more–polar solvent system (CDCl$_3$ / MeOH); thereby suggesting that the coordination mode of 3.20 could be controlled.

As a result of these findings, 3.20 is thought to undergo both P and P,N coordination of a platinum(II) dichloride centre in solution, with the proportion of 3.26 and 3.26A being dependant upon the polarity of the solvent system. Furthermore, whilst the dimeric species 3.26B (Equation 3.13) was not observed by 31P{1H} NMR spectroscopy, its occurrence is still anticipated but unobserved under these conditions.

Further support for the preparation of 3.26, in the solid state, comes from positive ion FAB mass spectroscopy, which revealed the expected molecular fragments {MS (FAB$^+$): m/z 1453 [M–Cl]$^+$, 199 [CH$_3$Fe]$^+$}. Moreover the molecular structure of 3.26 has also been determined by single crystal X–ray diffraction (Section 3.13.1).

3.13.1 Molecular Structure of 3.26

Yellow crystalline plates suitable for single crystal X–ray diffraction were grown by the slow vapour diffusion of hexane into a CH$_2$Cl$_2$ / Et$_2$O solution of 3.26. The molecular structure was determined using synchrotron radiation due to the size of the crystals (at least one dimension < 0.05 mm) (Figure 3.20). Selected lengths and angles given in Table 3.13.
The molecular structure of 3.26 shows the asymmetric unit to contain one molecule of the pentametallic complex and three solvating molecules of CHCl$_3$, two of which were modelled as diffuse regions of electron density due to their disordered nature (Platon squeeze procedure). The platinum dichloride complex adopts a distorted square planar geometry with respect to the metal centre [P(1)–Pt(1)–Cl(2) 172.13(4)$^\circ$, P(2)–Pt(1)–Cl(1) 169.24(3)$^\circ$], with the two ligands coordinating the metal in a cis manner, each via one phosphorus atom [P(1)–Pt(1)–P(2), 97.67(4)$^\circ$]. The P–Pt(1)–P bite angle between the two coordinated ligands was found to be significantly less than that found within the analogous trimetallic diphosphine complex 3.4 [P(1)–Pt(1)–P(2) 103.05(5) Å (3.4)], suggesting that the two phosphorus atoms within 3.1 are forced “outwards” upon chelation, in order to accommodate the bulky P–C–N–C–C–N–C–P backbone of 3.1. The phosphorus atoms adopt a distorted tetrahedral arrangement, as indicated by the relevant Pt–P–C angles. The nitrogen atoms were adopt a distorted pyramidal geometry [sum of component angles = 339 and 341$^\circ$ respectively]. The Fe(II) cyclopentadienyl
rings were found to be essentially coplanar, whilst the torsional twist of the cyclopentadienyl rings was found to vary between the four ferrocenyl groups [torsional twist ranged between $\text{C}--\text{C}_\text{cent}--\text{C}_\text{cent}--\text{C} = 2.4 - 23.8^\circ$].

\textbf{Table 3.13} Selected lengths (Å) and angles (°) for 3.26.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.3603(10)</td>
<td>P(1)–Pt(1)–P(2)</td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.3676(10)</td>
<td>Cl(1)–Pt(1)–Cl(2)</td>
</tr>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.2440(10)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.2534(10)</td>
<td>P(2)–Pt(1)–Cl(2)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.814(4)</td>
<td>P(2)–Pt(1)–Cl(1)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.820(4)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.847(4)</td>
<td>C(1)–P(1)–Pt(1)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.474(5)</td>
<td>C(7)–P(1)–Pt(1)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.462(5)</td>
<td>C(13)–P(1)–Pt(1)</td>
</tr>
<tr>
<td>N(1)–C(25)</td>
<td>1.482(5)</td>
<td>N(1)–C(13)–P(1)</td>
</tr>
<tr>
<td>P(2)–C(36)</td>
<td>1.823(4)</td>
<td>C(13)–N(1)–C(14)</td>
</tr>
<tr>
<td>P(2)–C(42)</td>
<td>1.807(4)</td>
<td>C(14)–N(1)–C(25)</td>
</tr>
<tr>
<td>P(2)–C(48)</td>
<td>1.857(4)</td>
<td>C(13)–N(1)–C(25)</td>
</tr>
<tr>
<td>N(2)–C(48)</td>
<td>1.441(5)</td>
<td>C(36)–P(2)–Pt(1)</td>
</tr>
<tr>
<td>N(2)–C(49)</td>
<td>1.468(5)</td>
<td>C(42)–P(2)–Pt(1)</td>
</tr>
<tr>
<td>N(2)–C(60)</td>
<td>1.485(5)</td>
<td>C(48)–P(2)–Pt(1)</td>
</tr>
<tr>
<td>Fe(1)–CpAcent</td>
<td>1.643(2)</td>
<td>N(2)–C(48)–P(2)</td>
</tr>
<tr>
<td>Fe(1)–CpBcent</td>
<td>1.640(2)</td>
<td>C(48)–N(2)–C(49)</td>
</tr>
<tr>
<td>Fe(2)–CpCcent</td>
<td>1.638(2)</td>
<td>C(48)–N(2)–C(60)</td>
</tr>
<tr>
<td>Fe(2)–CpDcent</td>
<td>1.650(2)</td>
<td>C(49)–N(2)–C(60)</td>
</tr>
<tr>
<td>Fe(3)–CpEcent</td>
<td>1.645(2)</td>
<td>C(15)–CpAcent–CpBcent–C(21)</td>
</tr>
<tr>
<td>Fe(3)–CpFcent</td>
<td>1.645(3)</td>
<td>C(26)–CpCcent–CpDcent–C(32)</td>
</tr>
<tr>
<td>Fe(4)–CpGcent</td>
<td>1.647(2)</td>
<td>C(50)–CpEcent–CpFcent–C(56)</td>
</tr>
<tr>
<td>Fe(4)–CpHcent</td>
<td>1.654(3)</td>
<td>C(61)–CpGcent–CpHcent–C(67)</td>
</tr>
</tbody>
</table>

CpAcent = C(15) to C(19), CpBcent = C(20) to C(24), CpCcent = C(26) to C(30), CpDcent = C(31) to C(35), CpEcent = C(50) to C(54), CpFcent = C(55) to C(59), CpGcent = C(61) to C(65), CpHcent = C(66) to C(70).
3.14 Preparation and Characterisation of 3.27 – 3.29

In addition to the ferrocenyl phosphines discussed thus far, our group is also interested in the development of new symmetrical ditertiary phosphines of the types (R₂PCH₂)₂N(R) and {(R₂PCH₂)₂N}₂(R),²⁴²-²⁴⁶ which have shown interesting coordination, catalytic and self–assembly properties.²²,²³,²⁵⁹ To this end the new ferrocenyl phosphines 3.27 – 3.29 were prepared by the double condensation of the known primary amine FcCH₂NH₂²⁴⁷ with two equiv. of the relevant tertiary phosphine synthon, RPCH₂OH (PR = PPh₂, PCy₂ or PAd = 1,3,5,7–tetramethyl–2,4,8–triox–6–phosphaadamantane) (Equation 3.14). In all three cases, solids were deposited during the course of the reaction allowing the ligands to be isolated in high purity (as judged by ³¹P{¹H} NMR) and in good yield (62 – 73%).

![Equation 3.14](image)

The ³¹P{¹H} NMR spectra (in freeze–thawed CDCl₃) of 3.27 – 3.29 all exhibited new phosphorus singlets compared to that of the PRCH₂OH starting material, between δ(P) – 18.3 to –43.1 ppm. In the case of 3.27 and 3.28 the –PPh₂ and –PCy₂ groups resonated as singlets at δ(P) –28.1 and –18.3 ppm respectively, whilst the ³¹P{¹H} NMR spectrum of 3.29 revealed two singlets of similar δ(P) presumably due to the enantiomic nature of the newly introduced phosphaadamantyl cages [δ(P) –42.9 and –43.1 ppm; respective ratio by integration ca. 1:2] (α and β enantiomers, Figure 3.2).¹⁰,¹³,²¹⁹,²²⁰ The phosphines all showed evidence of oxidation when CDCl₃ solutions were left to stand in air.

The ¹H NMR spectra (in freeze–thawed CDCl₃) of 3.27 – 3.29 all showed characteristic cyclopentadienyl [δ(H) 4.01 – 4.11 ppm] and CH₂Fc [δ(H) 3.64 – 3.86 ppm] resonances,
as anticipated, by comparison with the 1H NMR spectrum of the parent amine.247 The newly introduced CH$_2$P hydrogen atoms resonated between [δ(H) 2.57 – 3.35 ppm]. In the case of 3.27, the CH$_2$P protons appeared as a characteristic doublet [δ(PCH$_2$) 3.35, $^2J_{PH}$ 3.6 Hz.],22,23 whilst in the case of 3.28 the same hydrogen atoms appeared as a singlet [δ(PCH$_2$) 2.57 ppm]. The enantiomeric nature of the phosphaadamantyl groups within 3.29 was also evident from the 1H NMR spectrum, which showed two broad δ(PCH$_2$) multiplets [δ(PCH$_2$) 2.82 ppm, $^2J_{PH}$ 4.4 Hz and 2.79 ppm, $^2J_{PH}$ 4.4 Hz]. This assignment was supported by integration of the resonances [2:1, CH$_2$P(α+β):CH$_2$Fc], 1H{31P} spectroscopy [broad δ(CH$_2$) multiplets collapsed to singlets] and also by HMOC / DEPT NMR spectroscopy which showed a correlation between the enantiomeric δ(PCH$_2$) hydrogen atoms and two of the three methylene carbon environments. The absence of a ν$_{NH}$ stretch in the infrared spectra of 3.27 – 3.29 further confirmed the ternary nature of the nitrogen atoms in the newly formed ditertiary phosphines. Additional support for the preparation of 3.27 – 3.29 could be found from elemental analysis, which agreed with the expected empirical formulae (see Experimental Section), and also from the positive ion FAB mass spectroscopy results which gave predictable molecular fragments {MS (FAB$^+$): m/z 611 and 634 [M–H]$^+$ (3.27 and 3.28 respectively) and 472 [M–CH$_2$Fc]$^+$ (3.29)}. The molecular structures of 3.28 and 3.29 have also been determined by single crystal X–ray diffraction (Section 3.14.1). The electrochemical properties of 3.27 – 3.29 have also been briefly investigated by cyclic voltammetry. All three voltammograms for 3.27 – 3.29 displayed a reversible ferrocene/ferrocenium redox (Fc/Fc$^+$) couple, with a half wave potential similar to that of ferrocene under the same experimental conditions (Table 3.14). In the case of 3.27 and 3.28 the voltammograms were observed to be particularly broad at more anodic potentials (Figure 3.21, left), an effect that may be caused by marginal differences between the oxidation potential of the Fc/Fc$^+$ couple and the irreversible oxidation of the tertiary phosphorus(III) centres. In contrast this broadening effect was not observed in the voltammogram for 3.29, suggesting that the phosphaadamantyl groups are not electrochemically oxidised over the potential window studied, as previously observed for the diferrocenyl phosphate 3.3 and 3.20 (Figure 3.21, right).
Figure 3.21 Cyclic voltammograms of 3.27 (left) and 3.29 (right) in dry CH$_2$Cl$_2$, 0.1 M [NBu$_4$][BF$_4$] at a scan rate of 50 mV/s$^{-1}$.

Table 3.14 Electrochemical dataa for 3.27–3.29.

<table>
<thead>
<tr>
<th>Compound</th>
<th>$E_{1/2}$ (V), Fe$^{II/III}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.27</td>
<td>0.005</td>
</tr>
<tr>
<td>3.28</td>
<td>-0.021</td>
</tr>
<tr>
<td>3.29</td>
<td>0.000</td>
</tr>
</tbody>
</table>

aAll experiments were performed in a 0.1M [NBu$_4$][BF$_4$]/dry CH$_2$Cl$_2$ solution using a standard electrochemical cell at a scan rate of 50 mV/s. b $E_{1/2}$ are reported relative to the Fe/Fe$^+$ couple.

3.14.1 Molecular Structures of 3.28 and 3.29

Orange crystalline blocks (3.28) and colourless crystalline plates (3.29), suitable for single crystal X–ray diffraction, were obtained by layering MeOH onto a CDCl$_3$ solution of 3.28 and by the slow evaporation of a MeOH solution of 3.29. The molecular structures of 3.28 and 3.29 were determined; selected lengths and angles are given in Table 3.15.
Figure 3.22 shows 3.29 as a typical example of this pair of diphosphines, as both 3.28 and 3.29 were found to adopt similar conformations in the solid state. The phosphorus(III) atoms, in both cases, adopted a distorted trigonal pyramidal geometry [C–P–C ranged between 92.17(12) – 105.36(8) Å]. The nitrogen atoms, in both cases, also adopted a distorted trigonal pyramidal geometry [sum of component angles 331º (3.28 and 3.29)]. The cyclopentadienyl rings of the ferrocene groups were both found to be eclipsed and essentially coplanar (torsional twist about the C(4)–CpAcent–CpBcent–C(10) is 0.6 and 7.8º respectively). No inter or intramolecular packing features of note were observed in the structures of 3.28 or 3.29.
Table 3.15 Selected lengths (Å) and angles (°) for 3.28 and 3.29.

<table>
<thead>
<tr>
<th></th>
<th>3.28</th>
<th>3.29</th>
<th>3.28</th>
<th>3.29</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–C(1)</td>
<td>1.8602(18)</td>
<td>1.860(3)</td>
<td>C(1)–P(1)–C(A)<sup>a</sup></td>
<td>97.74(8)</td>
</tr>
<tr>
<td>P(1)–C(A)<sup>a</sup></td>
<td>1.8630(19)</td>
<td>1.875(3)</td>
<td>C(1)–P(1)–C(B)<sup>a</sup></td>
<td>102.96(8)</td>
</tr>
<tr>
<td>P(1)–C(B)<sup>a</sup></td>
<td>1.8589(18)</td>
<td>1.870(3)</td>
<td>C(A)–P(1)–C(B)<sup>a</sup></td>
<td>103.06(8)</td>
</tr>
<tr>
<td>N(1)–C(1)</td>
<td>1.466(2)</td>
<td>1.472(3)</td>
<td>N(1)–C(1)–P(1)</td>
<td>115.40(12)</td>
</tr>
<tr>
<td>N(1)–C(2)</td>
<td>1.468(2)</td>
<td>1.473(3)</td>
<td>C(1)–N(1)–C(2)</td>
<td>109.82(13)</td>
</tr>
<tr>
<td>N(1)–C(3)</td>
<td>1.475(2)</td>
<td>1.481(3)</td>
<td>C(2)–N(1)–C(3)</td>
<td>110.98(13)</td>
</tr>
<tr>
<td>C(3)–C(4)</td>
<td>1.499(2)</td>
<td>1.498(4)</td>
<td>C(1)–N(1)–C(3)</td>
<td>110.08(13)</td>
</tr>
<tr>
<td>P(2)–C(2)</td>
<td>1.8615(17)</td>
<td>1.865(3)</td>
<td>N(1)–C(3)–C(4)</td>
<td>111.92(14)</td>
</tr>
<tr>
<td>P(2)–C(C)</td>
<td>1.8631(18)</td>
<td>1.883(3)</td>
<td>N(1)–C(2)–P(2)</td>
<td>111.52(11)</td>
</tr>
<tr>
<td>P(2)–C(32)</td>
<td>1.8631(17)</td>
<td>1.887(3)</td>
<td>C(2)–P(2)–C(C)</td>
<td>99.26(8)</td>
</tr>
<tr>
<td>Fe(1)···CpA<sub>cent</sub></td>
<td>1.6482(9)</td>
<td>1.6435(13)</td>
<td>C(2)–P(2)–C(32)</td>
<td>98.23(8)</td>
</tr>
<tr>
<td>Fe(1)···CpB<sub>cent</sub></td>
<td>1.6489(10)</td>
<td>1.6383(12)</td>
<td>C(C)–P(2)–C(32)</td>
<td>105.36(8)</td>
</tr>
<tr>
<td>C(4)–CpA<sub>cent</sub>–CpB<sub>cent</sub>–C(10)</td>
<td>0.6</td>
<td>7.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aA = 14 (3.28), 17 (3.29); B = 20 (3.28), 22 (3.29); C = 26 (3.28), 25 (3.29).
The coordination chemistry of 3.27 – 3.29 to various transition metal centres was explored in order to understand the ligating modes of this new series of ferrocenyl ditertiary phosphines. Treatment of 3.27 – 3.29 with an equimolar amount of MCl₂(cod) (M = Pt or Pd) afforded the four-coordinate complexes 3.30 – 3.35, in good to excellent yield (83 – 99% range) following ligand displacement of cod (Equation 3.15).

The 3¹P{¹H} NMR spectra (in CDCl₃) of 3.30 – 3.32 all exhibited new phosphorus singlets between δ(P) 5.5 to –17.9 ppm (Table 3.16), some ca. δ(P) 26 – 13 ppm downfield compared to that of the free ligands. In the case of 3.30 and 3.31, the 3¹P{¹H} NMR spectra showed a new singlet at δ(P) –9.1 and 5.5 ppm respectively, whilst in the case of 3.32, the –PAd moieties were found to resonate as two singlets owing to the enantiomic nature of the phosphaadamantyl cages [δ(P) –17.9 and –16.4 ppm; respective ratio by integration ca. 1:2]. The ratio between the enantiomers of 3.32 was found to be unchanged relative to that of the free ligand (3.29), suggesting that both enantiomers are equally favoured upon coordination and have similar solubility in the precipitating solvent (Et₂O). All the new phosphorus resonances for 3.30 – 3.32 were flanked by equidistant ¹⁹⁵Pt satellites [¹J₁P 3377 – 3473 Hz] (Table 3.16). The characteristically large ¹J₁P coupling constants suggests that the platinum(II) complexes adopt a cis conformation in solution similar to that of other platinum(II) dichloride complexes reported herein and in the literature.⁵⁸,⁹³,¹⁸⁶,¹⁹⁶
The 1H NMR spectra (in CDCl$_3$) of 3.30 – 3.32 all contained the anticipated resonances relating to the hydrogen atoms within the coordinated ligands (Table 3.16). The CH$_2$P hydrogen atoms resonated between δ(H) 2.60 – 3.23 ppm and had a characteristic integration (2:1, CH$_2$P:CH$_2$Fc).23,58,186 In the case of 3.30 and 3.31, the CH$_2$P protons resonated as doublets [J$_{PH}$ 2.8 and 2.4 Hz respectively] whilst the same hydrogen atoms appeared as a series of broad multiplets in the 1H NMR spectrum of 3.32 [δ(CH$_2$P) 2.82 – 3.20 ppm].

Table 3.16 Selected 31P{1H}, 1H NMR [δ in ppm, J in Hz] and FT–IR data (cm$^{-1}$) for 3.30 – 3.32.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>1J$_{PP}$</th>
<th>δ(Fc)</th>
<th>δ(FcCH$_2$)</th>
<th>δ(PCH$_2$)</th>
<th>ν_{PCl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.30</td>
<td>-9.1</td>
<td>3389</td>
<td>3.95 – 4.09</td>
<td>3.45</td>
<td>3.23</td>
<td>312, 292</td>
</tr>
<tr>
<td>3.31</td>
<td>5.5</td>
<td>3473</td>
<td>4.07 – 4.14</td>
<td>3.36</td>
<td>2.60</td>
<td>302, 279</td>
</tr>
<tr>
<td>3.32</td>
<td>-17.9, -16.4</td>
<td>3390, 3377</td>
<td>3.59 – 3.69</td>
<td>3.20 – 2.82</td>
<td>320, 296</td>
<td></td>
</tr>
</tbody>
</table>

a δ(Fc) and δ(FcCH$_2$) overlapped and could not be assigned with confidence.

Further support for the preparation of 3.30 – 3.32 came from the complexes FT–IR spectra which displayed two characteristic ν_{PCl} absorption bands between 279 – 320 cm$^{-1}$ (Table 3.16).58,186,196 Furthermore the positive ion FAB mass spectra of 3.30 – 3.32 gave the expected molecular ions {MS (FAB$^+$): m/z 877, 901 and 938 [M]$^+$(3.30 – 3.32)}, whilst elemental analysis of 3.30 – 3.32 was found to be satisfactory (see Experimental Section). The molecular structures of 3.30 – 3.32 have also been determined by single crystal X–ray diffraction (Section 3.15.1).

The electrochemical properties of 3.30 – 3.32 have been briefly investigated by cyclic voltammetry. The voltammograms of all three compounds displayed a reversible Fe/Fe$^+$ redox couple similar to that of ferrocene [E$_{1/2}$ +0.040 (3.30), +0.038 (3.31) and +0.038 V (3.32); values relative to the Fe/Fe$^+$ couple]. Comparison of the E$_{1/2}$ values of 3.30 – 3.32 with those of the free ligands 3.27 – 3.29 showed an anodic shift with respect to the
complex (ΔE_{1/2} ca. 0.044 V) suggesting that the ferrocenyl groups within 3.30 – 3.32 are marginally harder to oxidise.

The 31P{¹H} NMR spectra (in CDCl₃) of the palladium(II) complexes (3.33 – 3.35) all showed new phosphorus singlet resonances between δ(P) 29.6 – 0.0 ppm, some 45.0 ppm downfield to that of the free ligands [δ(P) –18.3 to –43.1 ppm] (Table 3.17). In the case of 3.35, the phosphaadamantyl groups were found to resonate at two distinct values [δ(P) 1.7 and 0.0 ppm, 2:1 respectively], owing to the enantiomeric nature of 3.29.

Table 3.17 Selected 31P{¹H}, ¹H NMR (δ in ppm) and FT–IR data (cm⁻¹) for 3.33 – 3.35.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>δ(Fc)</th>
<th>δ(FcCH₂)</th>
<th>δ(PCH₂)</th>
<th>ν_{PdCl}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.33</td>
<td>7.6</td>
<td>3.96 – 4.09</td>
<td>3.52</td>
<td>3.18</td>
<td>303, 294</td>
</tr>
<tr>
<td>3.34</td>
<td>29.6</td>
<td>4.08 – 4.16</td>
<td>3.43</td>
<td>2.57</td>
<td>301, 277</td>
</tr>
<tr>
<td>3.35</td>
<td>1.7, 0.0</td>
<td>4.26 – 4.32</td>
<td>3.69</td>
<td>2.69</td>
<td>314, 292</td>
</tr>
</tbody>
</table>

The ¹H NMR spectra (in CDCl₃) of 3.33 – 3.35 all contained the anticipated resonances relating to the coordinated ligands (Table 3.17), with little change in δ(H) being observed between the platinum and palladium analogues. The FT–IR spectra of 3.33 – 3.35 were all found to contain two characteristic ν_{PdCl} absorption bands between 277 – 314 cm⁻¹.¹²¹,¹⁸⁶ Further support for the preparation of 3.33 – 3.35 comes from positive ion FAB mass spectroscopy results which gave the expected fragmentation patterns {MS (FAB⁺): m/z 753, 778 and 813 [M–Cl]⁺ (3.33 – 3.35 respectively)}.
3.15.1 Molecular Structures of 3.30 – 3.32

Yellow (3.30 and 3.31) and orange (3.33) crystalline blocks suitable for X–ray crystallography were grown by either slow evaporation of a CDCl₃ solution of 3.30, the vapour diffusion of Et₂O into a CH₂Cl₂ solution of 3.31, or by the layering of MeOH onto a CH₂Cl₂ solution of 3.32. The molecular structures were determined by single crystal X–ray diffraction (Figure 3.23); selected lengths and angles are given in Table 3.18. Each complex adopted a pseudo square planar geometry with respect to the platinum(II) centre, with 3.27 – 3.29 coordinating the metal via both phosphorus atoms to form a six–membered cis–chelate ring [bite angle ranged between 94.86(3) – 95.59(2)°]. The phosphorus atoms were found to adopt a distorted tetrahedral arrangement, as indicated by the relevant C–P–Pt angles [C–P–Pt ranged between 109.87(7) – 119.27(13)°]. The nitrogen atoms, in all cases, adopted a distorted trigonal pyramidal geometry [sum of component angles = 331° (3.30), 332° (3.31) and 329° (3.32)]. The molecular structures of 3.31 and 3.32 were found to contain one molecule of complex within the asymmetric unit. In contrast, the molecular structure of 3.30 revealed the complex to lie on a crystallographic mirror plane which bisects the FeCH₂N moiety and the platinum(II) centre. As a result the asymmetric unit was found to contain only half a molecule of 3.30 [symmetry operator for equivalent atoms: ‘ x,−y+1/2,z]. Further inspection of the Pt{PCNCP} chelate rings of 3.30 – 3.32 revealed all three complexes to adopt a similarly distorted chair conformation, irrespective of the phosphorus substituents [hinge angle between the plane containing C(1), N(1), C(2 or 1’) vs C(1), P(1), C(2 or 1’), P(2 or 1’) ranged between; 67.4 – 71.5°. Hinge angle between the plane containing C(1), P(1), C(2 or 1’), P(2 or 1’) vs P(1), Pt(1), P(2 or 1’) ranged between 1.4 – 7.4°. Distance of Pt(1) and N(1), below or above the mean plane containing C(1), P(1), C(2 or 1’), P(2 or 1’), ranged between −0.20 to −0.02 Å and 0.76 – 0.80 Å respectively]. Moreover comparison across the series of platinum(II) complexes revealed the orientation of the CH₂Fc group to differ significantly [angle between the plane containing C(1), N(1), C(2 or 1’) vs N(1), C(2 or 3), C(3 or 4); 90.0° (3.30), 110.6° (3.31) and 61.6° (3.32) respectively.], thereby highlighting the conformational freedom of the CH₂Fc group (Figure 3.23).
Figure 3.23 Molecular structures of 3.31 (left), 3.30 (centre) and 3.32 (right). All hydrogen atoms and solvent molecules of crystallisation have been removed for clarity. In the case of 3.30 all the phenyl ring carbons, except the ipso carbons, have also been removed for clarity. For 3.30, symmetry operator for equivalent atoms: ' x,−y+1/2, z
Analysis of the packing plot of 3.30 revealed the crystal lattice to be made up of anti–parallel stacked rows of 3.30, running along the c–axis (Figure 3.24). The cavities between the stacked–rows contained two CHCl₃ molecules of crystallisation. No inter– or intramolecular packing features of note were observed in the structures of 3.31 or 3.32.

Figure 3.24 Intermolecular packing for 3.30. All hydrogen atoms have removed for clarity.
Table 3.18 Selected lengths (Å) and angles (°) for 3.30 – 3.32.\(^a\)\(^b\)

<table>
<thead>
<tr>
<th></th>
<th>3.3</th>
<th>3.31</th>
<th>3.32</th>
<th>3.3</th>
<th>3.31</th>
<th>3.32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.3500(7)</td>
<td>2.3679(5)</td>
<td>2.3422(9)</td>
<td>P(1)–Pt(1)–P(2)</td>
<td>95.44(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.3825(5)</td>
<td>2.3364(10)</td>
<td>2.335(3)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
<td>87.77(2)</td>
<td>88.172(17)</td>
</tr>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.2234(7)</td>
<td>2.2354(5)</td>
<td>2.2476(8)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>87.77(2)</td>
<td>88.834(18)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.2355(5)</td>
<td>2.2534(9)</td>
<td>2.2492(3)</td>
<td>Cl(1)–Pt(1)–Cl(2)</td>
<td>88.97(3)</td>
<td>87.880(18)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.837(3)</td>
<td>1.8424(19)</td>
<td>1.828(3)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
<td>94.86(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>P(1)–C(A)</td>
<td>1.816(3)</td>
<td>1.8340(19)</td>
<td>1.871(3)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>94.86(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>P(1)–C(B)</td>
<td>1.816(3)</td>
<td>1.852(2)</td>
<td>1.877(3)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>94.86(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>C(1)–N(1)</td>
<td>1.459(3)</td>
<td>1.469(2)</td>
<td>1.460(4)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>94.86(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>C(1)–C(3)</td>
<td>1.484(2)</td>
<td>1.495(4)</td>
<td>1.495(4)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>94.86(3)</td>
<td>95.593(17)</td>
</tr>
<tr>
<td>N(1)–C(2)</td>
<td>1.503(4)</td>
<td>1.457(2)</td>
<td>1.459(4)</td>
<td>C(1)–P(1)–Pt(1)</td>
<td>117.96(9)</td>
<td>116.92(6)</td>
</tr>
<tr>
<td>N(1)–C(3)</td>
<td>1.503(4)</td>
<td>1.495(4)</td>
<td>1.495(4)</td>
<td>C(1)–P(1)–Pt(1)</td>
<td>117.96(9)</td>
<td>116.92(6)</td>
</tr>
<tr>
<td>P(1)–P(2)</td>
<td>1.8490(19)</td>
<td>1.832(3)</td>
<td>1.832(3)</td>
<td>C(1)–N(1)–C(2)</td>
<td>110.9(3)</td>
<td>110.32(15)</td>
</tr>
<tr>
<td>P(2)–P(2)</td>
<td>1.836(2)</td>
<td>1.877(4)</td>
<td>1.877(4)</td>
<td>C(1)–N(1)–C(2)</td>
<td>110.9(3)</td>
<td>110.32(15)</td>
</tr>
<tr>
<td>Fe(1)–CpA(_\text{cent})</td>
<td>1.627(4)</td>
<td>1.643(1)</td>
<td>1.646(2)</td>
<td>C(2)–P(2)–Pt(1)</td>
<td>118.71(6)</td>
<td>117.65(11)</td>
</tr>
<tr>
<td>Fe(1)–CpB(_\text{cent})</td>
<td>1.639(4)</td>
<td>1.647(1)</td>
<td>1.637(2)</td>
<td>C(2)–P(2)–Pt(1)</td>
<td>118.71(6)</td>
<td>117.65(11)</td>
</tr>
</tbody>
</table>

\(^a\)A = 9 (3.30), 14 (3.31), 17 (3.32); B = 15 (3.30), 20 (3.31), 22 (3.32); C = 9' (3.30), 26 (3.31), 25 (3.32), D = 15' (3.30), 32 (3.31), 30 (3.32).

\(^b\)Symmetry operator for equivalent atoms 'x,-y+1/2,z.'
3.16 Chromium(0) Coordination Chemistry of 3.27 – 3.29

Reaction of 3.27 – 3.29 with an equimolar amount of Cr(CO)$_4$(nbd), under nitrogen in THF, gave the six-coordinate octahedral complexes 3.36 – 3.38 as orange crystalline solids following complete removal of the solvent (Equation 3.16).

\[
\text{Fe} \quad \text{PR} \quad \text{Cr(CO)$_4$(nbd)} \quad \Delta \quad \text{THF} \quad \text{Fe} \quad \text{PR} \quad \text{CO}
\]

\[
\begin{array}{c}
\text{PR} = \text{PPh}_2 \quad 3.27 \\
\text{PR} = \text{PCy}_2 \quad 3.28 \\
\text{PR} = \text{PAd} \quad 3.29
\end{array}
\]

Equation 3.16

The 31P{1H} NMR spectra (in CDCl$_3$) of 3.36 – 3.38 all exhibited new phosphorus singlets between δ(P) 29.9 – 38.9 ppm [free ligand (3.36 – 3.38); δ(P) –18.3 – –43.1 ppm]. In the case of 3.36, the 31P{1H} NMR spectrum showed a new singlet at δ(P) 38.9 ppm, whilst two singlets relating to the two enantiomers of 3.29 were observed for 3.38 [δ(P) 31.7 and 29.9 ppm]. In contrast the 31P{1H} NMR spectra of 3.37 showed the reaction to be incomplete following the standard 1 h stir at 60 °C, with the new singlet at δ(P) 37.2 ppm, assigned to 3.37, accounting for only 27% of the 31P{1H} active nuclei. As a consequence the reaction was heated under the same reaction conditions for an additional 4 h. The 31P{1H} NMR spectrum (in CDCl$_3$) of the resulting solid showed no significant change to the purity of 3.37 by 31P{1H} NMR [δ(P) 37.2 ppm, 26% by 31P{1H} NMR integral]. As a result, further analysis of 3.37 by 1H NMR and infrared spectroscopy proved inconclusive.

The 1H NMR spectra (in CDCl$_3$) for 3.36 and 3.38 contained the anticipated resonances relating to the coordinated ligands (Table 3.19). Furthermore the FT–IR spectra of 3.36 and 3.38 were found to contain characteristic terminal ν$_{\text{C}=\text{O}}$ absorption bands between 1875 – 2014 cm$^{-1}$ (Table 3.19) which are in agreement with values previously reported for cis–chromium tetracarbonyl complexes of diphosphines.248,249
Table 3.19 Selected 31P{1H}, 1H NMR (δ in ppm) and FT–IR data (cm$^{-1}$) for 3.36 – 3.38.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>δ(Fc)</th>
<th>δ(FcCH$_2$)</th>
<th>δ(PCH$_2$)</th>
<th>νC=O</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.36</td>
<td>38.9</td>
<td>4.10 – 4.05</td>
<td>3.55</td>
<td>3.18</td>
<td>2014 (s), 1921 (s, b), 1875 (s, b)</td>
</tr>
<tr>
<td>3.37a</td>
<td>37.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3.38</td>
<td>31.7, 29.9</td>
<td>4.13 – 4.00</td>
<td>3.48</td>
<td>3.68</td>
<td>2006 (s), 1883 (s, b)</td>
</tr>
</tbody>
</table>

a 26% purity by 31P{1H} NMR.

Further support for the preparation of 3.36 – 3.38 comes from positive ion FAB mass spectroscopy which gave the expected parent ion and fragmentation patterns {MS (FAB$^+$): m/z 775, 780 and 835 [M]$^+$ (3.36 – 3.38 respectively)}. The element analysis for 3.36 also agreed with the proposed chemical formula C$_{41}$H$_{35}$NP$_2$FeCrO$_4$. The molecular structures of 3.36 and 3.38 have also been determined by single crystal X-ray diffraction (Section 3.16.1)

3.16.1 Molecular Structures of 3.36 and 3.38

Orange crystalline blocks (3.36) and plates (3.38) suitable for X–ray crystallography were grown by layering of MeOH onto a CH$_2$Cl$_2$ solution of the respective complexes. The molecular structure of 3.38 was determined routinely, whilst the crystal structure of 3.36 (Figure 3.25) was determined using multiple diffraction data files (SHELXL 97 .hklf5 format), after the crystal lattice was found to be pseudo–merohedrally twinned [major component 57.33(6)%, twin law: 179.9° rotation about the real axis 1 0 1]. Selected lengths and angles for 3.36 and 3.38 are given in Table 3.20.
Figure 3.25 shows \textbf{3.36} as a typical example of this pair of chromium tetracarbonyl complexes. Both complexes adopt a distorted octahedral geometry with respect to the chromium centre, with \textbf{3.36} and \textbf{3.38} coordinating the metal \textit{via} both phosphorus atoms to form a six–membered \textit{cis}–chelate ring [bite angles; 91.15(2) and 89.04(2)$^\circ$ respectively]. The phosphorus atoms were found to adopt a distorted tetrahedral arrangement, as indicated by the relevant C–P–Cr angles [C–P–Cr ranged between 92.81(8) – 120.62(5)$^\circ$]. The nitrogen atoms adopted a distorted pyramidal geometry [sum of component angles = 339$^\circ$ (\textbf{3.36}) and 334$^\circ$ (\textbf{3.38})]. In contrast the asymmetric units of \textbf{3.36} and \textbf{3.38} were found to differ, with two molecules of \textbf{3.36} and one molecule of \textbf{3.38} being present within the respective asymmetric units. The Fe(II) cyclopentadienyl rings within \textbf{3.38} were found to be two–fold disordered over two sets of equivalent positions, with only C(4) common between the two disorder components [occupancy refined to 60.4(6)% for the major component]. The cyclopentadienyl rings of the ferroceny1 groups within \textbf{3.36} and \textbf{3.38} were found to be essentially co–planar, whilst the torsional twist between neighbouring rings was found to vary between 5.6 and 21.9$^\circ$ for the major components.
Table 3.20 Selected lengths (Å) and angles (°) for 3.36 and 3.38.

<table>
<thead>
<tr>
<th></th>
<th>3.36</th>
<th>3.38</th>
<th></th>
<th>3.36</th>
<th>3.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(1)–P(1)</td>
<td>2.3484(8)</td>
<td>2.3774(5)</td>
<td>P(1)–Cr(1)–P(2)</td>
<td>89.04(2)</td>
<td>91.153(15)</td>
</tr>
<tr>
<td>Cr(1)–P(2)</td>
<td>2.3629(8)</td>
<td>2.3927(4)</td>
<td>C(A)–Cr(1)–P(1)</td>
<td>177.05(9)</td>
<td>176.43(6)</td>
</tr>
<tr>
<td>Cr(1)–C(A)</td>
<td>1.849(3)</td>
<td>1.8594(18)</td>
<td>C(B)–Cr(1)–P(1)</td>
<td>92.31(8)</td>
<td>91.54(6)</td>
</tr>
<tr>
<td>Cr(1)–C(B)</td>
<td>1.853(3)</td>
<td>1.8557(17)</td>
<td>C(C)–Cr(1)–P(1)</td>
<td>89.06(9)</td>
<td>88.23(6)</td>
</tr>
<tr>
<td>Cr(1)–C(C)</td>
<td>1.870(3)</td>
<td>1.885(2)</td>
<td>P(1)–C(1)</td>
<td>116.82(9)</td>
<td>114.64(5)</td>
</tr>
<tr>
<td>Cr(1)–C(D)</td>
<td>1.908(3)</td>
<td>1.8835(19)</td>
<td>C(E)–P(1)–Cr(1)</td>
<td>119.16(9)</td>
<td>102.59(7)</td>
</tr>
<tr>
<td>Cr(1)–C(E)</td>
<td>1.831(3)</td>
<td>1.8983(16)</td>
<td>C(F)–P(1)–Cr(1)</td>
<td>115.12(8)</td>
<td>92.81(8)</td>
</tr>
<tr>
<td>Cr(1)–C(F)</td>
<td>1.830(3)</td>
<td>1.8905(17)</td>
<td>N(1)–C(1)–P(1)</td>
<td>113.46(17)</td>
<td>113.09(10)</td>
</tr>
<tr>
<td>Cr(1)–C(G)</td>
<td>1.824(3)</td>
<td>1.8860(16)</td>
<td>C(1)–N(1)–C(3)</td>
<td>110.56(9)</td>
<td>120.62(5)</td>
</tr>
<tr>
<td>Cr(1)–C(H)</td>
<td>1.833(3)</td>
<td>1.8955(16)</td>
<td>C(2)–P(2)–Cr(1)</td>
<td>118.55(8)</td>
<td>117.19(5)</td>
</tr>
<tr>
<td>C(2)–P(2)–Cr(1)</td>
<td>119.58(9)</td>
<td>117.65(5)</td>
<td>C(G)–P(2)–Cr(1)</td>
<td>118.55(8)</td>
<td>117.19(5)</td>
</tr>
<tr>
<td>C(E)–CpAcent–CpBcent–C(F)</td>
<td>5.6</td>
<td>21.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aA = 38 (3.36), 34 (3.38); B = 39 (3.36), 35 (3.38); C = 40 (3.36), 36 (3.38); D = 41 (3.36), 37 (3.38); E = 14 (3.36), 17 (3.38); F = 20 (3.36), 22 (3.38); G = 26 (3.36), 25 (3.38); H = 32 (3.36), 30 (3.38).

bBond lengths and angles given for only one of the molecules of 3.36 within the asymmetric unit. The remaining molecule of 3.36 adopts a very similar conformation and geometry. CpAcent = C(4) to C(8), CpBcent = C(9) to C(13) (3.36 and 3.38).
3.17 Gold(I) Coordination Chemistry of 3.27

The metalloligand 3.27 was also reacted with two equiv. of AuCl(tht), in dichloromethane at ambient temperature, to afford the trimetallic complex 3.39 in good yield (68%) (Equation 3.17).

\[
\begin{align*}
\text{Fe} & \quad \text{N} \quad \text{PPh}_2 \\
\text{PPh}_2 & \quad \text{AuCl} \\
\text{CH}_2\text{Cl}_2 & \quad \text{Fe} \\
\text{N} & \quad \text{PPh}_2 \\
\text{PPh}_2 & \quad \text{AuCl}
\end{align*}
\]

Equation 3.17

The $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum (in CDCl$_3$) of 3.39 exhibited a new phosphorus singlet at $\delta(P)$ 16.7 ppm, some $ca.$ $\delta(P)$ 45 ppm downfield from that of 3.27. The characteristic $\delta(P)$, and occurrence of a singlet resonance, within the $^{31}\text{P} \{^1\text{H}\}$ NMR spectrum implies that 3.27 bridges two distinct gold chloride centres via both phosphorus atoms.23 The ^1H NMR spectrum (in CDCl$_3$) of 3.39 revealed mostly broad resonances that appeared in the anticipated regions of the NMR spectrum, by comparison to 3.27 and previously discussed coordination complexes. A variable temperature (VT) ^1H NMR experiment (in CDCl$_3$) was conducted over the temperature range $+50$ to -50°C (range limited by solvent boiling and melting points), in an attempt to resolve these broad resonances. Unfortunately the temperature range was not sufficient enough to display the various ^1H environments within 3.39 as either an assembled average or as distinct signals (Figure 3.26). However, a simple comparison between the ^1H NMR data of 3.29 at $+50^\circ\text{C}$ and that of the analogous coordination compounds (3.30, 3.33 and 3.36) was made, and allowed the cautious assignment of the spectrum as follows; ^1H NMR (CDCl$_3$, at $+50^\circ\text{C}$): δ 4.22 (bs, $C_5\text{H}_4$ and $C_5\text{H}_5$), 4.18 (s, 4H, CH$_2$P) and 3.78 (s, CH$_2$C$_2$H$_4$).
Figure 3.26 Variable temperature 1H NMR spectra (in CDCl$_3$) for 3.39, recorded in the range +50 to –50 °C (range limited by solvent boiling and melting points) and displayed in the region of δ(H) 3.2 – 4.9 ppm.

Further support for the preparation of 3.39 was provided by positive ion FAB mass spectroscopy which revealed the expected parent ion and fragmentation pattern {MS (FAB$^+$): m/z 1076 [M]$^+$, 1075 [M–H]$^+$, 1040 [M–Cl]$^+$}. Moreover the elemental analysis results for 3.39 agreed with the chemical formula 3.39-0.25CH$_2$Cl$_2$.

3.18 Unsymmetrical Ditertiary Phosphines

Nonsymmetric ditertiary phosphines have seldom been investigated in comparison to their symmetric counterparts, possibly reflecting the need to perform multistep syntheses.$^{9,58,251-254}$ Our group has recently reported the preparation of two unsymmetrical ditertiary phosphines of the type RPCH$_2$N(X)CH$_2$PR’ [where PR = PPh$_2$, PR’ = PAd and X = C$_6$H$_5$ (3A) or C$_6$H$_5$(4–CH$_3$) (3B)] (Scheme 3.2). These unsymmetric ligands allow for the preparation of novel heterobimetallic coordination compounds of Ru/Au and Ir/Au.58 These unsymmetrical phosphines were prepared via a simple two–step condensation methodology which exploited the preferential
precipitation of the monophosphine during pathway B (Scheme 3.2). The same
elegant procedure was therefore utilised during the attempted preparation of
Ph$_2$PCH$_2$(CH$_2$Fc)CH$_2$PAd, as part of our ongoing studies into the preparation of
unsymmetrical ditertiary phosphines.

Scheme 3.2 Two–step condensation procedure utilised to prepare the unsymmetrical
ditertiary phosphines 3A, 3B.

The slow addition (via cannula) of an equimolar methanolic solution of Ph$_2$PCH$_2$OH,
to a methanolic solution of FeCH$_2$NH$_2$ was monitored via in–situ 31P{1H} NMR
spectroscopy. Following 1 h of stirring at ambient temperature, the in–situ 31P{1H}
NMR spectrum revealed two new phosphorus singlets, compared with that of the
Ph$_2$PCH$_2$OH starting material [δ(P) –20.9 ppm, 21% and –27.6 ppm, 16% by NMR
integration]. The singlet at δ(P) –27.6 ppm was assigned to the previously discussed
diphosphine 3.27 [δ(P) –28.1 ppm (3.27), Δδ(P) 0.5 ppm], whilst the other resonance
was assigned to the desired monophosphine by comparison with analogous
monophosphine examples.22,61,255 Further monitoring of the reaction solution via in–
situ 31P{1H} NMR spectroscopy, following a further 4 h of stirring at RT, revealed
the ditertiary phosphine resonance to significantly increase relative to that of the
monophosphine and starting material signals [δ(P) –20.9 ppm, 17% and –27.6 ppm,
78% by NMR integration], suggesting that pathway A is significantly favoured
(Scheme 3.2, Equation 3.18).
Indeed, additional stirring of the reaction solution at ambient temperature afforded an orange precipitate after 24 h, which was isolated and confirmed by 31P{1H} NMR spectroscopy to be 3.27. Further analysis of the resulting filtrate via 31P{1H} NMR spectroscopy revealed a mixture of mono and bis phosphines [ca. 1:1 by 31P{1H} NMR]. As a consequence the preparation of Ph$_2$PCH$_2$N(CH$_2$Fc)CH$_2$PA & via the synthetic route described in Scheme 3.2 was not pursued further, as the monophosphine intermediate could not be cleanly isolated.

A new synthetic strategy for the preparation of unsymmetrical ditertiary phosphines of the form RPCH$_2$XCH$_2$PR’ was therefore required for primary amines, whose “intermediate” monophosphine analogues could not be readily isolated. One synthetic strategy to achieve this goal would be to chemically prevent further condensation of the desired monophosphine following the initial condensation reaction. This could potentially be achieved by using a protecting group, such as tert–butyloxycarbonyl (BOC). Once the initial condensation had taken place, the protecting group could be removed to give the desired monophosphine, which in turn could by reacted with a phosphate synthon of choice (Scheme 3.3).

The new protected ferrocenyl amine, 3.40, was therefore prepared, in excellent yield (93%), by reaction of FcCH$_2$NH$_2$ with di–tert–butyl dicarbonate (diBOC). The 1H NMR spectrum (in CDCl$_3$) of 3.40 displayed the anticipated tert–butyl [δ(H) 1.39 ppm] and cyclopentadienyl [δ(H) 4.07 – 4.11 ppm] hydrogen atoms by comparison with the 1H NMR spectrum of the parent amine. The CH$_2$ protons resonated as a doublet at δ(H) 3.93 ppm, presumably due to a three bond coupling to the neighbouring secondary amine proton [3J$_{HH}$ 4.8 Hz]. The secondary nature of the nitrogen atom was further suggested by the characteristic integral of the broad amine singlet at δ(NH) 4.62 ppm [NH:CH$_2$:C$_5$H$_4$; 1:2:4].
Further supporting evidence for the preparation of 3.40 comes from positive ion FAB mass spectroscopy, which gave the expected parent ion and fragmentation pattern \{MS (FAB\(^+\)): m/z 241 [M\(^+\)], 240 [M–H\(^+\)], 242 [M+H\(^+\)]\}, in addition to elemental analysis which agreed with the proposed empirical formula (C\(_{16}\)H\(_{21}\)O\(_2\)NFe). The FT–IR spectrum of 3.40 contained characteristic \(\nu\)C\(\equiv\)O and \(\nu\)NH absorption bands at \(\nu\)C\(\equiv\)O 1686, \(\nu\)NH 3325 and 1528 cm\(^{-1}\). The molecular structure of 3.40 has also been determined by single crystal X–ray diffraction (Section 3.18.1).

The electrochemical properties of 3.40 have also been briefly investigated by cyclic voltammetry. The voltammogram of 3.40 displayed a reversible Fe/Fe\(^+\) redox couple, similar to that of ferrocene, at \(E_{1/2} +0.010 \) V (value relative to the Fe/Fe\(^+\) couple). This suggests that the ferrocenyl group within 3.40 is relatively unaffected by the increased functionality, as previously observed in the voltammograms of the symmetrical ditertiary phosphines 3.27 – 3.29.

The reaction of 3.40 with an equimolar amount of Ph\(_2\)PCH\(_2\)OH in MeOH was monitored \textit{via in–situ} \(^{31}\)P\(\{\text{\(^{1}\)H}\}\) NMR spectroscopy. The \textit{in–situ} \(^{31}\)P\(\{\text{\(^{1}\)H}\}\) NMR
spectrum, of the reaction solution following a 3 d RT stir, showed no change compared to that of the Ph₂PCH₂OH starting material. Further monitoring of the reaction solution via \textit{in–situ} 31P{1H} NMR spectroscopy after a further 3 d reflux, revealed very little change, with a new singlet that accounted for just 1\% of the total 31P{1H} NMR active nuclei being observed at δ(P) = 21.4 ppm. The singlet was tentatively assigned to 3.41, by comparison with similar monophosphines.22,61,255 The minor nature of this resonance, after the 3 d reflux, suggests that the desired Mannich–based condensation reaction is unfavoured presumably due to steric and/or electronic effects relating to the protecting group. As a result the preparation of an unsymmetrical ditertiary phosphine \textit{via} Scheme 3.3 was also not possible.
3.18.1 Molecular Structure of 3.40

Orange crystalline plates suitable for X–ray crystallography were grown by slow evaporation of a MeOH solution of 3.40. The molecular structure of 3.40 was determined (Figure 3.27); selected lengths and angles are given in Table 3.21.

![Figure 3.27 Molecular structure of 3.40. All hydrogen atoms, except H(1), have been omitted for clarity.](image)

The molecular structure of 3.40 shows the protected amine to have crystallised with one molecule of 3.40 within the asymmetric unit. The carbonyl carbon, C(12) was found to adopt a trigonal planar geometry, as anticipated [sum of component angles 359º]. The double bond character of the tert–butyl ester was evident by comparison of the C–O bond lengths [C–O > C=O; C(12)–O(2) 1.3544(18), C(12)–O(1) 1.2196(17)]. The Fe(II) cyclopentadienyl rings were essentially eclipsed and coplanar [torsional twist about the C(2)–CpAcent–CpBcent–C(8) is 7.2º].

Analysis of the intermolecular packing revealed a single intermolecular hydrogen bond between neighbouring molecules of 3.40 [N(1A')–H(1A')···O(1), N(1A')···O(1) 2.8486(17) Å, H(1A')···O(1) 2.090(19) Å, N(1A')–H(1A')···O(1) 158.3(18)°, symmetry operation ′ = x,−y+3/2,z−1/2], which allowed the formation of 1D molecular chains along the c–axis (Figure 3.28).
Figure 3.28 Intermolecular hydrogen bonding between neighbouring molecules of 3.40. All hydrogen atoms, except those involved in the hydrogen bonding, have been removed for clarity. Symmetry operator for equivalent atoms \(' = x, -y + 3/2, z - 1/2 \).

Table 3.21 Selected bond lengths (Å) and angles (º) for 3.40.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (º)</th>
<th>Bond Lengths (Å)</th>
<th>Angle (º)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–C(11)</td>
<td>1.496(2)</td>
<td>N(1)–C(11)–C(1)</td>
<td>112.33(13)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(11)</td>
<td>1.4546(19)</td>
<td>C(11)–N(1)–C(12)</td>
<td>121.45(13)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(12)</td>
<td>1.3350(19)</td>
<td>O(1)–C(12)–N(1)</td>
<td>125.20(14)</td>
<td></td>
</tr>
<tr>
<td>O(1)–C(12)</td>
<td>1.2196(17)</td>
<td>O(1)–C(12)–O(2)</td>
<td>124.27(14)</td>
<td></td>
</tr>
<tr>
<td>O(2)–C(12)</td>
<td>1.3544(18)</td>
<td>O(2)–C(12)–N(1)</td>
<td>110.52(12)</td>
<td></td>
</tr>
<tr>
<td>O(2)–C(13)</td>
<td>1.4681(19)</td>
<td>C(12)–O(2)–C(13)</td>
<td>119.41(11)</td>
<td></td>
</tr>
<tr>
<td>Fe(1)···CpA cent</td>
<td>1.6445(7)</td>
<td>C(1)–CpA cent–CpB cent–C(1)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>Fe(1)···CpB cent</td>
<td>1.6481(8)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CpA cent = C(1) to C(5), CpB cent = C(6) to C(10).
3.19 Preparation and Characterisation of 3.42

The development of new phosphinoamines of the form \((R_2P)_2N(R)\) continues to attract much attention, as such phosphines have shown diverse catalytic and coordination properties.\(^{15,238,256,257}\) As part of ongoing studies into the diversity of \(P-N(R)-P\) derivatives, the new ferrocenyl phosphine 3.42 has been prepared by the aminolysis of \(\text{FcCH}_2\text{NH}_2\) with the commercially available chlorophosphine \(\text{ClPPh}_2\) (Equation 3.19).

![Equation 3.19](image)

The \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum (in CDCl\(_3\)) of 3.42 exhibited a new phosphorus singlet at \(\delta(P) 59.4\) ppm, ca. 23 ppm upfield to that of the \(\text{ClPPh}_2\) starting material \([\delta(P) 81.9\) ppm, in CDCl\(_3\)]. The \(^1\text{H}\) NMR spectrum (in CDCl\(_3\)) of 3.42 showed the characteristic cyclopentadienyl and \(\text{CH}_2\) protons to resonate between \(\delta(H) 3.33 – 4.18\) ppm, as anticipated by comparison with \(\text{FcCH}_2\text{NH}_2\).\(^{247}\) The cyclopentadienyl hydrogen atoms \([\delta(H) 3.33 – 3.85\) ppm] resonated some \(ca.\) \(\delta(H) 0.5\) ppm upfield to those within the parent amine, whilst the \(\text{CH}_2\) protons resonated as a broad triplet \([\delta(\text{CH}_2) 4.18\) ppm, \(^3J_{PH} 20.4\) Hz] \(ca.\) \(\delta(H) 0.7\) ppm downfield of their parent amine counterparts. The ternary nature of the nitrogen atom was further confirmed by the absence of a \(\nu_{\text{NH}}\) absorption band in the infrared spectrum, in addition to the lack of a \(\delta(\text{NH})\) signal in the \(^1\text{H}\) NMR spectrum of 3.42 [\(\delta(\text{NH}) 1.42, \text{FcCH}_2\text{NH}_2\)]. Moreover the positive ion FAB mass spectrum of 3.42 was found to contain the expected parent ion and fragmentation patterns \{MS (FAB\(^+\)): \(m/z 584 [M]^+, 384 [M–\text{CH}_2\text{C}_5\text{H}_4]^+\}\}, whilst elemental analysis results agreed with the formula 3.42·0.75\(\text{H}_2\text{O}\). The molecular structure of 3.42 has also been determined (Section 3.19.1).

The electrochemical properties of the new phosphinoamine have also been briefly investigated by cyclic voltammetry. The voltammogram of 3.42 contained a
reversible Fe/Fc+ redox couple similar to that of ferrocene, at \(E_{1/2} +0.099 \) V, in
addition to a further oxidation peak at \(E_{pa} -0.054 \) V (values relative to the Fe/Fc+
couple) (Figure 3.29). This additional oxidation potential was tentatively assigned to
the irreversible oxidation of both phosphorus atoms within **3.42**, due to the lack of a
corresponding reduction potential and similar \(E_{pa} \) to other suggested –PPh2
oxidations discussed herein [\(E_{pa} 0.006 \) V (**3.14**)]. The observed anodic shift (ca. 100
mV) of the ferrocene/ferrocenium redox couple, relative to that of ferrocene, shows
that the electrochemical properties of the Fe(II)/Fe(III) centre are significantly
affected by the close proximately of the PNP coordination site, with the couple
requiring higher potentials to become redox active.

Figure 3.29 Cyclic voltammogram of **3.42** in dry CH2Cl2, 0.1 M [NBu4][BF4] at a
scan rate of 50 mVs\(^{-1}\).

3.19.1 Molecular Structure of 3.42

Yellow crystalline laths suitable for X–ray crystallography were grown by the slow
evaporation of a MeOH filtrate of **3.42**. The molecular structure was determined
using synchrotron radiation, due to the size of the crystals (at least one dimension <
0.05 mm) and their poorly diffracting nature (Figure 3.30). Selected lengths and
angles are given in Table 3.22.
Figure 3.30 Molecular structure of 3.42. All hydrogen atoms have been removed for clarity.

The molecular structure of 3.42 shows the asymmetric unit to contain one molecule of 3.42. The phosphorus atoms were found to adopt a distorted pyramidal geometry, as indicated by the relevant N–P–C angles [N–P–C ranged between 101.2(2) – 105.2(2)°]. The nitrogen atom, N(1), was found to adopt a near regular trigonal planar geometry [sum of component angles 359°]. The Fe(II) cyclopentadienyl rings were essentially eclipsed and coplanar (torsional twist about the C(2)–CpA_{cent}–CpB_{cent}–C(8) is 7.2°).
Table 3.22 Selected lengths (Å) and angles (º) for 3.42.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (º)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–N(1)</td>
<td>1.698(4)</td>
<td>P(1)–N(1)–P(2)</td>
</tr>
<tr>
<td>P(1)–C(12)</td>
<td>1.839(5)</td>
<td>C(1)–N(1)–P(1)</td>
</tr>
<tr>
<td>P(1)–C(18)</td>
<td>1.817(5)</td>
<td>C(1)–N(1)–P(2)</td>
</tr>
<tr>
<td>P(2)–N(1)</td>
<td>1.707(4)</td>
<td>C(2)–C(1)–N(1)</td>
</tr>
<tr>
<td>P(2)–C(24)</td>
<td>1.836(5)</td>
<td>N(1)–P(1)–C(12)</td>
</tr>
<tr>
<td>P(2)–C(30)</td>
<td>1.833(5)</td>
<td>N(1)–P(1)–C(18)</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.490(6)</td>
<td>C(12)–P(1)–C(18)</td>
</tr>
<tr>
<td>N(1)–P(2)–C(24)</td>
<td>104.4(2)</td>
<td></td>
</tr>
<tr>
<td>N(1)–P(2)–C(30)</td>
<td>103.4(2)</td>
<td></td>
</tr>
<tr>
<td>C(24)–P(2)–C(30)</td>
<td>104.9(2)</td>
<td></td>
</tr>
<tr>
<td>(2)–CpAcent–CpBcent–C(8)</td>
<td>7.2</td>
<td></td>
</tr>
</tbody>
</table>

CpAcent = C(2) to C(6), CpBcent = C(7) to C(11).

3.20 Platinum(II) Coordination Chemistry of 3.42

The coordination chemistry of 3.42 was briefly investigated by reaction with an equimolar amount of PtCl2(cod), to afford the four-coordinate platinum(II) dichloride complex 3.43 in good yield (75%) (Equation 3.20).

![Equation 3.20](image)

The 31P{1H} NMR spectrum (in CD2Cl2) of 3.43 showed a new phosphorus singlet at δ(P) 17.8 ppm, some ca. δ(P) 42 ppm downfield from that of 3.42 [δ(P) 59.4 ppm, in CDCl3]. The new phosphorus resonance was flanked by equidistant 195Pt satellites [1J_PtP 3290 Hz]. The characteristically large 1J_PtP coupling constant suggests that 3.43 adopts a cis conformation in solution, similar to that of the analogous FeCH2N(CH2PR)2 platinum(II) dichloride complexes 3.30 – 3.32 (1J_PtP 3377 – 3473 Hz).58,93 Further comparison of the 1J_PtP coupling constant to those reported for similar platinum(II) dichloride complexes also supported a cis conformation (ca. 1J_PtP...
The \(^1\)H NMR spectrum (in CD\(_2\)Cl\(_2\)) of \(3.43\) showed the anticipated ferrocenyl resonances of the coordinated ligand [\(\delta(H)\) 3.33 – 3.84 ppm] whilst the CH\(_2\) hydrogen atoms, which resonated as a triplet in \(3.42\) [\(\delta(CH_2)\) 4.18 ppm, \(^3J_{PH}\) 20.4 Hz], appear as a broad singlet some \(\Delta\delta(H)\) 0.4 ppm upfield upon coordination [\(\delta(CH_2)\) 3.80 ppm]. Furthermore the positive ion FAB mass spectrum of \(3.43\) gave the expected molecular ion and fragmentation pattern, {MS (FAB\(^{+}\))}: m/z 849 [M]\(^{+}\), 814 [M–Cl]\(^{+}\)}, whilst elemental analysis for \(3.43\) agreed with the formula \(3.43\cdot0.5\text{CH}_2\text{Cl}_2\). The FT–IR spectrum of \(3.43\) also contained two characteristic \(\nu_{PtCl}\) absorptions bands, at \(\nu_{PtCl}\) 310 and 290 cm\(^{-1}\), similar to those observed for other phosphinoamine platinum dichloride complexes.\(^{238}\) The molecular structure of \(3.43\) has also been determined \textit{via} single crystal X–ray diffraction (Section 3.20.1).

The electrochemical properties of \(3.43\) have also been briefly investigated by cyclic voltammetry. The voltammogram of \(3.43\) contained a reversible Fc/Fc\(^{+}\) redox couple similar to that of \(3.42\), at \(E_{1/2} +0.107\ V\) (\(\Delta E_{1/2} 0.009\ V\), relative to the Fc/Fc\(^{-}\) couple) (Figure 3.31).

![Cyclic voltammogram of 3.43 in dry CH\(_2\)Cl\(_2\), 0.1 M [NBu\(_4\)][BF\(_4\)] at a scan rate of 50 mVs\(^{-1}\).](image)

Figure 3.31 Cyclic voltammogram of \(3.43\) in dry CH\(_2\)Cl\(_2\), 0.1 M [NBu\(_4\)][BF\(_4\)] at a scan rate of 50 mVs\(^{-1}\).

The similarity between the Fc/Fc\(^{-}\) redox waves of \(3.42\) and \(3.43\) suggests that whilst the electrochemical properties of the ferrocene moiety are affected by the close
proximately of the PNP coordination site, by comparison with ferrocene, the redox couple is relatively unaffected by platinum(II) coordination at the same site. Furthermore the absence of the oxidation potential ($E_{pa} -0.054$ V), previously observed in the voltammogram of 3.42, adds further support to the correct assignment of the potentials as the irreversible oxidation of the phosphorus(III) centres.

3.20.1 Molecular Structure of 3.43

Orange crystalline plates, suitable for X–ray crystallography, were grown by the slow evaporation of a (CD$_3$)$_2$SO / CD$_2$Cl$_2$ solution of 3.43. The molecular structure of 3.43 was determined using multiple diffraction data files (SHELXL 97 .hklf5 format) collected by the EPSRC National Crystallography Service, after the crystal lattice was found to be merohedrally twinned [major component 86.054(30)%, twin law; 180° about the reciprocal axis 1 0.001 –0.83] (Figure 3.32). Selected lengths and angles are given in Table 3.23.

![Molecular structure of 3.43. All hydrogen atoms have been removed for clarity.](image)
The molecular structure of 3.43 showed the complex to adopt a distorted square planar geometry with respect to the platinum(II) centre (Table 3.23), with 3.42 coordinating the metal via both phosphorus atoms to form a strained four–membered cis–chelate ring [bite angle; 72.15(4)°]. The strained nature of the PNPPt ring is evident by comparison with the bite angle of the analogous six–membered cis–chelate complexes 3.30 – 3.32 [ca. 23° difference in bite angle P(1)–Pt(1)–P(2) 95.44(3) (3.30), 95.593(17) (3.31) and 94.86(3) (3.32)]. The phosphorus atoms were found to adopt a distorted pyramidal geometry, as indicated by the relevant Pt–P–C/N angles [Pt–P–C/N angles ranged between 93.84(12) – 112.96(17)], whilst the nitrogen atom N(1) was found to adopt a near perfect trigonal planar geometry [sum of component angles 359°]. The Fe(II) cyclopentadienyl rings were eclipsed and essentially coplanar [torsional twist about the C(2)–CpAcent–CpBcent–C(8) is 0.2°], as was previously observed in 3.42.

Table 3.23 Selected lengths (Å) and angles (°) for 3.43.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.2042(9)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.2088(10)</td>
</tr>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.3503(10)</td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.3599(10)</td>
</tr>
<tr>
<td>P(1)–N(1)</td>
<td>1.696(3)</td>
</tr>
<tr>
<td>P(1)–C(12)</td>
<td>1.806(4)</td>
</tr>
<tr>
<td>P(1)–C(18)</td>
<td>1.807(4)</td>
</tr>
<tr>
<td>P(2)–N(1)</td>
<td>1.699(3)</td>
</tr>
<tr>
<td>P(2)–C(24)</td>
<td>1.803(4)</td>
</tr>
<tr>
<td>P(2)–C(30)</td>
<td>1.796(4)</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.498(6)</td>
</tr>
<tr>
<td>Fe(1)···CpAcent</td>
<td>1.644(2)</td>
</tr>
<tr>
<td>Fe(1)···CpBcent</td>
<td>1.642(2)</td>
</tr>
<tr>
<td>P(1)–N(1)</td>
<td>99.88(17)</td>
</tr>
<tr>
<td>C(1)–N(1)–P(1)</td>
<td>127.1(3)</td>
</tr>
<tr>
<td>C(1)–N(1)–P(2)</td>
<td>132.0(3)</td>
</tr>
<tr>
<td>N(1)–C(1)–C(2)</td>
<td>112.5(3)</td>
</tr>
</tbody>
</table>

CpAcent = C(2) to C(6), CpBcent = C(7) to C(11).
Bidentate ligands that combine both hard and soft donor atoms have also seen considerable interest over the last few decades. Iminophosphines are a typical example of such compounds, where the phosphorus(III) atom acts as a soft donor whilst the nitrogen atom acts as a hard donor site. Ligands of this type are of interest as their known hemilability, where the coordination mode alternates between mono and bidentate, allows the formation of coordinate unsaturated metal centres which have potential catalytic application.258-262 As part of ongoing studies into the preparation of iminophosphines,186,263 the new ferrocenyl iminophosphine, 3.44, was prepared in good yield by the condensation of an equimolar amount of aminomethyl ferrocene with the known substituted tertiary phosphine Ph\textsubscript{2}PCH(Ph)CH\textsubscript{2}CHO (Equation 3.21).264

![Equation 3.21](image)

The 31P\{1H\} NMR spectrum (in CDCl\textsubscript{3}) of the isolated solid, recorded following a 4 h reflux of the above reagents in MeOH, revealed the presence of several phosphorus containing species between \(\delta(P)\) 1.1 to –1.3 ppm. The major singlet at \(\delta(P)\) 1.1 ppm was assigned to 3.44 and accounted for 76% of the total 31P\{1H\} NMR active nuclei, whilst the next most prominent singlet was assigned to the Ph\textsubscript{2}PCH(Ph)CH\textsubscript{2}CHO starting material [\(\delta(P)\) 0.0 ppm, 13% by NMR integration] suggesting that the reaction was incomplete.264 Careful monitoring of subsequent repeat reactions, by \textit{in–situ} 31P\{1H\} NMR spectroscopy, revealed that prolonged reflux (> 4 h) only served to reduced the purity of 3.44 further [after 24 h reflux, \(\delta(P)\) 0.7 ppm (in C\textsubscript{6}D\textsubscript{6}), 67% by integration]. Nevertheless the purity of 3.44, by 31P\{1H\} NMR spectroscopy, was deemed sufficient enough for the isolated material to be used directly in coordination studies. The iminophosphine also showed evidence of oxidation, by 31P\{1H\} NMR spectroscopy, when CDCl\textsubscript{3} solutions containing 3.44 were left to stand in air [\(\delta(P)\) \textit{ca.} 33 ppm, for the corresponding phosphine oxide].
The 1H NMR spectrum (in CDCl$_3$) of the isolated material revealed a new imine triplet at $\delta(HC=N)$ 7.36 ppm [$^3J_{HH}$ 4.4 Hz, 1H]. This, coupled with a minor aldehyde resonance at δ(CHO) 9.48 ppm further supported the preparation of 3.44 and the assignment of the 31P{1H} NMR spectrum.264 The cyclopentadienyl and CH$_2$Fc hydroguron atoms within 3.44 appeared as broad resonances between δ(H) 3.84 – 4.01 ppm, whilst the remaining nonaromatic hydrogen atoms resonated as broad multiplets similar to those observed in the 1H NMR spectrum (in CDCl$_3$) of the parent aldehyde [δ(H) 3.74 (m, 1H, PCH), δCH$_2$ 2.73 (m, 1H, CH$_3$H$_6$), 2.57 (m, 1H, CH$_A$H$_B$); mean $\Delta\delta$(H) ca. 0.2 ppm relative to Ph$_2$PCH(Ph)CH$_2$CHO].264 Furthermore, the presence of a strong νC=N absorption band at 1667 cm$^{-1}$, confirmed the unsaturated nature of the nitrogen atom within 3.44. The preparation of 3.44, and its susceptibility to aerobic oxidation, were further supported by positive ion FAB mass spectroscopy which revealed the predictable molecular fragments {MS (FAB$^+$): m/z 531 [M+O], 516 [M+H]$^+$ and 199 [CH$_2$Fc]$^+$}. The electrochemical properties of 3.44 were not investigated by cyclic voltammetry due to the low purity and the phosphines tendency towards aerobic oxidation.

3.22 Platinum(II) Coordination Chemistry of 3.44

Treatment of 3.44 with an equimolar amount of PtCl$_2$(cod), at ambient temperature, gave 3.45 in excellent yield (95%) (Equation 3.22).

![Equation 3.22](image)

The 31P{1H} NMR spectrum (in CDCl$_3$) of 3.45 revealed a new phosphorus singlet flanked by equidistant platinum satellites at δ(P) 12.3 ppm, $^1J_{PP}$ 3745 Hz, some ca. δ(P) 11 ppm downfield from that of 3.44 [δ(P) 1.1 ppm (3.44)]. The characteristically large $^1J_{PP}$ coupling constant suggests that 3.45 adopted a cis conformation in CDCl$_3$ solution, with the phosphorus and nitrogen atoms coordinating the metal centre.186
The occurrence of only one new phosphorus species also suggests that 3.45 forms a stable six membered P,N–chelate complex.

The 1H NMR spectrum (in CDCl$_3$) of 3.45 contained a broad δ(HC=\text{N}) resonance at δ(H) 8.37 ppm, ca. 1 ppm downfield compared to the same hydrogen atom in 3.44, an effect presumably indicative of coordination. The PCH and diastereotopic PhC(H)\text{CH}_A\text{CH}_B hydrogen atoms, previously observed in 3.44 and Ph$_2$PCH(Ph)\text{CH}_2\text{CHO},264 were also marginally shifted upon coordination. In contrast to 3.44, the Fc\text{CH}_2 hydrogen atoms within 3.45 were observed to be diastereotopic \[\delta(\text{CH}_A\text{CH}_B\text{Fc}) 5.77, 4.94 \text{ ppm and } ^2J_{\text{HH}} 13.2 \text{ Hz}.\] Analysis by 2D 1H NMR (COSY) spectroscopy confirmed the diastereotopic nature of the CH$_A$H$_B$C$_3$H$_4$ hydrogen atoms (Figure 3.33, highlighted in red). Analysis by HMQC further supported this assignment, with both hydrogen environments \[\delta(\text{CH}_A\text{CH}_B\text{C}_3\text{H}_4)\] coupling to the same methylene carbon atom \[\delta(\text{CH}_2) 65.3 \text{ ppm}.\] One tentative suggestion for this change to diastereotopic protons (CH$_2$) upon coordination, is that the conformation of 3.45 forces one of the methylene hydrogen environments (H$_A$) to point directly towards the platinum centre \[\delta(\text{CH}_A\text{H}_B\text{C}_3\text{H}_4) 5.77 \text{ ppm},\] whilst the other (H$_B$) points away \[\delta(\text{CH}_A\text{H}_B\text{C}_3\text{H}_4) 4.94 \text{ ppm };\] thereby allowing H$_A$ to be shielded from the applied field to a greater extent than H$_B$. Such an effect is in agreement with the observed difference in δ(H) between the two hydrogen environments \[\Delta \delta(\text{CH}_A\text{H}_B) 0.83 \text{ ppm}.\] The 2D 1H NMR (COSY) spectrum of 3.45 also revealed the hydrogen atoms of the imine and PhC(H)\text{CH}_A\text{CH}_B to be weakly coupled, an effect which is not resolved by the broad signals in the 1D 1H NMR spectrum of 3.45 (Figure 3.33, highlighted in green).
Figure 3.33 2D 1H NMR (COSY) spectrum of 3.45. Coupling between diastereotopic $CH_AH_BC_3H_4$ hydrogen atoms (highlighted in red) and coupling between PhC(H)CH$_4$H$_B$ and HCN hydrogen atoms (highlighted in green).

Furthermore, the FT–IR spectrum of 3.45 was found to contain a characteristic $\nu_{C=N}$ absorption band at 1640 cm$^{-1}$. The observation of characteristic ν_{PtCl} absorptions bands within 3.45 was however not possible due to a lack of spectrometer with an appropriate scan range. The preparation of 3.45 was further confirmed by positive ion FAB mass spectroscopy, which gave the anticipated fragmentation pattern \{MS (FAB$^+$): m/z 746 [M–Cl]$^+$, 199 [M–CH$_2$Fc]$^+$\}, and also by elemental analysis, which showed good agreement with the empirical formula C$_{32}$H$_{30}$NPFePtCl$_2$. The electrochemical properties of 3.45 have also been briefly investigated by cyclic voltammetry. The voltammogram of 3.45 contained a reversible Fc/Fc$^+$ redox couple at $E_{1/2}$ +0.043 V.
3.23 Ruthenium(II) and Gold(I) Coordination Chemistry of 3.44

Treatment of 3.44 with [RuCl(μ−Cl)(ρ−cym)]₂ (0.5 equiv.) and AuCl(tht) (1 equiv.) at ambient temperature, gave the bimetallic complexes 3.46 and 3.47, in poor yield following recrystallisation from CH₂Cl₂ with hexane (34 and 39% respectively) (Equation 3.23).

Equation 3.23 (i) AuCl(tht) (3.46) or [RuCl(μ−Cl)(ρ−cym)]₂ (3.47). Solvent: CH₂Cl₂.

The 31P{¹H} NMR spectra (in CDCl₃) of the isolated solids, in both cases, revealed several 31P{¹H} NMR active nuclei. In the case of 3.46, the 31P{¹H} NMR spectrum (in CDCl₃) revealed the presence of several phosphorus containing species between δ(P) 29.2 – 46.4 ppm, two of which accounted for 71% of the total 31P active nuclei [δ(P) 45.2 and 44.8 ppm respectively, [ratio by NMR integral 4.5:1]. The singlet at δ(P) 44.8 ppm was assigned to 3.46, by comparison with other gold(I) chloride phosphine complexes, whilst the broader singlet at δ(P) 45.2 ppm was tentatively assigned to a combination of the two diastereomer isomers of three-coordinate P–N chelate complex 3.46A (Figure 3.34).

Figure 3.34 Suggested two-coordinate (3.46) and three-coordinate (3.46A) gold complexes.
Treatment of 3.44 with [RuCl(µ–Cl)(p–cym)]₂ (0.5 equiv.) also revealed several phosphorus containing species downfield of that of 3.44, between δ(P) 21.0 – 34.0 ppm by ³¹P{¹H} NMR spectroscopy (in CDCl₃), three of which accounted for 91% of the total ³¹P active nuclei [respective ratio by NMR integral ca. 4:3:1]. The singlets at δ(P) 23.6 and 23.1 ppm, were tentatively assigned to the two diastereomer isomers of the six–membered P–N chelate complex 3.47A (Figure 3.35), by virtue of their similar chemical shift [Δδ(P) 0.5 ppm], whilst the remaining singlet at δ(P) 21.0 ppm, was assigned to the neutral complex 3.47 by comparison with other phosphorus containing ruthenium piano stool complexes. Careful monitoring of a CDCl₃ solution of 3.47 and 3.47A, over a period of four days, revealed the gradual decrease of the singlets between δ(P) 21.0 – 34.0 ppm and the emergence of further singlets significantly downfield [δ(P) ca. 105 and 59 ppm], suggesting that one or all of the piano stool complexes are unstable in CDCl₃ solution.

![Figure 3.35](image)

Figure 3.35 Suggested monodentate (3.47) and bidentate (3.47A) ruthenium(II) complexes of 3.44 observed by ³¹P{¹H} NMR.

The hemilabile behaviour of 3.44, following treatment with AuCl(tht) and [RuCl(µ–Cl)(p–cym)]₂, was also observed via ¹H NMR spectroscopy (in CDCl₃), with a mixture of broad resonances observed, relating to the anticipated hydrogen atoms (see Experimental Section). Further support for the preparation of 3.46 and 3.47, comes from the FT–IR spectra which contained characteristic νC=N absorption bands at 1643 and 1636 cm⁻¹ respectively. Moreover, the positive ion FAB mass spectra gave the anticipated parent ions and fragmentation patterns {MS (FAB⁺): m/z 747 and 822 [M]⁺, 712 and 786 [M–Cl]⁺ (3.46 and 3.47 respectively)}. The elemental analysis results for 3.46 and 3.47 also showed good agreement with the chemical formulae 3.46Au·1.5H₂O and 3.47·1.25CH₂Cl₂.
3.24 Preparation and Characterisation of 3.48

In addition to the novel ferrocenyl phosphine chemistry discussed previously, initial attempts have been made to prepare more “constrained” ferrocenyl phosphines in order to investigate their coordination chemistry and electrochemical properties. To this end the recently reported macrocyclic amine (C₅H₄CH₂N(H)CH₂CH₂Fe)₂₆⁵ was reacted with two equiv. of Ph₂PCH₂OH to afford 3.48 as an orange solid, in reasonable yield (73%) (Equation 3.24).

![Equation 3.24](image)

The ³¹P{¹H} NMR spectrum (in CDCl₃) of the isolated solid exhibited a new phosphorus singlet at δ(P) –27.0 ppm, some ca. δ(P) 17 ppm upfield compared with that of the Ph₂PCH₂OH starting material. The singlet accounted for 91% of the total active ³¹P nuclei and was assigned to 3.48 by virtue of similar δ(P) to those observed for previous ferrocenyl diphosphines discussed herein. The ¹H NMR spectrum (in CDCl₃) of 3.48 contained two characteristic cyclopentadienyl singlets at δ(H) 3.93 and 3.86 ppm, in addition to three broad singlets related to the three distinct CH₂ environments within the macrocyclic ring [δ(H) 3.49 (CH₂C₅H₄), 2.92 (NCH₂CH₂), 1.42 (NCH₂CH₂)].²⁶⁵ The newly introduced CH₂P hydrogen atoms resonated as a characteristic doublet at δ(H) 3.30 ppm, ²J_PH 2.8 Hz.²²,²₃ The ternary nature of the nitrogen atoms within 3.48 was also supported by the absence of a ν_NH absorption band from the infrared spectrum of 3.48, in addition to the lack of a δ(NH) resonance in the ¹H NMR spectrum.

Additional support for the preparation of 3.48 comes from the positive ion FAB mass spectroscopy which gave the anticipated parent ion and fragmentation pattern {MS (FAB⁺): m/z 280 [M]⁺, 281 [M+H]⁺}. Unfortunately time did not allow for sufficient study of the coordination chemistry of 3.48. However initial in–situ and preparative scale reactions with PtCl₂(cod) afforded a range of phosphorus containing species by
\(^{31}\)P\(^{1}\)H\) NMR spectroscopy (in CDCl\(_3\)) [\textit{ca.} \(\delta(P) -19 - 32\) ppm], none of which displayed equidistant \(^{195}\)Pt satellites, whilst further analysis proved inconclusive. Further work is clearly required in this area.

3.25 Conclusion

In summary, a range of new tertiary phosphines with ferrocenyl appendages have been prepared, characterised and coordinated to a range of soft transition metal centres. The coordination chemistry of 3.1 was extensively studied and revealed the phosphine to be capable of bridging two transition metal centres either dimerically or monomerically, as well as forming new examples of \textit{cis} and \textit{trans} chelate complexes. Variations of the chemistry used to prepare 3.1 – 3.3, allowed the synthesis of a new trimetallo–diphosphine 3.16 in addition to the new monophosphines 3.14 and 3.20 – 3.22. The coordination chemistry of 3.16 and 3.20 afforded two rare examples of pentametallic diphosphine coordination complexes (3.18, 3.19 and 3.26).

A further series of new ditertiary phosphines of the form \((\text{RPCH}_2)_2\text{NCH}_2\text{Fc} (3.27 – 3.29)\) have also been discussed and their coordination chemistry to readily available transition metals reported. A new synthetic strategy towards the synthesis of unsymmetrical diphosphines of the form \(\text{RPCH}_2\text{N}(X)\text{CH}_2\text{PR}^{-}\) was also attempted, in addition to the preparation and coordination chemistry of a new phosphinoamine (3.42). Furthermore, new examples of a macrocyclic ferrocenyl diphosphine (3.48) and the iminophosphine (3.44) have also been prepared and characterised.

The electrochemical properties of the majority of compounds discussed in this chapter have been investigated by cyclic voltammetry, (when purity, yield and stability would allow), and whilst the characteristic Fe(II)/Fe(III) redox couples reported were found to vary over the range of phosphines and complexes studied \([E_{1/2} – 0.042 \text{ to } +0.142 \text{ V}]\), no considerable, unusual or selective changes were observed that would demand any further electrochemical investigation.
Chapter 4

The Synthesis and Coordination Chemistry of Novel Tertiary Phosphines Bearing a Single Polyaromatic or Ferrocenyl Group
4.1 Introduction

Compounds bearing organometallic or planar aromatic groups, in addition to a hard donor site, have found extensive use within transition metal coordination chemistry owing to their luminescent, electrochemical and binding properties. The coordination complexes of such compounds have also shown important biological properties, such as DNA binding (4a) and cytotoxicity (4b and 4c) (Figure 4.1).

![Figure 4.1](image)

Figure 4.1 Recent examples of complexes that display DNA binding and cytotoxicity.

Interestingly, phosphines bearing planar aromatic or organometallic moieties have seldom been investigated for such biological roles. Given our group’s interest in the functionalisation of primary amines via an efficient Mannich–based condensation reaction, this chapter reports the syntheses of (R)N(CH$_2$PPh$_2$)$_2$ and (R)NHCOCH$_2$N(CH$_2$PPh)$_2$ (R = functionalised planar aromatic or organometallic group) and their subsequent coordination to some biologically relevant transition metals.
4.2 Synthesis and Characterisation of 4.1 and 4.2

The new diphosphines 4.1 and 4.2 were prepared via consecutive Mannich–based condensation of two equiv. of Ph₂PCH₂OH with one equiv. of the respective planar aromatic amine (Equation 4.1). In both instances the progress of the reaction was monitored by in–situ ³¹P{¹H} NMR spectroscopy.

\[\text{Ph}_2\text{PCH}_2\text{OH} \rightarrow \text{Ph}_2\text{PCH}_2\text{OH} \]

\[R = \begin{array}{c}
\text{R} \quad \text{NH}_2 \\
\text{R} \quad \text{NH} \\
\text{4.1 or 4.2a}
\end{array} \]

\[\text{4.1 or 4.2} \]

The in–situ ³¹P{¹H} NMR spectra showed that neither reaction proceed to completion following prolonged stirring at ambient temperature or reflux (6 d), with signals from a mixture of products, Ph₂CH₂OH and reaction intermediates [Ph₂PH and RN(H)CH₂P (4.1a and 4.2a)] being observed. The formation of 4.1 and 4.2 was however alluded to by the appearance of a characteristic PCN(R)CP singlet within the respective in–situ ³¹P{¹H} NMR spectra [δ(P) –28.5(4.1) and –26.3(4.2) ppm, respectively]. Unfortunately, the phosphorus purity of this characteristic singlet was never found to be greater than ca. 25% in either case. Prolonged stirring at reflux (4.1), and RT (4.2), did however afford a small amount of yellow precipitate, which was isolated in poor yield (ca. 23%) following concentration of the solvent.

The ³¹P{¹H} NMR spectra (in CDCl₃) of this isolated material varied depending upon the primary amine used in the reaction. Following reaction of 9–aminomethyl anthracene with Ph₂CH₂OH, the ³¹P{¹H} NMR spectrum of the isolated solid displayed a characteristic diphosphine singlet at δ(P) –28.1 ppm, which accounted for 72% of the total ³¹P NMR active nuclei (remaining 28%, Ph₂PCH₂OH by ³¹P integration), indicating that the diphosphine (4.1) had been successfully
isolated. In contrast the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of the solid obtained from the reaction of 4–methyl–7–amino–coumarin with Ph$_2$PCH$_2$OH, displayed a characteristic mono–phosphine singlet at $\delta(P)$ –19.6 ppm ($^{4.2a}$), by comparison with the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of similar mono–phosphines.61,255

The ^1H NMR spectra of $^{4.1}$ and $^{4.2a}$ support the $^{31}\text{P}\{^1\text{H}\}$ NMR assignment, with the respective spectra containing characteristic $\delta(CH_2P)$ resonances at $\delta(H)$ 3.59 and 3.81 ppm respectively.22,23 The newly introduced CH$_2$P moieties resonated as a characteristic doublet $[^2J_{PH} 2.8 \text{ Hz},^{22,23}$ in the case of $^{4.1}$, and as a broad singlet within the ^1H NMR spectrum of $^{4.2a}$. The tertiary nature of the nitrogen atom within $^{4.1}$ was confirmed by the characteristic 2:1 integral ratio observed between the $\delta(CH_2P)$ and $\delta(CH_2N(C_{14}H_9))$ resonances. The secondary nature of the amine in $^{4.2a}$ was supported by the appearance of a broad $\delta(NH)$ singlet, [δH 4.20 (bs, 1H, NH)] and by the $\delta(NH)$ resonances characteristic integral ratio (1:2, NH:CH$_2$P). The assignment of the $\delta(NH)$ resonance was confirmed by the signals collapse upon shaking with D$_2$O.

The infrared spectra of $^{4.1}$ and $^{4.2a}$ also supported the secondary and tertiary nature of their respective nitrogen atoms, with no ν_{NH} band being observed for $^{4.1}$, whilst an indicative ν_{NH} absorption band was observed at 3311 cm$^{-1}$ for $^{4.2a}$. The preparation of $^{4.2a}$ was further confirmed by determination of the molecular structure by X–ray crystallography (Section 4.2.1).
4.2.1 Molecular Structure of 4.2a

Colourless crystalline plates suitable for X–ray crystallography were obtained by slow evaporation of a MeOH solution of 4.2a. The molecular structure was determined using synchrotron radiation due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature (Figure 4.2). Selected bond lengths and angles are given in Table 4.1.

![Molecular structure of 4.2a](image)

Figure 4.2 Molecular structure of 4.2a. All hydrogen atoms, except H(1), have been removed for clarity.

The crystal structure of 4.2a showed the asymmetric unit to contain one molecule of the monophosphine. The phosphorus atom was found to adopt a distorted pyramidal geometry, as indicated to the relevant C–P–C angles (Table 4.1). The geometry of the carbonyl carbon, C(17), was found to be trigonal planar as anticipated \[O(2)–C(17)–O(1) 115.7(3)°, O(2)–C(17)–C(18) 126.6(3)°, O(1)–C(17)–C(18) 117.7(3)°;\] sum of component angles = 360°]. The double bond character of the \(\alpha,\beta\)–unsaturated carbonyl group was also evident by comparison of the O(1)–C(17), O(2)–C(17), C(18)–C(19) and C(19)–C(20) bond lengths [O(1)–C(17) > C(17)–O(2), C(19)–C(20) > C(18)–C(19); 1.378(4), 1.221(4), 1.343(4) and 1.444(4) Å respectively]. The solid state structure was also found to contain a single intermolecular hydrogen bond between neighbouring asymmetric units, N(1)–H(1)···O(2’) [N(1)···O(2’) 3.006(4) Å, H(1)···O(2’) 2.14(4) Å, N(1)–H(1)···O(2’) 174(3)°, symmetry operation ’ = –x+1,
$y+1/2, -z+1/2]$, which gave rise to the formation of intermolecular zig–zag chains of 4.2a which run along the b–axis (Figure 4.3).

Figure 4.3 The intermolecular zig–zag chain observed within the molecular structure of 4.2a. All hydrogen atoms, except those involved in hydrogen bonding, and phosphorus phenyl carbons have been removed for clarity. Symmetry operator $' = -x+1, y+1/2, -z+1/2$.

Further analysis of the packing plot revealed neighbouring intermolecular chains to be interdigitated, in an anti–parallel manner, with two sets of intermolecular $\pi\cdots\pi$ stacks observed between neighbouring coumarin units (Figure 4.4). The first $\pi\cdots\pi$ intermolecular interaction was situated at the centre of the unit cell and involved two “eclipsed” anti–parallel coumarin units (Figure 4.4, highlighted in blue) [average mean separation = 3.500 Å, c.f. graphite 3.45 Å92; face–to–face tilt = 0°]. The second $\pi\cdots\pi$ interaction was significantly slipped by comparison and involved coumarin units at the edges of the unit cell, [C···C 3.515 Å, c.f. graphite 3.45 Å; face–to–face tilt = 0°] (Figure 4.4, highlighted in red).
Figure 4.4 The packing of 4.2a (left) and selected detail (right). All hydrogen atoms not involved in intermolecular bonding have been removed for clarity.

Table 4.1 Selected bond lengths (Å) and angles (°) for 4.2a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P(1)–C(1)</td>
<td>1.823(3)</td>
<td>C(1)–P(1)–C(7) 101.22(14)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.833(3)</td>
<td>C(1)–P(1)–C(13) 102.27(14)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.847(3)</td>
<td>C(7)–P(1)–C(13) 100.21(15)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.440(4)</td>
<td>N(1)–C(13)–P(1) 108.2(2)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.371(4)</td>
<td>C(13)–N(1)–C(14) 123.1(3)</td>
</tr>
<tr>
<td>O(1)–C(16)</td>
<td>1.382(3)</td>
<td>N(1)–C(14)–C(15) 119.3(3)</td>
</tr>
<tr>
<td>O(1)–C(17)</td>
<td>1.378(4)</td>
<td>C(16)–O(1)–C(17) 121.4(2)</td>
</tr>
<tr>
<td>O(2)–C(17)</td>
<td>1.221(4)</td>
<td>O(1)–C(17)–O(2) 115.7(3)</td>
</tr>
<tr>
<td>C(17)–C(18)</td>
<td>1.425(4)</td>
<td>O(2)–C(17)–C(18) 126.6(3)</td>
</tr>
<tr>
<td>C(18)–C(19)</td>
<td>1.343(4)</td>
<td>O(1)–C(17)–C(18) 117.7(3)</td>
</tr>
<tr>
<td>C(19)–C(20)</td>
<td>1.507(4)</td>
<td>C(18)–C(19)–C(20) 121.7(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(20)–C(19)–C(21) 119.8(3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(18)–C(19)–C(21) 118.5(3)</td>
</tr>
</tbody>
</table>
4.3 Coordination chemistry of 4.1 and 4.2a.

Ligand displacement of cod from PtCl₂(cod) with one (4.1) or two (4.2a) equiv. of the respective phosphine, in CH₂Cl₂ at ambient temperature, gave the platinum(II) complexes 4.3 and 4.4 in good to excellent yield (99 and 68% respectively) (Scheme 4.1).

![Scheme 4.1](image)

The ³¹P{¹H} NMR spectra of 4.3 and 4.4 both contained new singlet resonances at δ(P) –7.0 and 6.3 ppm respectively, some 20 ppm downfield compared with those of the parent ligands. In both cases each singlet was flanked by two equidistant ¹⁹⁵Pt satellites (¹Jₚₚ 3416 and 3709 Hz, respectively). The characteristically large ¹Jₚₚ coupling constant infers that both platinum(II) complexes adopt a cis conformation in solution.⁵⁸,¹⁸⁶,¹⁹⁶ The ¹H NMR spectra of 4.3 and 4.4 both showed a more complex splitting pattern than observed in the ¹H NMR spectra of the free ligands, with respect to the CH₂P protons. The ¹H NMR spectrum of 4.3 showed the CH₂P protons as a multiplet at δ(H) 3.53 ppm (²Jₚₕ 3.2 Hz, ³Jₚₕ 36.0 Hz), whilst the corresponding protons appeared as a doublet in the case of 4.4 [δ(H) 4.24 ppm (²Jₚₕ 6.4 Hz)]. Further support for the cis conformation of 4.4, in the solid state, came from the complexes infrared spectroscopy which showed two νₚₛₚ absorption bands at 318 and 282 cm⁻¹. Furthermore elemental analysis was satisfactory for both complexes and the positive ion FAB mass spectra for each compound gave the expected fragmentation patterns [MS (FAB⁺): m/z 834 [M–Cl]⁺ (4.3) and [M]⁺, 977 [M–Cl]⁺]
The preparation of the cis isomer of 4.3 was further confirmed by X-ray crystallography (Section 4.3.1).

4.3.1 Molecular structure of 4.3.

Colourless crystalline plates suitable for X-ray crystallography were grown by slow diffusion of MeOH into a CHCl₃ solution of 4.3. The molecular structure was then determined using synchrotron radiation due to the small crystal size (at least one dimension < 0.05 mm) and also using two diffraction data files, after the crystal lattice was found to be merohedrally twinned [major component 76.19(18)%, twin law; 180° rotation about reciprocal axis 0 0 1] (Figure 4.5). Selected bond lengths and angles are given in Table 4.2.

![Figure 4.5 Molecular structure of 4.3. All hydrogen atoms and solvent molecules of crystallisation have been removed for clarity.](image)

The molecular structure of 4.3 showed the asymmetric unit to consist of one unique molecule of 4.3 and two solvating chloroform molecules. The complex was found to adopt a distorted square planar geometry with respect to the metal centre [P(1)–Pt(1)–Cl(2) 177.34(17)° and P(2)–Pt(1)–Cl(1) 172.59(18)°] with 4.1 coordinating the platinum(II) centre via both phosphorus atoms, to form a six membered cis–chelate ring [bite angle, P(2)–Pt(1)–P(1) 94.38(15)°]. The phosphorus atoms within 4.3 were
found to adopt a distorted tetrahedral geometry, as indicated by the relevant C–P–Pt angles (Table 4.2). The nitrogen atom, N(1), adopted a distorted trigonal pyramidal geometry [sum of component angles = 332°]. No unusual packing or inter/intramolecular bonding was observed.

| Table 4.2 Selected bond lengths (Å) and angles (°) for 4.3 |
|---------------------------------|-----------------|-----------------|
| Pt(1)–P(1) | 2.258(4) | P(1)–Pt(1)–Cl(2)| 177.34(17) |
| Pt(1)–P(2) | 2.211(4) | P(2)–Pt(1)–Cl(1)| 172.59(18) |
| Pt(1)–Cl(1) | 2.354(5) | P(1)–Pt(1)–Cl(1)| 87.99(15) |
| Pt(1)–Cl(2) | 2.354(4) | P(2)–Pt(1)–Cl(2)| 87.78(16) |
| P(1)–C(1) | 1.794(17) | Cl(1)–Pt(1)–Cl(2)| 89.68(16) |
| P(1)–C(7) | 1.835(19) | P(1)–Pt(1)–P(2) | 94.38(15) |
| P(1)–C(13) | 1.810(16) | C(1)–P(1)–Pt(1) | 114.4(5) |
| N(1)–C(13) | 1.47(2) | C(7)–P(1)–Pt(1) | 111.1(6) |
| N(1)–C(14) | 1.471(18) | C(13)–P(1)–Pt(1) | 117.4(6) |
| N(1)–C(29) | 1.47(2) | N(1)–C(13)–P(1) | 112.9(12) |
| C(14)–C(15) | 1.50(2) | C(13)–N(1)–C(14) | 110.8(13) |
| P(2)–C(29) | 1.797(17) | C(14)–N(1)–C(29) | 112.7(12) |
| P(2)–C(30) | 1.829(17) | C(13)–N(1)–C(29) | 108.8(13) |
| P(2)–C(36) | 1.817(17) | N(1)–C(14)–C(15) | 113.2(14) |
| | | N(1)–C(29)–P(2) | 116.4(12) |
| | | C(29)–P(2)–Pt(1) | 118.5(6) |
| | | C(30)–P(2)–Pt(1) | 109.4(5) |
| | | C(36)–P(2)–Pt(1) | 116.9(6) |
4.4 Functionalised Ditertiary Phosphines Bearing Peptide–Coupled Polyaromatic and Ferrocenyl Groups

Following the successful preparation of the biologically relevant platinum(II) dichloride complexes 4.3 and 4.4, the sequential use of three well known reactions allowed the synthesis of a series of novel diphosphines of the form (R)NHCOCH₂N(CH₂PPh₂)₂ (4.22 – 4.29), (R = planar aromatic or ferrocenyl group) from readily available aromatic amines. In contrast to 4.1 and 4.2a, this new series of diphosphines will incorporate a peptide “linker” into the generic ligand design in an attempt to promote hydrogen bonding and enhance flexibility within the novel phosphine and subsequent coordination complexes. Both of which are desirable properties for compounds capable of performing applications such as DNA binding.269,270

The synthetic route used to prepare 4.22 – 4.29 involved the initial peptide coupling of aromatic amines with carbobenzyl–oxyglycine via a conventional carbodiimide coupling,271 to afford the substituted benzyl methylcarbamates 4.5 – 4.13. The removal of the benzyl–formate group from 4.5 – 4.13 was efficiently achieved by sacrificial hydrogenation using cyclohexene and palladium on charcoal as a catalyst,271 to afford the functionalised aliphatic amines 4.14 – 4.21. The synthesis was completed via Mannich–based condensation of 4.14 – 4.21 with two equiv. of Ph₂PCH₂OH, to afford the new phosphines 4.21 – 4.29 (Equation 4.4).21,23,58,60

4.4.1 Synthesis and Characterisation of benzyl methylcarbamates (4.5 – 4.13) and the aminoacetamides (4.14 – 4.21)

The benzyl methylcarbamates 4.5 – 4.13 were prepared in yields ranging between 22 and 92% using a known method of peptide coupling (Equation 4.2).271 Literature searches suggest that 4.7 – 4.10, 4.12 and 4.13 have not previously been reported, and as a result they are discussed, as part of the series, herein. The yield of carbamate, in all cases, appeared to be largely dependent upon the solubility of the aromatic amine in THF at ambient temperature. This was particularly evident in the
case of 2–aminoanthracene which required harsher reaction conditions to prepare 4.7 (23 h reflux in THF).

The 1H NMR spectra [in (CD$_3$)$_2$SO or CDCl$_3$ (4.12)] of 4.5 – 4.13 displayed two characteristic resonances of equal intensity between δ(H) 5.1 – 3.7 ppm, which were assigned to the methylene groups within the carbamates, by comparison with literature examples.271 The benzyl protons resonated as a singlet between δ(H) 5.1 – 5.0 ppm, whilst the remaining methylene protons (α to the peptide moiety) resonated as a doublet between δ(H) 4.0 – 3.7 ppm [J_{HH} 5.2 – 6.0 Hz]. In the case of 4.5, 2D COSY 1H NMR analysis showed the CH$_2$’s J_{HH} splitting pattern to be associated with a coupling between the methylene protons and another 1H NMR active environment which resonated as a triplet at δ(H) 7.5 ppm (J_{HH} 6.0 Hz). The triplet was tentatively assigned to one of the NH protons within 4.5 by integration, splitting pattern and following HMQC NMR analysis, which showed the triplet to lack a corresponding NMR active 13C resonance. A third characteristic singlet was also present in the majority of carbamates [δ(H) 11.2 – 9.1 ppm] and was assigned to the remaining NH proton by integration [NH:CH$_2$ = 1:2] and also by virtue of the resonances collapse upon shaking with D$_2$O.

Equation 4.2
Furthermore the preparation of 4.5 – 4.13 was supported by the compound’s infrared spectra which contained strong amide and carbamate absorption bands, as anticipated [range ν_{NH} 3426 – 3252 cm$^{-1}$, amide band I $\nu_{\text{C=O}}$ 1695 – 1656 and amide band II ν_{NH} 1583 – 1518 cm$^{-1}$ respectively].194 Elemental analysis and mass spectroscopy (EI and FAB) results also supported the proposed formulae (see Experimental Section).

Using a well established method of benzyl–formate reduction,271 a series of 2–aminoacetamides (4.14 – 4.21) were synthesised by sacrificial hydrogenation of 4.5 – 4.13 with an excess of activated palladium on charcoal and cyclohexene (Equation 4.3). Following a search of the literature the aminoacetamides 4.15 – 4.21 have not previously been reported and are therefore discussed, as part of the series, here. The 2–aminoacetamides (4.14 – 4.21) were all prepared in good yield (yields ranged between 80 – 100%) by the 1 – 6 h reflux of a suspension containing the above reagents.

Efforts to cleave the C–N carbamate bond within 4.13 however proved fruitless under the same reaction conditions. Attempts to react 4.13 using harsher reaction conditions also failed, with the extreme attempt being a 120 h reflux at 130 ºC.
The 1H NMR spectra [in (CD$_3$)$_2$SO or CDCl$_3$ (4.21)] of 4.14 – 4.21 all exhibited one characteristic singlet in the region of δ(H) 3.6 – 3.1 ppm. The singlet was assigned to the methylene protons α to the peptide moiety, by direct comparison with the same protons in the carbamate precursors (4.5 – 4.12); $\Delta\delta$(H) 0.6 – 0.4 ppm. The absence of the benzyl resonance [δ(H) 5.1 – 5.0 ppm, 4.5 – 4.12] and the simplification of the aromatic region of the 1H NMR spectra also suggested the successful hydrogenation of 4.5 – 4.12.

The infrared spectra of 4.14 – 4.21 also contained characteristically strong peptide absorption bands, as anticipated [values ranged between ν_{NH} 3395 – 3226, $\nu_{\text{C=O}}$ 1696 – 1624 and ν_{NH} 1590 – 1521 cm$^{-1}$].194 Further characterisation data can be found in the Experimental Section in addition to structural data gained from single crystals grown from solutions of 4.14 and 4.15 (Sections 4.4.2 and 4.4.3).
4.4.2 Molecular structure of
\[[(C_6H_5)NHCOCH_2NH_3][(C_6H_5)NHCOCH_2NHCO_2] \] (4.14a)

Colourless crystalline rods suitable for single crystal X–ray diffraction were obtained by slow evaporation of an ethanolic solution of 4.14 and the molecular structure determined. Selected bond lengths and angles are given in Tables 4.3 and 4.4.

![Molecular structure of 4.14a](image)

Figure 4.6 Molecular packing of 4.14a. The minor disorder component and all hydrogen atoms not involved in intermolecular hydrogen bonding have been removed for clarity.

Compound 4.14 did not crystallise as the expected neutral species, rather it was found as a salt, with the asymmetric unit consisting of an ammonium cation of 4.14, a carbamic derivative of 4.14 and a solvating water molecule. The preparation of both ions is thought to be a consequence of incomplete hydrogenation of 4.5, an effect observed in the \(^1\)H NMR spectrum of 4.5 upon closer inspection. The molecular structure depicted in Figure 4.6 is therefore not considered to be representative of the bulk material obtained after hydrogenation of 4.5. All three components were found to be hydrogen bonded to each other within the asymmetric unit [N(2)···O(4) 2.798(5) Å, H(2)···O(4) 1.91(5) Å, N(2)–H(2)···O(4) 172(4)°; N(4)···O(5) 2.995(5) Å, H(4)···O(5) 2.15(5) Å, N(4)–H(4)···O(5) 171(4)°]. The phenyl ring within the ammonium cation was found to be two–fold disordered over two sets
of positions with C(12) and C(15) common between the two disorder components (occupancy refined to 51.0(6)% for the major component). The geometry about the carbonyl carbons was found to be trigonal planar as expected [sum of component angles about C(2), C(9) and C(11) = 360°, see Table 4.3]. Further analysis of the intermolecular packing revealed an extensive intermolecular hydrogen bonding network, further to that observed within the asymmetric unit, with all hydrogen donors and acceptors within the salt being involved in the formation of a further seven intermolecular hydrogen bonds (Figure 4.7, Table 4.4). The cations and anions within the crystal lattice were found to be connected both directly and indirectly (via the solvating water molecules) to form a stacked thick–sheet structure (highlighted in red, Figure 4.7). Each molecular sheet is made up of a hydrophilic centre containing the polar NH/CO/OH groups, whilst the edges of the sheets comprise of the hydrophobic phenyl groups (Figure 4.7).

![Figure 4.7 Packing plot of 4.14a, stacked thick–sheet structure (highlighted in red). The minor disorder component and all hydrogen atoms not involved in intermolecular hydrogen bonding have been removed for clarity.](image)

196
Table 4.3 Selected bond lengths (Å) and angles (°) for 4.14a.

<table>
<thead>
<tr>
<th></th>
<th>N(1)–C(1)</th>
<th>N(1)–C(1)–C(2)</th>
<th>110.3(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–C(2)</td>
<td>1.518(5)</td>
<td>O(1)–C(2)–C(1)</td>
<td>120.5(4)</td>
</tr>
<tr>
<td>C(2)–O(1)</td>
<td>1.220(5)</td>
<td>O(1)–C(2)–N(2)</td>
<td>125.5(4)</td>
</tr>
<tr>
<td>C(2)–N(2)</td>
<td>1.338(5)</td>
<td>N(2)–C(2)–C(1)</td>
<td>114.0(4)</td>
</tr>
<tr>
<td>N(2)–C(3)</td>
<td>1.424(5)</td>
<td>C(2)–N(2)–C(3)</td>
<td>128.3(4)</td>
</tr>
<tr>
<td>C(9)–O(2)</td>
<td>1.267(5)</td>
<td>O(2)–C(9)–O(3)</td>
<td>123.9(4)</td>
</tr>
<tr>
<td>C(9)–O(3)</td>
<td>1.275(5)</td>
<td>O(2)–C(9)–N(3)</td>
<td>117.7(4)</td>
</tr>
<tr>
<td>C(9)–N(3)</td>
<td>1.358(5)</td>
<td>O(3)–C(9)–N(3)</td>
<td>118.4(4)</td>
</tr>
<tr>
<td>N(3)–C(10)</td>
<td>1.446(5)</td>
<td>C(9)–N(3)–C(10)</td>
<td>120.5(3)</td>
</tr>
<tr>
<td>C(10)–C(11)</td>
<td>1.514(6)</td>
<td>N(3)–C(10)–C(11)</td>
<td>116.2(3)</td>
</tr>
<tr>
<td>C(11)–O(4)</td>
<td>1.243(5)</td>
<td>O(4)–C(11)–N(4)</td>
<td>123.8(4)</td>
</tr>
<tr>
<td>C(11)–N(4)</td>
<td>1.337(5)</td>
<td>O(4)–C(11)–C(10)</td>
<td>118.9(4)</td>
</tr>
<tr>
<td>N(4)–C(12)</td>
<td>1.424(5)</td>
<td>N(4)–C(11)–C(10)</td>
<td>117.3(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(11)–N(4)–C(12)</td>
<td>126.2(4)</td>
</tr>
</tbody>
</table>

Table 4.4 Hydrogen bond lengths (Å) and angles (°) for 4.14a.

<table>
<thead>
<tr>
<th>D–H···A</th>
<th>(D–H)</th>
<th>(H···A)</th>
<th>(D···A)</th>
<th><(DHA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)–H(1A)···O(5')</td>
<td>0.95(5)</td>
<td>2.02(5)</td>
<td>2.895(5)</td>
<td>153(4)</td>
</tr>
<tr>
<td>N(1)–H(1B)···O(3'')</td>
<td>0.93(5)</td>
<td>1.93(5)</td>
<td>2.826(5)</td>
<td>160(4)</td>
</tr>
<tr>
<td>N(1)–H(1B)···O(2'')</td>
<td>0.93(5)</td>
<td>2.47(5)</td>
<td>2.957(5)</td>
<td>113(3)</td>
</tr>
<tr>
<td>N(1)–H(1C)···O(3*)</td>
<td>0.89(5)</td>
<td>1.90(5)</td>
<td>2.745(5)</td>
<td>158(4)</td>
</tr>
<tr>
<td>N(2)–H(2)···O(4)</td>
<td>0.89(5)</td>
<td>1.91(5)</td>
<td>2.798(5)</td>
<td>172(4)</td>
</tr>
<tr>
<td>N(3)–H(3)···O(2+)</td>
<td>0.86(5)</td>
<td>1.96(5)</td>
<td>2.805(4)</td>
<td>172(4)</td>
</tr>
<tr>
<td>N(4)–H(4)···O(5)</td>
<td>0.86(5)</td>
<td>2.15(5)</td>
<td>2.995(5)</td>
<td>171(4)</td>
</tr>
<tr>
<td>O(5)–H(5B)···O(2+)</td>
<td>0.90(5)</td>
<td>1.85(5)</td>
<td>2.744(4)</td>
<td>176(5)</td>
</tr>
<tr>
<td>O(5)–H(5A)···O(1#)</td>
<td>0.80(6)</td>
<td>2.08(6)</td>
<td>2.805(4)</td>
<td>152(5)</td>
</tr>
</tbody>
</table>

*<D = donor atom, A = Acceptor atom.
Symmetry operations for equivalent atoms: ' = x,y−1,z. " = −x,−y+1,−z+2. * = −x+1,−y+1,−z+2.
+= x+1,y,z. # = x+1,y+1,z.
4.4.3 Molecular structure of [(C\textsubscript{10}H\textsubscript{7})NHCOCH\textsubscript{2}NH\textsubscript{3}][EtO] (4.15a)

Colourless crystalline plates suitable for single crystal X–ray diffraction were obtained by slow vapour diffusion of Et\textsubscript{2}O into an EtOH solution of 4.15 (Figure 4.8) and the molecular structure determined. Selected bond lengths and angles are given in Tables 4.5.

![Molecular structure of [(C\textsubscript{10}H\textsubscript{7})NHCOCH\textsubscript{2}NH\textsubscript{3}][EtO] (4.15a).](image)

Figure 4.8 Molecular structure of [(C\textsubscript{10}H\textsubscript{7})NHCOCH\textsubscript{2}NH\textsubscript{3}][EtO] (4.15a). All hydrogen atoms, except H(2) and the minor disorder components have been omitted for clarity.

Analysis of the crystal structure suggests that 4.15 did not crystallise as the expected neutral species, rather it was found to have crystallised as a salt (4.15a), with the asymmetric units containing one unique ammonium cation of 4.15 and an ethanoate counterion. The preparation of this unexpected salt is supported by least squares difference maps obtained during refinement which showed the ammonium hydrogen atoms, while the alcohol hydrogen atom of the solvate of crystallisation remained absent. The molecular structure of 4.15a was also shown to be significantly disordered, with the ethanoate anion and the naphthyl group / nitrogen atom N(2) being disordered over two sets of positions [anion: C(13) common between both disorder components, occupancy refined to 55.7(12)% for the major component, cation: C(2) common between both disorder components; occupancy refined to 93.2(3)% for the major component]. This disorder within 4.15a made it difficult to model the ammonium hydrogen atoms with confidence. The peptide hydrogen atom, H(2), was however modelled using the geometry of the neighbouring carrier atom.
N(2). A search of the CSD yielded no similar examples of an ammonium alkoxide, so, given the disorder, the amine / ethanol interpretation cannot be entirely ruled out.

Analysis of the intermolecular packing for 4.15a revealed the presence of intermolecular chains, which ran along the c-axis. The chains were formed by intermolecular hydrogen bonds between the disordered amide NH’s of the ammonium cation (from the respective disorder components) and the carbonyl oxygen of a neighbouring cation [N(2)···O(1’) 2.838(4) Å, H(2)···O(1’) 1.97 Å, N(1)–H(2)···O(1’) 167º; N(2X)···O(1’) 2.88(5) Å, H(2X)···O(1’) 2.12 Å, N(2X)–H(2X)···O(1’) 144º, symmetry operator for equivalent atoms x, –y+1/2, –z+1/2, X = minor disorder component]. (Figure 4.9).

Table 4.5

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1)–C(1)</td>
<td>1.472(4)</td>
<td>N(1)–C(1)–C(2) 110.9(3)</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.498(5)</td>
<td>O(1)–C(2)–C(1) 120.5(3)</td>
</tr>
<tr>
<td>O(1)–C(2)</td>
<td>1.249(4)</td>
<td>N(2)–C(2)–C(1) 115.5(3)</td>
</tr>
<tr>
<td>N(2)–C(2)</td>
<td>1.329(5)</td>
<td>O(1)–C(2)–N(2) 124.0(3)</td>
</tr>
<tr>
<td>N(2)–C(3)</td>
<td>1.421(5)</td>
<td>N(2X)–C(2)–C(1) 111(2)</td>
</tr>
<tr>
<td>N(2X)–C(2)</td>
<td>1.29(5)</td>
<td>O(1)–C(2)–N(2X) 122(2)</td>
</tr>
<tr>
<td>N(2X)–C(3X)</td>
<td>1.54(8)</td>
<td>C(2)–N(2)–C(3) 125.6(3)</td>
</tr>
</tbody>
</table>

*X = relates to the minor disorder component.
4.4.4 Synthesis and Characterisation of the Functionalised Ditertiary Phosphines 4.22 – 4.29

Reaction of two equiv. of \(\text{Ph}_2\text{PCH}_2\text{OH} \) with 4.14 – 4.21, under nitrogen, gave the new functionalised ditertiary phosphines 4.22 – 4.29 (Equation 4.4).

\[
\begin{align*}
\text{R} & \quad \text{NH} & \quad \text{O} & \quad \text{2 \text{Ph}_2\text{PCH}_2\text{OH}} & \quad \text{MeOH} & \quad \text{R} & \quad \text{NH} & \quad \text{O} & \quad \text{PPh}_2 & \quad \text{PPh}_2 \\
\text{4.14 - 4.21} & \quad & & & \quad \text{4.22 - 4.29} \\
\end{align*}
\]

Equation 4.4

The diphosphines 4.22, 4.23, 4.25, 4.27 and 4.28 were all readily isolated in good to excellent yield (64 – 100%) as solids following a 3 – 23 h stir at ambient temperature. The diphosphine 4.26 did not crystallise during the course of the reaction, however the viscous oil that was obtained after complete removal of the solvent was sufficiently pure (by \(^{31}\text{P}\{^1\text{H}\} \text{ NMR, 80\%}\) to be used directly in coordination studies. In the case of 4.24 and 4.29 prolonged stirring at ambient temperature also did not yield the desired diphosphines as a solids. \textit{In–situ} \(^{31}\text{P}\{^1\text{H}\} \text{ NMR spectroscopy showed the resulting solutions to contain a mixture of the respective bispophosphate (4.24 and 4.29), monophosphine intermediates and unreacted Ph}_2\text{PCH}_2\text{OH. Attempts to force the reactions to completion by reflux unfortunately proved ineffective, with the most extreme condition being a 10 d reflux in the case of 4.24. Attempts to isolate the two ligands by concentration of the solvent under reduced pressure, also proved unsuccessful. As a result full
characterisation of the diphosphines 4.24 and 4.29 was not possible. However, in the case of the anthracene derivative (4.24), successful attempts were made to prepare the monophosphine 4.24a, by dropwise addition of an equimolar methanolic solution of Ph₂PCH₂OH to a stirred methanolic solution of 4.16.

All of the isolated phosphines exhibited one characteristic singlet within their 31P {1H} NMR spectra [in CDCl₃ or (CD₃)₂SO] in the ca. region δ(P) –21 to –29 ppm (Table 4.6). In the case of diphosphines 4.22, 4.23, 4.25 – 4.28 this resonance appeared at ca. δ(P) –26 ppm whilst in the mono phosphine (4.24a) the resonance appeared at δ(P) –21.6 ppm.

The 1H NMR spectra of 4.22 – 4.29 [in CDCl₃ or (CD₃)₂SO] all contained two characteristic resonances ranging between δ(H) 3.8 – 3.3 ppm which relate to the methylene linkers within 4.22 – 4.29 (Table 4.6). The newly introduced CH₂P moieties were found to resonate as a doublet, or a broad singlet, between δ(H) 3.7 – 3.3 ppm due to a two bond coupling between the CH₂ protons and the neighbouring 100% NMR active 31P nucli (when present 2J PH ranged between 5.2 – 2.4 Hz). The methylene protons α to the peptide group resonated as a singlet between δ(H) 3.8 – 3.5 ppm, as anticipated by comparison with the parent amines. The characteristic ratio between the integrals of the methylene resonances within the diphosphines and mono phosphine added further support to the secondary and tertiary nature of their respective nitrogen atoms (diphosphine, CH₂P:COCH₂ 2:1 and mono phosphine CH₂P:COCH₂ 1:1). The secondary nature of the amine in 4.24a was further confirmed by a broad NH singlet at δ(NH) 10.06 ppm. The assignment of the NH hydrogen was further supported by comparison with the chemical shift of similar protons within the parent carbamate [(4.7) δ(CH₂NHCOC) 10.25 ppm, Δδ(H) 0.19 ppm] and by integration [CH₂P:NH 2:1].
Table 4.6 Selected 31P{1H}, 1H NMR data (ppm, Hz) and IR data (cm$^{-1}$) for 4.22 – 4.28.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>δ(CH$_2$P)</th>
<th>δ(COCH$_2$N)</th>
<th>νNH</th>
<th>νC=O</th>
<th>νNH d</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22</td>
<td>–26.4</td>
<td>3.7</td>
<td>3.7</td>
<td>3300</td>
<td>1519</td>
<td>1677</td>
</tr>
<tr>
<td>4.23</td>
<td>–26.3</td>
<td>3.7</td>
<td>3.8</td>
<td>3319</td>
<td>1522</td>
<td>1684</td>
</tr>
<tr>
<td>4.24a</td>
<td>–21.6</td>
<td>3.6</td>
<td>3.6</td>
<td>3317, 3222</td>
<td>1513</td>
<td>1664</td>
</tr>
<tr>
<td>4.25</td>
<td>–26.3</td>
<td>3.6</td>
<td>3.7</td>
<td>3314</td>
<td>1500</td>
<td>1687</td>
</tr>
<tr>
<td>4.26b</td>
<td>–28.6</td>
<td>3.3</td>
<td>3.5</td>
<td>3312</td>
<td>1519</td>
<td>1651</td>
</tr>
<tr>
<td>4.27</td>
<td>–26.3</td>
<td>3.7</td>
<td>3.7</td>
<td>3282</td>
<td>1532</td>
<td>1677</td>
</tr>
<tr>
<td>4.28</td>
<td>–26.2</td>
<td>3.7</td>
<td>3.7</td>
<td>3314</td>
<td>1577</td>
<td>1717, 1685</td>
</tr>
</tbody>
</table>

aSpectra recorded in (CD$_3$)$_2$SO. All other spectra recorded in CDCl$_3$.

b80% pure by 31P{1H} NMR spectroscopy.

camide band I. damide band II.

The secondary nature of the amine in 4.24a was further supported by the phosphine’s infrared spectrum which contained an additional νNH absorption at 3222 cm$^{-1}$ (Table 4.6). As anticipated the infrared spectra of 4.22 – 4.28 also contained strong peptide absorption bands [range between: νNH 3319 – 3282, νC=O 1717 – 1651 and νNH 1577 – 1500 cm$^{-1}$ respectively].194 Further characterisation data can be found in the Experimental Section.

4.5 Coordination Chemistry of 4.22, 4.23, 4.25 – 4.28.

Platinum(II) complexes have been shown to have biological relevance with regard to DNA binding and cytotoxicity towards several cancer cell lines.272,273 As a consequence ligands 4.22, 4.23, 4.25 – 4.28 were coordinated to platinum(II) via ligand displacement of cod from PtCl$_2$(cod) to yield the platinum(II) dichloride complexes 4.30 – 4.35, in good to excellent yield (72 – 100%) (Equation 4.5).
The 31P{1H} NMR spectra [in CDCl\textsubscript{3} or (CD\textsubscript{3})\textsubscript{2}SO] of 4.30 – 4.35 all showed a new singlet resonance between δ(P) – 5.0 to –11.1 ppm which was flanked by equidistant 195Pt satellites (Table 4.7). The characteristically large $^1J_{\text{PP}}$ coupling constants [range between 3419 and 3393 Hz] suggests that all the complexes adopted a cis conformation in solution.58

The 1H NMR spectra of 4.30 – 4.34 displayed two resonances between δ(H) 3.9 – 3.2 ppm (Table 4.7), which were assigned to the methylene links within the coordinated ligand, by direct comparison with the 1H NMR spectra of the free ligands [δ(CH\textsubscript{2}) 3.8 – 3.3 ppm, CH\textsubscript{2}P:COCH\textsubscript{2}N 2:1]. In contrast the 1H NMR spectrum of 4.35 contained three poorly resolved singlets [δ(CH\textsubscript{2}) 3.73 – 3.71 ppm], with similar integrals, within the characteristic methylene region suggesting that the methylene links within 4.35 are slightly different by 1H NMR; an effect not observed by 31P{1H}NMR spectroscopy. The 1H NMR spectra of 4.30 – 4.33 showed the CH\textsubscript{2}P protons to resonate as broad shouldered doublets, as may have been anticipated, due to a combination of $^2J_{\text{PH}}$ and $^3J_{\text{PH}}$ coupling constants [values ranged between; $^2J_{\text{PH}}$ 2.8 – 1.2 and $^3J_{\text{PH}}$ 18.0 – 15.2 Hz] whilst the CH\textsubscript{2}P protons within the spectra of 4.34 and 4.35 appeared as broad resonances.
Table 4.7 Selected 31P-1H, 1H NMR (in CDCl$_3$ or (CD$_3$)$_2$SO) [δ in ppm, 1J in Hz] and IR data (in cm$^{-1}$) for 4.30 – 4.35.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>$^1J_{PP}$</th>
<th>δ(CH$_2$P)</th>
<th>δ(COCH$_2$N)</th>
<th>ν$_{PtCl}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.30</td>
<td>–6.4</td>
<td>3411</td>
<td>3.8</td>
<td>3.4</td>
<td>314, 290</td>
</tr>
<tr>
<td>4.31</td>
<td>–5.0</td>
<td>3416</td>
<td>3.8</td>
<td>3.6</td>
<td>314, 291</td>
</tr>
<tr>
<td>4.32a</td>
<td>–8.0</td>
<td>3406</td>
<td>3.9</td>
<td>3.8 or 3.5</td>
<td>313, 291</td>
</tr>
<tr>
<td>4.33</td>
<td>–11.1</td>
<td>3393</td>
<td>3.6</td>
<td>3.2</td>
<td>310, 283</td>
</tr>
<tr>
<td>4.34</td>
<td>–9.3</td>
<td>3405</td>
<td>3.7</td>
<td>3.7</td>
<td>316, 296</td>
</tr>
<tr>
<td>4.35b</td>
<td>–9.7</td>
<td>3419</td>
<td>4.3</td>
<td>3.6</td>
<td>314, 293</td>
</tr>
</tbody>
</table>

a δ(COCH$_2$N) and fluorene δ(CH$_2$) were indistinguishable by 1H NMR.

b Spectra recorded in (CD$_3$)$_2$SO.

Additional evidence in support of the cis conformation of 4.30 – 4.35 can be seen in the complexes infrared spectra which contain two characteristic ν$_{PtCl}$ absorption bands, in addition to the anticipated peptide absorptions (values range between ν$_{NH}$ 3345 – 3280 cm$^{-1}$, amide band I ν$_{CO}$ 1684 – 1618 cm$^{-1}$ and amide band II ν$_{NH}$ 1577 – 1512 cm$^{-1}$). The positive ion FAB mass spectroscopy results for each complex gave the expected fragmentation patterns {MS (FAB$^+$): m/z = [M–Cl]$^+$ (4.30 – 4.35)}, whilst the elemental analysis results were satisfactory. Additional evidence for the preparation of 4.30 – 4.32 and 4.34 comes from single crystal X–ray studies (Section 4.5.1.).
4.5.1 Molecular structures of 4.30 – 4.32 and 4.34

Colourless crystalline plates (4.30 and 4.34), rods (4.31) and laths (4.32), suitable for X–ray crystallography were obtained by slow vapour diffusion of Et₂O into a CHCl₃ or CHCl₃ / (CH₃)₂SO (4.30) solution of the respective complex. The molecular structures of 4.31 and 4.32 were determined using synchrotron radiation, due to the small crystal size (at least one dimension < 0.05 mm) and/or poorly diffracting nature, whilst the molecular structures of 4.30 and 4.34 were determined using MoKα radiation within the home laboratory. Selected bond lengths and angles are given in Table 4.8.

Figure 4.10 Molecular structure of 4.31. All hydrogen atoms, solvent molecules of crystallisation and phosphorus phenyl carbon atoms, except the ipso carbons, have been omitted for clarity.

Figure 4.10 shows the molecular structure of 4.31 as a typical example of this family of platinum(II) complexes (4.30 – 4.32 and 4.34). The complexes were all found to adopt a distorted square planar geometry with respect to the platinum(II) centre [P(1)–Pt(1)–Cl(2) and P(2)–Pt(1)–Cl(1) ranged between 176.93(15) – 170.95(3) Å]. The ligands 4.22, 4.23, 4.25 and 4.27 coordinate to the metal centre via both phosphorus atoms, to form a six–membered cis–chelate ring [bite angle ranged between 95.80(8) – 92.96(3) Å]. In all cases, the phosphorus atoms were found to adopt a distorted tetrahedral arrangement, as indicated by the relevant Pt–P–C angles [Pt–P–C ranged between 119.2(5) – 107.4(1) Å, Table 4.8]. In all cases, the nitrogen
atom N(1) adopted a distorted trigonal pyramidal geometry [sum of component angles ranged between 344 – 335° respectively], whereas the nitrogen atom N(2) was assumed to adopt a distorted trigonal planar geometry [C(15)–N(2)–C(16) ranged between 128.2(2) – 123.2(8)°, sum of component angles not possible due to H(2) being refined geometrically]. The carbonyl carbon, C(15) was found to adopt a perfect trigonal planar geometry in three out of the four complexes with C(15) of 4.32 adopting a near trigonal planar geometry [sum of component angles = 360° (4.30, 4.31 and 4.34) and 359° (4.32)].

One clear difference between the solid state structures of the four complexes is evident when considering the orientation of the planar aromatic group with respect to the platinum(II) centre. Complexes 4.32 and 4.34 were both found to contain one intramolecular hydrogen bond, N(2)–H(2A)···N(1) [N(2)–H(2A)...N(1); N(2)···N(1) 2.722(17) and 2.694(11) Å, H(2A)···N(1) 2.20 and 2.26 Å, N(2)–H(2A)···N(1) 110.1 and 117.3° respectively], which is thought to cause the large planar aromatic groups to be angled forwards over the platinum(II) centre, to form a “scorpion–like” conformation (Figure 4.11). Whereas, in the case of 4.30 and 4.31, no intramolecular bonding was observed, allowing the phenyl and naphthyl groups to angle away from the metal centre, thereby minimising intramolecular repulsion between the planar aromatic groups and the PPh₂ groups of the complex (Figure 4.10). The conformation of the planar aromatic group also appeared to have an effect upon the carbonyl angle O(1)–C(15)–C(14) within the peptide linker of the complexes, with the “scorpion–like” conformation displaying a significantly shorter angle than that observed in the “open” complexes [O(1)–C(15)–C(14): 121.3(15) (4.30), 122.8(3) (4.31), 115.5(13) (4.32) and 116.7(10) (4.34)].
Figure 4.11 The molecular structure of 4.32 (left) and the “scorpion–like” conformation observed for 4.32 (right). All hydrogen atoms, except H(2), and phosphorus phenyl carbons except ipso carbons (right), have been omitted for clarity.

Inspection of the packing plots of 4.30 and 4.31 showed both complexes to contain at least one intermolecular hydrogen bond. In the crystal structure of 4.30 all three molecules of complex within the asymmetric unit were found to be involved in hydrogen bonding. Two intermolecular hydrogen bonds were found between neighbouring molecules of 4.30 \([N(4)−H(4A)···Cl(1’); N(4)···Cl(1’) 3.299(12) \text{ Å}, H(4A)···Cl(1’) 2.42 \text{ Å}, N(4)−H(4A)···Cl(1’) 172º, symmetry operator ' = −x+3/2, y−1/2, −z+1/2 and N(6)−H(6A)···Cl(4’); N(6)···Cl(4’) 3.174(11) \text{ Å}, H(6A)···Cl(4’) 2.33 \text{ Å}, N(6)−H(6A)···Cl(4’) 160º, symmetry operator " = x+1/2, −y+1/2, z+1/2], whilst a third intermolecular hydrogen bond was found within the same asymmetric unit between a molecule of 4.30 and a (CH₃)₂SO of crystallisation \([N(2)−H(2)···O(4); N(2)···O(4) 2.90(2) \text{ Å}, H(2)···O(4) 2.04 \text{ Å}, N(2)−H(2)···O(4) 169º]\) (Figure 4.12).
The crystal structure of \textit{4.31} was found to contain one weak intermolecular hydrogen bond between neighbouring molecules of \textit{4.31} \([\text{N(2)–H(2A)}\cdots\text{Cl(1')}]; \text{N(2)}\cdots\text{Cl(1')} 3.627(3) \text{ Å}, \text{H(2A)}\cdots\text{Cl(1')} 3.26 \text{ Å}, \text{N(2)–H(2A)}\cdots\text{Cl(1')} 108^\circ,\text{ symmetry operator }' = x+1, y, z].\) Further analysis of this intermolecular packing showed the hydrogen bond, \(\text{N(2)–H(2A)}\cdots\text{Cl(1')}\), gives rise to continuous chains of \textit{4.31}, which run along the \(a\)-axis within the crystal lattice (Figure 4.13). No notable intermolecular packing was observed for \textit{4.32} or \textit{4.34}.\)
Figure 4.13 Intermolecular chains in 4.31. Hydrogen atoms not involved in hydrogen bonding and solvent molecules of crystallisation have been removed for clarity. Symmetry operator $' = x+1, y, z$.
Table 4.8 Selected bond lengths (Å) and angles (°) for 4.30 – 4.32 and 4.34.

<table>
<thead>
<tr>
<th></th>
<th>4.30</th>
<th>4.31</th>
<th>4.32</th>
<th>4.34</th>
<th>4.30</th>
<th>4.31</th>
<th>4.32</th>
<th>4.34</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(1)–P(1)</td>
<td>2.230(4)</td>
<td>2.2306(7)</td>
<td>2.238(3)</td>
<td>2.2143(13)</td>
<td>P(1)–Pt(1)–Cl(2)</td>
<td>176.93(15)</td>
<td>170.95(3)</td>
<td>174.10(14)</td>
</tr>
<tr>
<td>Pt(1)–P(2)</td>
<td>2.230(4)</td>
<td>2.2346(8)</td>
<td>2.228(3)</td>
<td>2.2143(13)a</td>
<td>P(2)–Pt(1)–Cl(1)</td>
<td>175.33(14)</td>
<td>176.90(3)</td>
<td>173.24(13)</td>
</tr>
<tr>
<td>Pt(1)–Cl(1)</td>
<td>2.357(4)</td>
<td>2.3611(7)</td>
<td>2.356(3)</td>
<td>2.3406(12)</td>
<td>P(1)–Pt(1)–Cl(1)</td>
<td>88.49(14)</td>
<td>90.13(3)</td>
<td>89.56(13)</td>
</tr>
<tr>
<td>Pt(1)–Cl(2)</td>
<td>2.355(4)</td>
<td>2.3586(8)</td>
<td>2.359(3)</td>
<td>2.3406(12)a</td>
<td>P(2)–Pt(1)–Cl(2)</td>
<td>88.98(14)</td>
<td>89.23(3)</td>
<td>86.40(13)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.811(16)</td>
<td>1.807(3)</td>
<td>1.837(15)</td>
<td>1.807(6)</td>
<td>Cl(1)–Pt(1)–Cl(2)</td>
<td>89.02(13)</td>
<td>87.68(3)</td>
<td>88.04(13)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.822(17)</td>
<td>1.814(3)</td>
<td>1.821(14)</td>
<td>1.814(5)</td>
<td>P(1)–Pt(1)–P(2)</td>
<td>93.37(14)</td>
<td>92.96(3)</td>
<td>95.61(13)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.826(14)</td>
<td>1.844(3)</td>
<td>1.837(13)</td>
<td>1.806(6)</td>
<td>C(1)–P(1)–Pt(1)</td>
<td>113.6(5)</td>
<td>115.30(10)</td>
<td>119.2(5)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.467(18)</td>
<td>1.448(4)</td>
<td>1.475(18)</td>
<td>1.488(8)</td>
<td>C(7)–P(1)–Pt(1)</td>
<td>113.6(5)</td>
<td>107.36(11)</td>
<td>108.7(5)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.448(18)</td>
<td>1.457(3)</td>
<td>1.465(18)</td>
<td>1.477(11)</td>
<td>C(13)–P(1)–Pt(1)</td>
<td>115.3(5)</td>
<td>116.76(10)</td>
<td>116.9(5)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.51(2)</td>
<td>1.535(4)</td>
<td>1.53(2)</td>
<td>1.464(14)</td>
<td>N(1)–C(13)–P(1)</td>
<td>110.0(9)</td>
<td>110.6(2)</td>
<td>114.5(9)</td>
</tr>
<tr>
<td>C(15)–O(1)</td>
<td>1.22(2)</td>
<td>1.219(4)</td>
<td>1.185(18)</td>
<td>1.180(12)</td>
<td>C(13)–N(1)–C(14)</td>
<td>114.8(12)</td>
<td>116.2(2)</td>
<td>112.0(11)</td>
</tr>
<tr>
<td>C(15)–N(2)</td>
<td>1.35(2)</td>
<td>1.347(4)</td>
<td>1.306(19)</td>
<td>1.360(12)</td>
<td>C(13)–N(1)–C(X)b</td>
<td>112.8(12)</td>
<td>113.6(2)</td>
<td>109.7(11)</td>
</tr>
<tr>
<td>N(2)–C(16)</td>
<td>1.43(2)</td>
<td>1.423(4)</td>
<td>1.427(18)</td>
<td>1.367(13)</td>
<td>C(14)–N(1)–C(X)b</td>
<td>114.7(12)</td>
<td>113.8(2)</td>
<td>113.6(11)</td>
</tr>
<tr>
<td>N(1)–C(X)b</td>
<td>1.471(19)</td>
<td>1.459(4)</td>
<td>1.438(18)</td>
<td>1.488(8)</td>
<td>N(1)–C(14)–C(15)</td>
<td>115.0(14)</td>
<td>114.8(2)</td>
<td>115.6(11)</td>
</tr>
<tr>
<td>O(1)–C(15)–C(14)</td>
<td>121.3(15)</td>
<td>122.8(3)</td>
<td>115.5(13)</td>
<td>116.7(10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)–C(15)–N(2)</td>
<td>124.6(16)</td>
<td>125.1(3)</td>
<td>133.2(15)</td>
<td>127.2(9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(2)–C(15)–C(14)</td>
<td>114.1(15)</td>
<td>112.1(3)</td>
<td>110.5(12)</td>
<td>116.1(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(15)–N(2)–C(16)</td>
<td>128.2(17)</td>
<td>126.3(3)</td>
<td>125.2(12)</td>
<td>123.2(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a P(2) = P(1') and Cl(2) = Cl(1'). Symmetry operations for equivalent atoms ' = x, −y+1/2, z.

b X = 22 (4.30), 26 (4.31), 29 (4.32), 13' (4.34).
4.5.2 Palladium(II) Coordination Chemistry of 4.28

The coordination chemistry of 4.28 was explored further. To this end, displacement of cod from PdCl$_2$(cod) or Pd(Me)Cl(cod) with one equiv. of 4.28, yielded complexes 4.36 and 4.37 in good yield. (Equation 4.6).

![Diagram showing the reaction of 4.28 with Pd(X)Y(cod) to form complexes 4.36 and 4.37](image)

Equation 4.6

The 31P{1H} NMR spectra (in (CD$_3$)$_2$SO) of 4.36 and 4.37 fully supported the P–P–chelation of the respective palladium(II) centres by 4.28, due to the downfield shift in 31P{1H} NMR signal compared with that of the free ligand [δ(P) –26.7 ppm (4.28)], in CDCl$_3$; δ(P) ranged between 22.6 to –11.0 ppm (4.36 and 4.37), in (CD$_3$)$_2$SO. As anticipated the 31P{1H} NMR spectrum of 4.36 contained a singlet resonance at δ(P) 6.0 ppm, indicative of a symmetrical coordination centre. The 31P{1H} NMR spectrum of 4.37 however was found to be more complex than expected, with three resonances being observed at δ(P) 22.6, 6.0 and –11.0 ppm. The signals at δ(P) 22.6 and –11.0 ppm both appeared as doublets, with equal integrals and coupling constant (2J$_{PP}$ 48.6 Hz) and were assigned to 4.37, by virtue of the unsymmetrical nature of the expected coordination centre. The third minor resonance appeared as a singlet at δ(P) 6.0 ppm and was assigned to the cis–palladium dichloride complex 4.36 by direct comparison with the previously discussed 31P{1H} NMR data [Δδ(H) 0.04 ppm]. The inadvertent preparation of 4.36 during the synthesis of 4.37 is thought to be due to the evolution of methane from the palladium(II) centre, an effect that can be tentatively attributed to trace amounts of HCl in the CH$_2$Cl$_2$ solvent. The 1H NMR spectra of 4.36 and 4.37 both show distinct resonances relating to the methylene protons within the two complexes [δ(H) 4.2 – 3.2 ppm], in addition to the Pd–CH$_3$...
protons in the case of 4.37 [δ(H) 0.1 ppm, bs]. The unsymmetrical nature of 4.37 was inferred further from the ¹H NMR spectrum which showed two independent δ(CH₂P) singlets, compared with the single resonance observed in the ¹H NMR spectrum of 4.36 [δ(H) 4.16 (bs, 4H, CH₂P) (4.36), 3.94 (bs, 2H, CH₂P) and 3.80 ppm (bs, 2H, CH₂P) (4.37)]. Furthermore the positive ion FAB mass spectroscopy data for each complex gave the expected fragmentation patterns [MS (FAB⁺): m/z 771 [M–Cl]⁺ (4.36) and 771 [M–CH₃]⁺ (4.37)], whilst the elemental analysis results were satisfactory. The molecular structure of 4.37 has also been determined (Section 4.5.2.1).

4.5.2.1 Molecular structure of 4.37

Colourless crystalline plates, suitable for X–ray crystallography, were obtained by slow vapour diffusion of Et₂O into a CH₂Cl₂ solution of 4.37 (Figure 4.14, selected bond lengths and angles are given in Table 4.9).

![Molecular structure of 4.37](image)

Figure 4.14 Molecular structure of 4.37 (left); and the “scorpion–like” conformation observed for 4.37 (right). Symmetry operator for equivalent atoms ′ = x, −y+1/2, z. C(26) and Cl(1) occupancy symmetry imposed to 50:50.
The molecular structure of 4.37 shows the complex to lie on a mirror plane which bisects the palladium(II) centre and the (C\textsubscript{10}H\textsubscript{7}O\textsubscript{2})NHCOCH\textsubscript{2}N moiety. As a result the asymmetric unit was found to contain half a molecule of 4.37. The palladium centre was coordinated, within the asymmetric unit, by a phosphorus atom from 4.28 and an auxiliary ligand. The auxiliary ligand site was found to be two-fold disordered with the expected methyl and chloride groups being freely interchanged [C(26) and Cl(1) occupancy symmetry imposed to 50:50]. The remaining half of the six membered cis–chelate ring of 4.37 was generated by symmetry [symmetry operations for equivalent atoms, \(t = x, -y+1/2, z \)] (Figure 4.15). The geometry with respect to the palladium(II) centre was found to be distorted square planar, [P(1)–Pd(1)–Cl(1)/C(26) = 173.99(6) Å]. The phosphorus atom P(1) adopts a distorted tetrahedral geometry [C(1)–P(1)–Pd(1) 116.5(2), C(7)–P(1)–Pd(1) 112.48(17) and C(13)–P(1)–Pd(1) 115.86(19)°]. The nitrogen atom N(1) was found to adopt a distorted trigonal pyramidal geometry [sum of component angles = 335°]. The carbonyl carbons C(15) and C(19) were both found to adopt a trigonal planar geometry [sum of component angles = 360°]. The bond lengths and angles about the palladium(II) centre and peptide group were broadly as anticipated and similar to those observed for the analogous platinum(II) complexes 4.30, 4.31, 4.32 and 4.34 (Section 4.5.1).274 The molecular structure also showed 4.37 to adopt the same “scorpion–like” conformation observed in solid state structures of 4.32 and 4.34 (Section 4.5.1), via formation of an intramolecular hydrogen bond N(2)–H(2A)···N(1) [N(2)···N(1) 2.756(9) Å, H(2A)···N(1) 2.27 Å, N(2)–H(2A)···N(1) 114°] (Figure 4.14, right).
Table 4.9 Selected bond lengths (Å) and angles (°) for 4.37.

<table>
<thead>
<tr>
<th>Bond or Angle Description</th>
<th>Distance (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(1)–P(1)</td>
<td>2.2963(13)</td>
<td>95.02(7)</td>
</tr>
<tr>
<td>Pd(1)–Cl(1)/C(26)</td>
<td>2.3579(19)</td>
<td>88.06(6)</td>
</tr>
<tr>
<td>P(1)–C(1)</td>
<td>1.836(6)</td>
<td>88.43(9)</td>
</tr>
<tr>
<td>P(1)–C(7)</td>
<td>1.840(5)</td>
<td>116.5(2)</td>
</tr>
<tr>
<td>P(1)–C(13)</td>
<td>1.868(6)</td>
<td>112.48(17)</td>
</tr>
<tr>
<td>N(1)–C(13)</td>
<td>1.475(7)</td>
<td>115.86(19)</td>
</tr>
<tr>
<td>N(1)–C(14)</td>
<td>1.489(10)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(13’)</td>
<td>1.475(7)</td>
<td>110.8(4)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.520(11)</td>
<td>111.7(4)</td>
</tr>
<tr>
<td>C(15)–O(1)</td>
<td>1.236(9)</td>
<td></td>
</tr>
<tr>
<td>C(15)–N(2)</td>
<td>1.365(10)</td>
<td>115.0(7)</td>
</tr>
<tr>
<td>N(2)–C(16)</td>
<td>1.422(9)</td>
<td>119.4(7)</td>
</tr>
<tr>
<td>O(2)–C(19)</td>
<td>1.380(10)</td>
<td>124.4(7)</td>
</tr>
<tr>
<td>C(19)–O(3)</td>
<td>1.254(12)</td>
<td>116.2(6)</td>
</tr>
<tr>
<td>C(19)–C(20)</td>
<td>1.450(15)</td>
<td>129.7(6)</td>
</tr>
<tr>
<td>C(20)–C(21)</td>
<td>1.367(14)</td>
<td>115.7(10)</td>
</tr>
<tr>
<td>C(21)–C(22)</td>
<td>1.505(15)</td>
<td>126.0(8)</td>
</tr>
</tbody>
</table>

Symmetry operations for equivalent atoms ‘ = x, −y+1/2, z.
4.5.3 Ruthenium(II) Coordination Chemistry of 4.22, 4.23, 4.25 and 4.27

Ruthenium piano–stool complexes have also been shown to have biological relevance with regard to cytotoxicity to cancer cell lines.275,276 Hence ligands 4.22, 4.23, 4.25 and 4.27 were coordinated to ruthenium(II) centres via the bridge cleavage reaction of [\(\text{RuCl(μ-Cl)(p–cym)}\)]\(_2\), to form the bimetallic complexes 4.38 – 4.41 in good yield (yields ranged between 59 – 89\%) (Equation 4.7).

\[
\begin{align*}
\text{R} & = \begin{array}{c}
\text{4.38} \\
\text{4.39}
\end{array} & \begin{array}{c}
\text{4.40} \\
\text{4.41}
\end{array}
\end{align*}
\]

\[
\text{CH}_2\text{Cl}_2
\]

\[
\text{Equation 4.7}
\]

The \(^{31}\text{P}\{^1\text{H}\}\) NMR spectra of complexes 4.38 – 4.41 (in CDCl\(_3\)) all showed a new characteristic major singlet ranging between \(\delta(\text{P})\) 16.5 – 18.3 ppm, \textit{ca.} \(\delta(\text{P})\) 44 ppm downfield compared with that of the free ligand \(\textit{ca.} \delta(\text{P}) –26 \text{ ppm}\).22,58 The \(^1\text{H}\) NMR spectra of 4.38 – 4.41 all showed well resolved distinct resonances relating to the \(p–\text{cym}\) ancillary ligand, in addition to characteristic \(\delta(\text{CH}_2)\) resonances \(\textit{ca.} \delta(\text{H}) 4.0 \text{ and 2.7 ppm}\) (Table 4.10).22,58
Table 4.10 31P$\{^1$H$\}$, 1H NMR (in CDCl$_3$) [δ(P) in ppm] and IR [ν in cm$^{-1}$] dataa for 4.38 – 4.41.

<table>
<thead>
<tr>
<th></th>
<th>δ(P)</th>
<th>δ(CH$_2$P)</th>
<th>δ(COCH$_2$N)</th>
<th>νRuCl</th>
<th>νNH</th>
<th>νCOc</th>
<th>νNHd</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.38</td>
<td>16.5</td>
<td>3.9</td>
<td>2.5</td>
<td>291</td>
<td>3283</td>
<td>1684</td>
<td>1522</td>
</tr>
<tr>
<td>4.39</td>
<td>18.3</td>
<td>4.0</td>
<td>2.9</td>
<td>290</td>
<td>3314</td>
<td>1692</td>
<td>1509</td>
</tr>
<tr>
<td>4.40</td>
<td>16.9</td>
<td>3.9</td>
<td>2.6</td>
<td>291</td>
<td>3281</td>
<td>1686</td>
<td>1520</td>
</tr>
<tr>
<td>4.41b</td>
<td>17.2</td>
<td>4.0</td>
<td>2.6</td>
<td>290</td>
<td>3272</td>
<td>1676</td>
<td>1528</td>
</tr>
</tbody>
</table>

a Recorded as KBr pellet.

b The complex was found to be impure as judged by 31P$\{^1$H$\}$ NMR.

c Amide band I. d Amide band II.

In the case of 4.41 three minor singlets were also observed in the 31P$\{^1$H$\}$ NMR spectrum [δ(P) 15.6, –26.3 and –28.6 ppm]. The resonance at δ(P) –26.3 ppm was found to correspond to the free ligand 4.27 [δ(P) –26.3 ppm], by direct comparison of the 31P$\{^1$H$\}$ NMR spectra. The remaining two species were of similar integration but significantly different chemical shift [$\Delta\delta$(P) 44.2 ppm]. One tentative suggestion towards the assignment of these two resonances, is the presence of the intermediate monometallic complex 4.41a (Figure 4.15) within the isolated solid.

![Figure 4.15 Speculated product (4.41a) observed by 31P$\{^1$H$\}$ NMR spectroscopy, in addition to 4.41 and 4.27.](image)

The preparation of 4.41a is in agreement with the seemingly incomplete nature of the reaction (unreacted 4.27 observed by 31P$\{^1$H$\}$ NMR spectroscopy), in addition to the large difference in δ(P) between the two unassigned resonances and their similar integrals [ratio $P_A : P_B = 1:1$, $P_A =$ coordinated phosphorus atom, $P_B =$ uncoordinated phosphorus atom]. However, the occurrence of 4.41a is not supported by the splitting
patterns of the inequivalent phosphorus environments \(P_A \) and \(P_B \), as both appear as singlets. Unfortunately a search of the literature revealed no similar \(^{31}\text{P}\{^1\text{H}\} \) NMR effects or examples of unsymmetrical monometallic ditertiary phosphine complexes.

The infrared spectra of \(4.38 \) – \(4.41 \) contained the anticipated peptide absorption bands (Table 4.10). Further support for the preparation of \(4.38 \) – \(4.41 \) comes from the positive ion FAB mass spectra, which contained the expected fragmentation patterns \([\text{MS (FAB}^+\text{): } m/z = [\text{M–Cl}]^+]\). Further characterisation data can be found in the Experimental Section.

4.6 Conclusion

In conclusion a range of functionalised tertiary phosphines of the form \((R)\text{N}(\text{CH}_2\text{PPh}_2)_2\) and \((R)\text{NHCOC}H_2\text{N}(\text{CH}_2\text{PPh}_2)_2\) \((R = \text{functionalised planar aromatic or ferrocenyl group})\) have been prepared and characterised. Whilst study into the biological properties of this series of compounds is required, the novel phosphines were coordinated to anticancer relevant transition metals [platinum(II) and ruthenium(II)] to afford examples of P,P–chelates and bimetallic complexes with “potential” biological applications.
Chapter 5

Conclusion
5.1 General Conclusions

To date, tertiary phosphines have played important roles in numerous areas of industrial and academic significance ranging from catalysts for a wide range of organic transformations, to reagents used within selective metal extraction and building blocks used in supramolecular chemistry. During the course of this research a wide range of new tertiary phosphines with polyaromatic and ferrocenyl appendages have been prepared via an efficient Mannich–based condensation reaction. The design of these new phosphorus ligands was intentionally tailored towards preparing new compounds that have potential application within some seemingly neglected area of phosphorus based chemistry, such as; photochemical and electrochemical sensors, anticancer drugs and novel coordination compounds such as \(\text{trans} \)–spanning diphosphines.

Chapter 2 discussed a range of new mono– and bidentate tertiary phosphines with polyaromatic appendages, with the emphasis being on the preparation of new phosphorus based photochemical devices and some novel coordination compounds. In particular the coordination chemistry of 2.1 – 2.4 was extensively studied and revealed this family of ditertiary phosphines to be capable of bridging two transition metal centres as well as forming new examples of rare, nine–membered \(\text{cis} \)– and \(\text{trans} \)– chelate complexes. Variation of the chemistry used to prepare 2.1 – 2.4 also allowed the synthesis of two analogous monophosphines 2.23 and 2.24. The luminescent properties of selected compounds was also discussed, along with a preliminary investigation into the chemosensor behaviour of the platinum(II) complexes 2.9, 2.10, 2.26 and 2.27. Whilst time did not allow for an extensive study of these compounds against a range of analytes (anions/cations/small molecules), the fluorescent emission spectra of 2.27 was found to be significantly affected by the presence of metal cations (\(\text{Fe}^{3+}, \text{Na}^+ \) and \(\text{Cu}^{2+} \)), with both variation of PET and the formation of excimer emitting complexes being observed. Further study into the chemosensory properties of all the tertiary phosphines and coordination compounds reported in this chapter is required, however these preliminary findings show promise towards the potential preparation of rare phosphorus–based molecular devices.
In chapter 3, a series of new mono- and bidentate tertiary phosphines with electrochemically active ferrocenyl appendages were presented. The aim of this chapter was to prepare new examples of phosphorus based electrochemical devices and to explore the coordination chemistry of this family of ligands. In particular, the coordination chemistry of 3.1 was extensively studied and revealed the phospine to be capable of bridging two transition metal centres either dimerically or monomerically, as well as showing that the ligand could form new examples of cis and trans chelate complexes. Variations of the chemistry used to prepare 3.1 – 3.3, allowed the synthesis of a new trimetallo-diphosphine 3.16 in addition to the new monophosphines 3.14 and 3.20 – 3.22. Unfortunately, investigation of the electrochemical properties of the majority of compounds discussed in this chapter, by cyclic voltammetry, revealed no significant change in the Fe(II)/Fe(III) redox couple, suggesting that the Fe(II)/(III) centres were unaffected by synthetic variation around the ferrocenyl group. One area of further study would be to introduce an analyte (anion/cation/small molecule) to solutions of some of the compounds reported in this chapter and to investigate any resulting chemosensory behaviour.

Chapter 4 described the preparation of functionalised tertiary phosphines bearing polyaromatic groups and their coordination to anticancer relevant metals (Pt$^{2+}$ and Ru$^{2+}$). The idea behind this work was to prepare coordination complexes that had the potential of acting as anti-cancer drugs through combination chemotherapy. The successful preparation and characterisation of the ligands, and their subsequent coordination complexes, was accomplished. Future work would involve seeking collaborations for in-vitro or –vivo testing against cancer cell lines.

In closing, this research represents a significant contribution to the library of novel tertiary phosphines, and coordination compounds, that have been prepared using a Mannich–based condensation reaction, and whilst there is clearly further work required in the key areas of photo–/electro–chemical sensing and anticancer drugs, this work clearly provides a strong starting point from which future research can be based.
Chapter 6

Experimental
6.1 General Experimental

Unless otherwise stated all preparations of tertiary phosphines were carried out under an inert atmosphere, using standard Schlenk techniques, degassed solvents and freeze–thaw cycles where necessary. All reagents and solvents were purchased from Acros, Aldrich or Alfa Aesar and were used as received. Diethyl ether, toluene and tetrahydrofuran were distilled over sodium / benzophenone under a nitrogen atmosphere, whilst dichloromethane and acetonitrile were distilled over calcium hydride under a nitrogen atmosphere. The metal complexes PtCl2(cod),277,278 PtMe2(cod),279 PdCl2(cod),277,278 Pd(Me)Cl(cod),280 \{RuCl(μ–Cl)(p–cym)}\textsubscript{2},281 Mo(CO)\textsubscript{4}(nbd), Cr(CO)\textsubscript{4}(nbd)282 and AuCl(tht)283 were synthesised according to literature methods. The functionalised tertiary phosphine synthon PRCH\textsubscript{2}OH (PR = PPh\textsubscript{2}, PCy\textsubscript{2} or PAd) was preformed from equimolar amounts of the respective secondary phosphine and (CH\textsubscript{2}O)\textsubscript{n} according to literature methods.58,284

6.2 Instrumental

All 1H NMR spectra were recorded in CDCl\textsubscript{3}, (CD\textsubscript{3})\textsubscript{2}SO or CD\textsubscript{2}Cl\textsubscript{2} unless otherwise stated on a Bruker DPX–400 FT spectrometer with chemical shifts (δ) in ppm to high frequency of Si(CH\textsubscript{3})\textsubscript{4} and coupling constants (J) in Hz. 31P\{1H\} NMR spectra were recorded on a Bruker DPX–400 FT spectrometer with chemical shifts (δ) in ppm to high frequency of 85\% H\textsubscript{3}PO\textsubscript{4}. Infrared spectra were recorded within the range of 4000 – 200 cm-1 using a Perkin–Elmer 2000 FTIR spectrometer or on a Shimadzu 8300 FTIR spectrometer within the range of 4000 – 390 cm-1. Elemental analyses were carried out by the Loughborough University Analytical Service on Perkin–Elmer 2400 CHN or on Exeter Analytical Inc. CE–440 elemental analyzers. Mass spectra were recorded within the Chemistry Department by the Loughborough University Analytical Service or externally by the EPSRC National Mass Spectrometry Service at Swansea University.
6.3 Electrochemistry

Cyclic voltammetric measurements were carried out on a EG&G Model PAR 263A potentiostat / galvanostat using a standard electrochemical cell consisting of a Pt disc working electrode (d = 1.6 mm), Ag/AgCl reference electrode in a 3 M NaCl solution and a Pt gauze counter electrode at a scan rate of 50 mV/s. All measurements were performed at ambient temperature (22 ± 1 °C) in dry, nitrogen bubbled CH₂Cl₂ solutions containing analyte (100 µM) and [NBu₄][BF₄] (0.1 M) as the supporting electrolyte. Ferrocene was used as an external standard.

6.4 Photochemistry

Ground state absorption spectra were measured using a Hewlett Packard 8453 single beam photodiode array spectrometer. Steady state luminescence measurements were carried out using a Spex FluoroMax spectrofluorophotometer. All absorption and luminescence measurements were performed using a standard quartz fluorescence cell at ambient temperature (22 ± 2 °C), in dry THF solutions containing analyte (2.5 and 5 µM). All quantum yields (Φ) were calculated using matched absorbance’s relative to the integrated emission of an external standard of quinine sulfate (in 0.1 M H₂SO₄, Φ = 0.58), at room temperature. All quantum yield measurements were conducted using nitrogen bubbled solutions.

6.5 X–ray Crystallography

Measurements were made using a variety of diffractometers and radiation sources in the home laboratory, at Daresbury Laboratory SRS and by the EPSRC National Service in Southampton (see Appendix for specific details). The use of synchrotron radiation at Daresbury SRS (stations 9.8 and 16.2 SMX) is of particular note, as the far greater beam flux provided by synchrotron radiation allowed the characterisation of many samples where the crystals would not have been analysed at the home laboratory due to their small size (at least one dimension < 0.05 mm) and/or poorly diffracting nature. All data collections were performed at low temperature (120 – 150
K) using a single crystal coated in an inert oil mounted on a glass fibre. Each data collection was conducted in two stages; firstly the determination of the orientation matrix, unit cell and crystal system and secondly a longer data collection to measure either the full sphere or hemisphere of the total diffraction pattern. Intensities were corrected semi-empirically for absorption, based on symmetry-equivalent and repeated reflections. Structures were solved by direct methods or by Patterson synthesis and were refined on F^2 values for all unique data by full-matrix least squares. All non-hydrogen atoms were refined anisotropically unless otherwise stated. Programs used were COLLECT, Bruker AXS SMART or APEX 2 for diffractometer control and DENZO or SAINT for frame integration, Bruker SHELXTL for structure solution, refinement, and molecular graphics and local programs. Platon was used to model highly disordered molecules as diffuse regions of electron density (SQUEEZE procedure). Cell-now and Twinabs were used along with SAINT and Bruker SHELXTL to index, integrate, and absorption correct twinned datasets, with the structure being solved and refined with approximately detwinned (SHELXL–97 hklf 4 format reflection data) or multiple diffraction data files (SHELXL–97 hklf 5 format reflection data). See appendix for summarised data tables relating to each molecular structure discussed, in addition to details of individual molecular refinements. See enclosed CD for complete data tables (.rtf files) and .res files relating to each molecular structure.

6.6 Chapter 2 Experimental

6.6.1 Preparation of the bidentate ligands 2.1 – 2.4.

The following precursor amines and imines were prepared by slight modification to the known method reported by Zhang *et al.*

\[
{\text{PhC(H)NCH}_2}_2
\]

A solution of ethylenediamine (0.300 g, 4.943 mmol) in MeOH (5 cm3) was added dropwise to a refluxing solution of benzaldehyde (1.059 g, 9.879 mmol) in MeOH (50 cm3). The mixture was stirred at reflux for 4 h to afford a pale yellow solution. The solvent was evaporated under reduced pressure. Yield: 1.147 g, 98%. 1H NMR (CDCl$_3$): δ 8.21 (s, 2H, CHN), 7.64 – 7.28 (m, 10H, arom. H), 3.90
(s, 4H, CH₂). FT–IR (KBr): ν_C=N 1642 cm⁻¹. MS (FAB⁺): m/z 237 [M+H]⁺. Anal. Calc. for C₁₆H₁₆N₂ requires C, 81.32; H, 6.82; N, 11.85. Found: C, 80.68; H, 6.87; N, 11.79%.

{C₁₀H₇C(H)NCH₂}₂ 1–Naphthalenecarboxaldehyde (1.004 g, 6.100 mmol), ethylenediamine (0.185 g, 3.054 mmol). Yield: Quantitative. ¹H NMR (CDCl₃): δ 8.96 (s, 2H, CHN), 8.80 – 7.35 (m, 14H, arom. H), 4.19 (s, 4H, CH₂). FT–IR (KBr): ν_C=N 1631 cm⁻¹. MS (FAB⁺): m/z 337 [M+H]⁺. Anal. Calc. for C₂₄H₂₀N₂·0.5H₂O requires C, 83.45; H, 6.13; N, 8.11. Found: C, 83.82; H, 5.95; N, 7.91%.

{C₁₄H₉C(H)NCH₂}₂ A solution of ethylenediamine (0.144 g, 2.379 mmol) in MeOH (5 cm³) was added dropwise to a refluxing solution of anthracene–9–carboxaldehyde (1.011 g, 4.756 mmol) in DMF/MeOH (1:5, 60 cm³). The resulting yellow suspension was refluxed for 4 h. The yellow precipitate was filtered under reduced pressure and washed with MeOH. Yield: 0.974 g, 94%. ¹H NMR (CDCl₃): δ 9.51 (s, 2H, CHN), 8.47 – 7.13 (m, 18H, arom. H), 4.46 (s, 4H, CH₂). FT–IR (KBr): ν_C=N 1638 cm⁻¹. Anal. Calc. for C₃₂H₂₄N₂·0.25H₂O requires C, 87.14; H, 5.60; N, 6.35. Found: C, 87.16; H, 5.53; N, 6.26%.

{C₁₆H₉C(H)NCH₂}₂ Pyrene–1–carboxaldehyde (1.111 g, 4.825 mmol) and ethylenediamine (0.145 g, 2.41 mmol). Yield: 1.101 g, 94%. FT–IR (KBr): ν_C=N 1626 cm⁻¹. Anal. Calc. for C₃₆H₂₄N₂ requires C, 89.23; H, 4.99; N, 5.78. Found: C, 89.50; H, 5.31; N, 5.87%.

{PhCH₂N(H)CH₂}₂ NaBH₄ (0.999 g, 25.9 mmol) was added in ca. 0.1 g portions to a stirred solution of the respective imine (1.002 g, 4.240 mmol) in CH₂Cl₂/abs. EtOH (120 cm³, 80:40). The resulting suspension was refluxed for 4 h under a N₂ atmosphere before cooling to RT to afford a yellow solution. Concentrated HCl was added dropwise until effervescence subsided, at which point the solvent was evaporated under reduced pressure and a NaOH solution (2.5 g, 60 cm³) added. The resulting suspension was stirred briefly before the organic phase was extracted into CHCl₃ (60 cm³), dried over anhydrous MgSO₄ and the solvent evaporated under reduced pressure. Yield: 1.059 g, Quantitative. ¹H NMR (CDCl₃): δ 7.29 – 7.14 (m,
10H, arom. H), 3.70 (s, 4H, NCH₂), 2.69 (s, 4H, PhCH₂N). FT–IR (KBr): ν_{NH} 3301 cm\(^{-1}\). MS (FAB\(^{+}\)): m/z 241 [M+H]\(^{+}\).

\{C\(_{10}\)H\(_7\)CH\(_2\)N(H)CH\(_2\)\}\(_2\) NaBH\(_4\) (0.655 g, 17.0 mmol) and the respective imine (0.951 g, 2.83 mmol). Yield: 0.947 g, 99%. \(^1\)H NMR (CDCl\(_3\)): δ 8.04 – 6.59 (m, 14H, arom. H), 4.13 (s, 4H, NCH₂), 2.83 (s, 4H, (C\(_{10}\)H\(_7\))CH₂N). FT–IR (KBr): ν_{NH} 3288 cm\(^{-1}\). MS (FAB\(^{+}\)): m/z 341 [M+H]\(^{+}\). Anal. Calc. for C\(_{24}\)H\(_{24}\)N\(_2\)·1.25H\(_2\)O requires C, 79.41; H, 7.36; N, 7.72. Found: C, 79.48; H, 6.99; N, 7.50%.

\{C\(_{14}\)H\(_9\)CH\(_2\)N(H)CH\(_2\)\}\(_2\) NaBH\(_4\) (0.502 g, 13.0 mmol) and the respective imine (0.931 g, 2.13 mmol). Yield: 0.904 g, 96%. \(^1\)H NMR (CDCl\(_3\)): δ 8.34 – 7.39 (m, 18H, arom. H), 4.71 (s, 4H, NCH₂), 3.07 (s, 4H, (C\(_{14}\)H\(_9\))CH₂N). FT–IR (KBr): ν_{NH} 3326 cm\(^{-1}\). MS (FAB\(^{+}\)): m/z 441 [M]\(^{+}\). Anal. Calc. for C\(_{32}\)H\(_{28}\)N\(_2\)·0.75H\(_2\)O requires C, 84.64; H, 6.38; N, 6.17. Found: C, 84.46; H, 6.33; N, 6.08%.

\{C\(_{16}\)H\(_9\)CH\(_2\)N(CH\(_2\)PPh\(_2\))CH\(_2\)\}\(_2\) 2.1 Under a nitrogen atmosphere, a solution of \{PhCH\(_2\)N(H)CH\(_2\)\}\(_2\) (0.406 g, 1.69 mmol) and Ph\(_2\)PCH\(_2\)OH (0.795 g, 3.38 mmol) in degassed MeOH (20 cm\(^3\)) was refluxed for 17 h. The solvent was evaporated under reduced pressure to afford a viscous oil. Crude yield: Quantitative. \(^{31}\)P\{\(^1\)H\} NMR (freeze–thawed CDCl\(_3\)): δ –27.8 ppm, 90%. \(^1\)H NMR (freeze–thawed CDCl\(_3\)): δ 7.76 – 7.10 (m, 30H, arom. H), 3.64 (s, 4H, NCH₂), 3.21 (d, 4H, \(^2\)J\(_{PH}\) 3.6 Hz, NCH\(_2\)P), 2.71 (s, 4H, PhCH₂N).

\{C\(_{10}\)H\(_7\)CH\(_2\)N(CH\(_2\)PPh\(_2\))CH\(_2\)\}\(_2\) 2.2 Under a nitrogen atmosphere, a solution of \{C\(_{10}\)H\(_7\)CH\(_2\)N(H)CH\(_2\)\}\(_2\) (0.200 g, 0.589 mmol) and Ph\(_2\)PCH\(_2\)OH (0.268 g, 1.18 mmol) in MeOH (20 cm\(^3\)) was refluxed for 17 h before cooling to RT to afford a sticky cream solid. The solvent was concentrated under reduced pressure to approximately 10 cm\(^3\) and the solid filtered and dried under reduced pressure. Yield:
0.312 g, 72%. 31P1H NMR (freeze–thawed CDCl\textsubscript{3}): δ –28.2 ppm. 1H NMR (freeze–thawed CDCl\textsubscript{3}): δ 8.15 – 6.91 (m, 34H, arom. H), 4.00 (s, 4H, NCH\textsubscript{2}), 3.36 (d, 4H, 2J\textsubscript{PH} 3.6 Hz, NCH\textsubscript{2}P), 2.78 (s, 4H, C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N). Anal. Calc. for C\textsubscript{50}H\textsubscript{46}N\textsubscript{2}P\textsubscript{2}\cdotH\textsubscript{2}O requires C, 79.56; H, 6.41; N, 3.71. Found: C, 79.57; H, 6.29; N, 3.80%.

6.6.2 Phosphines 2.3 and 2.4 were prepared in a similar manner to 2.2.

\{C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N(CH\textsubscript{2}PPh\textsubscript{2})CH\textsubscript{2}\}\textsubscript{2} 2.3 Ph\textsubscript{2}PCH\textsubscript{2}OH (0.419 g, 1.84 mmol) and \{C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}\}\textsubscript{2} (0.406 g, 0.921 mmol), refluxed for 4 h. Yield: 0.696 g, 90%. 31P1H NMR (freeze–thawed CDCl\textsubscript{3}): δ –28.1 ppm. 1H NMR (freeze–thawed CDCl\textsubscript{3}): δ 8.33 – 6.97 (m, 38H, arom. H), 4.41 (s, 4H, NCH\textsubscript{2}), 3.11 (d, 4H, 2J\textsubscript{PH} 3.2 Hz, NCH\textsubscript{2}P), 2.77 (s, 4H, C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N). Anal. Calc. for C\textsubscript{58}H\textsubscript{50}N\textsubscript{2}P\textsubscript{2}\cdot0.5H\textsubscript{2}O requires C, 82.35; H, 6.08; N, 3.31. Found: C, 82.33; H, 5.83; N, 3.10%.

\{C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N(CH\textsubscript{2}PPh\textsubscript{2})CH\textsubscript{2}\}\textsubscript{2} 2.4 Ph\textsubscript{2}PCH\textsubscript{2}OH (0.187 g, 0.822 mmol) and \{C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N(H)CH\textsubscript{2}\}\textsubscript{2} (0.201 g, 0.411 mmol). Yield: 0.293 g, 81%. 31P1H NMR (freeze–thawed CDCl\textsubscript{3}): δ –27.7 ppm. 1H NMR (freeze–thawed CDCl\textsubscript{3}): δ 8.20 – 6.95 (m, 38H, arom. H), 4.23 (s, 4H, NCH\textsubscript{2}), 3.26 (d, 4H, 2J\textsubscript{PH} 3.2 Hz, NCH\textsubscript{2}P), 2.85 (s, 4H, C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N). Anal. Calc. for C\textsubscript{62}H\textsubscript{50}N\textsubscript{2}P\textsubscript{2}\cdot4H\textsubscript{2}O requires C, 78.24; H, 5.77; N, 2.76. Found: C, 78.18; H, 5.36; N, 3.10%.

6.6.3 Chemical oxidation of the ditertiary phosphines 2.3 and 2.4.

\{C\textsubscript{14}H\textsubscript{9}CH\textsubscript{2}N(CH\textsubscript{2}P(O)Ph\textsubscript{2})CH\textsubscript{2}\}\textsubscript{2} 2.5 H\textsubscript{2}O\textsubscript{2} (0.50 cm3, 30% w/v) was added to a stirred solution of 2.3 (0.101 g, 0.121 mmol) in CH\textsubscript{2}Cl\textsubscript{2} (10 cm3) and the resulting solution stirred at RT for 1 h. The solvent was evaporated under reduced pressure and the resulting yellow solid dissolved in CH\textsubscript{2}Cl\textsubscript{2} (2 cm3). Diethyl ether (20 cm3) was added and the resulting suspended solid stirred for a further 0.5 h. The solid was filtered and dried under reduced pressure. Yield: 0.076 g, 72%. 31P1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 26.7 ppm. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 8.82 – 7.18 (m, 38H, arom. H), 4.50 (s, 4H, NCH\textsubscript{2}), 3.26 (d, 4H, 2J\textsubscript{PH} 4.4 Hz, NCH\textsubscript{2}P), 2.34 (s, 4H, C\textsubscript{16}H\textsubscript{9}CH\textsubscript{2}N). FT–IR (KBr): ν_{PO} 1171 cm-1.
\[\{C_{16}H_9CH_2N(CH_2P(O)Ph_2)CH_2\}_2 \] 2.6 H_2O_2 (0.50 cm\(^3\), 30% w/v) was added to a stirred solution of 2.4 (0.100 g, 0.113 mmol) in CH_2Cl_2 (10 cm\(^3\)) and the resulting solution stirred at RT for 1 h. The solvent was removed under reduced pressure and the yellow solid dissolved in CH_2Cl_2 (2 cm\(^3\)). Hexane (20 cm\(^3\)) was added and the suspension stirred for a further 0.5 h. The solid was filtered and dried under reduced pressure. Yield: Quantitative. FT–IR (KBr): \(\nu_{PO} \) 1188 cm\(^{-1}\).

\section*{6.6.4 Coordination Chemistry of 2.1 – 2.4.}

\textit{cis}–PtCl\(_2\)[{PhCH\(_2\)N(CH\(_2\)PPh\(_2\))CH\(_2\)]\(_2\}] 2.7 A solution of 2.1 (0.115 g, 0.163 mmol) in CH\(_2\)Cl\(_2\) (10 cm\(^3\)) was added to a stirred solution of PtCl\(_2\)(cod) (0.061 g, 0.16 mmol) in CH\(_2\)Cl\(_2\) (10 cm\(^3\)). The resulting mixture was stirred for 0.5 h and concentrated to approximately 2 cm\(^3\) under reduced pressure. Diethyl ether (25 cm\(^3\)) was added, the resulting cream suspension stirred for 0.5 h and the solid filtered under reduced pressure. The filtrate was concentrated under reduced pressure to approximately 2 cm\(^3\) and hexane (25 cm\(^3\)) added. The resulting suspension was stirred for 0.5 h and the solid filtered and dried under reduced pressure. Yield: 0.063 g, 43%. \(^{31}\)P \({}^{1}\text{H} \) NMR (CDCl\(_3\)): \(\delta \) –1.3 (s, \(J_{PtP} \) 3633 Hz). \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 7.79 – 7.09 (m, 30H, arom. H), 4.02 (m, 4H, PCH\(_2\), \(J_{PHH} \) 39.2 Hz), 3.52 (s, 4H, CH\(_2\)), 3.35 (s, 4H, CH\(_2\)). FT–IR (KBr): \(\nu_{PtCl} \) 316, 290 cm\(^{-1}\). MS (FAB\(^+\)): m/z 903 [M]\(^+\), 867 [M–Cl]\(^+\), 831 [M–2Cl]\(^+\). Anal. Calc. for C\(_{42}\)H\(_{42}\)N\(_2\)P\(_2\)PtCl\(_2\) requires C, 56.23; H, 5.04; N, 2.98. Found: C, 56.49; H, 4.94; N, 2.83%.

\textit{cis}–PtCl\(_2\)[{C\(_{10}\)H\(_7\)CH\(_2\)N(CH\(_2\)PPh\(_2\))CH\(_2\)]\(_2\}] 2.8 Phosphine 2.2 (0.104 g, 0.134 mmol) was added to a stirred solution of PtCl\(_2\)(cod) (0.050 g, 0.13 mmol) in CH\(_2\)Cl\(_2\) (20 cm\(^3\)). The resulting solution was stirred for 0.5 h and concentrated to approximately 2 cm\(^3\) under reduced pressure. Diethyl ether (25 cm\(^3\)) was added and the resulting cream suspension stirred for 0.5 h, and filtered under reduced pressure. The filtrate was concentrated under reduced pressure to approximately 2 cm\(^3\) and hexane (25 cm\(^3\)) added to afford a cream suspension. The suspension was stirred for 0.5 h and collected by suction filtration. Yield: 0.080 g, 60%. \(^{31}\)P \({}^{1}\text{H} \) NMR (CDCl\(_3\)): \(\delta \) –3.6 (s, \(J_{PtP} \) 3606 Hz). \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 7.88 – 6.89 (m, 34H, arom. H), 4.10 (m, 4H, PCH\(_2\), \(J_{PHH} \) 40.8 Hz), 3.94 (s, 4H, CH\(_2\)), 3.73 (s, 4H, CH\(_2\)). FT–IR (KBr): \(\nu_{PtCl} \) 317, 292 cm\(^{-1}\). MS (FAB\(^+\)): m/z 967 [M–Cl]\(^+\). Anal. Calc. for C\(_{50}\)H\(_{46}\)N\(_2\)P\(_2\)PtCl\(_2\)·H\(_2\)O requires C, 58.83; H, 4.74; N, 2.74. Found: C, 59.01; H, 4.95; N, 2.26%.
cis–PtCl$_2$[C$_{14}$H$_9$CH$_2$N(CH$_2$PPh$_2$)CH$_2$]$_2$ 2.9 Phosphine 2.3 (0.100 g, 0.120 mmol) was added to a stirred solution of PtCl$_2$(cod) (0.045 g, 0.12 mmol) in CH$_2$Cl$_2$ (20 cm3) and the resulting mixture was stirred for 0.5 h. The solvent was concentrated to approximately 2 cm3 under reduced pressure and Et$_2$O (25 cm3) added to afford a cream precipitate. The suspension was stirred for 0.5 h, filtered and dried under reduced pressure. Yield: 0.874 g, 87%. 31P{1H} NMR (CDCl$_3$): δ –2.7 (s, 1J$_{PtP}$ 3593 Hz). 1H NMR (CDCl$_3$): δ 8.39 – 6.81 (m, 38H, arom. H), 4.26 (s, 4H, CH$_2$), 4.11 (m, 4H, PCH$_2$), 33J$_{PtH}$ 37.6 Hz), 3.92 (s, 4H, CH$_2$). FT–IR (KBr): ν_{PtCl} 318, 294 cm$^{-1}$. MS (FAB$^+$): m/z 1103 [M]$^+$, 1067 [M–Cl]$^+$, 1032 [M–2Cl]$^+$. Anal. Calc. for C$_{58}$H$_{50}$N$_2$P$_2$PtCl$_2$·0.25CH$_2$Cl$_2$ requires C, 62.24; H, 4.53; N, 2.49. Found: C, 61.84; H, 4.38; N, 2.51%.

Complex 2.10 was prepared in a similar manner to 2.9.

cis–PtCl$_2$[C$_{16}$H$_9$CH$_2$N(CH$_2$PPh$_2$)CH$_2$]$_2$ 2.10 PtCl$_2$(cod) (0.033 g, 0.088 mmol) and 2.4 (0.078 g, 0.088 mmol). Yield: 0.086 g, 85%. 31P{1H} NMR (CDCl$_3$): δ –3.8 (s, 1J$_{PtP}$ 3620 Hz). 1H NMR (CDCl$_3$): δ 8.25 – 6.78 (m, 38H, arom. H), 4.11 (m, 4H, CH$_2$), 33J$_{PtH}$ 36.0 Hz), 3.99 (s, 4H, CH$_2$), 3.95 (s, 4H, CH$_2$). FT–IR (KBr): ν_{PtCl} 316, 292 cm$^{-1}$. MS (FAB$^+$): m/z 1151 [M]$^+$, 1115 [M–Cl]$^+$, 1032 [M–2Cl]$^+$. Anal. Calc. for C$_{62}$H$_{50}$N$_2$P$_2$PtCl$_2$·1.5H$_2$O requires C, 63.21; H, 4.53; N, 2.38. Found: C, 62.78; H, 4.41; N, 2.37%.

PdCl$_2$[PhCH$_2$N(CH$_2$PPh$_2$)CH$_2$]$_2$ 2.11 A solution of 2.1 (0.124 g, 0.176 mmol) in CH$_2$Cl$_2$ (10 cm3) was added to a stirred solution of PdCl$_2$(cod) (0.050 g, 0.18 mmol) in CH$_2$Cl$_2$ (10 cm3). The resulting mixture was stirred for 0.5 h and concentrated to approximately 2 cm3 under reduced pressure. Diethyl ether (25 cm3) was added and the resulting yellow suspension stirred for 0.5 h, filtered and dried under reduced pressure. Yield: 0.104 g. Attempts to obtain an analytically pure sample of 2.11 were hampered by the slow decomposition of this complex in solution.

Attempts to prepare complexes 2.12 – 2.14 were performed in a similar manner to 2.9. As was the case for 2.11, it was not possible to prepare analytically pure sample of the desired complexes.
PdCl2{[C10H7CH2N(CH2PPh2)CH2]2} 2.12 PdCl2(cod) (0.037 g, 0.13 mmol) and 2.2 (0.101 g, 0.130 mmol). Yield: 0.100 g.

PdCl2{[C14H9CH2N(CH2PPh2)CH2]2} 2.13 PdCl2(cod) (0.038 g, 0.13 mmol) and 2.3 (0.111 g, 0.132 mmol). Yield: 0.044 g.

PdCl2{[C16H9CH2N(CH2PPh2)CH2]2} 2.14 PdCl2(cod) (0.032 g, 0.11 mmol) and 2.4 (0.099 g, 0.11 mmol). Yield: 0.102 g.

The nickel complex 2.15 was prepared following slight modification to the known method reported by Pringle et al.93

NiCl2{[C14H9CH2N(CH2PPh2)CH2]2} 2.15 Under a nitrogen atmosphere, a CH2Cl2 / MeOH (1:1, 20 cm3) solution of 2.3 (0.103 g, 0.123 mmol) and NiCl2·6H2O (0.029 g, 0.122 mmol) was stirred at reflux for 1 h. The solvent was evaporated under reduced pressure to yield a green solid. Yield: Quantitative. 31P{1H} NMR (CDCl3): δ 15.3 ppm. 1H NMR (CDCl3): δ 8.28 – 6.60 (m, 38H, arom. H), 4.75 (s, 4H, NCH 2), 4.19 (d, 4H, 2JPH 4.4 Hz, NCH 2P), 3.42 (s, 4H, C 14H9CH2N). Anal. Calc. for C58H50N2P2NiCl2·1.25CH2Cl2 requires C, 66.33; H, 4.93; N, 2.61. Found: C, 66.63; H, 5.24; N, 2.94%.

trans–Pd(Me)Cl{[C10H7CH2N(CH2PPh2)CH2]2} 2.16 A solution of 2.2 (0.099 g, 0.135 mmol) in CH2Cl2 (10 cm3) was added to a stirred solution of Pd(Me)Cl(cod) (0.035 g, 0.132 mmol) in CH2Cl2 (10 cm3). The resulting mixture was stirred for 0.5 h, and the solvent concentrated to approximately 2 cm3 under reduced pressure. Diethyl ether (25 cm3) was added and the resulting suspension stirred for 0.5 h, before the white precipitate was filtered and dried under reduced pressure. Yield: 0.042 g, 35%. FT–IR (KBr): νPdCl 262 cm–1. MS (FAB+): m/z 857 [M–Cl]+. Anal. Calc. for C51H49N2P2PdCl·0.5CH2Cl2 requires: C, 66.01; H, 5.38; N, 2.99. Found: C, 65.73; H, 5.31; N, 3.19%.

trans–Pd(Me)Cl{[C14H9CH2N(CH2PPh2)CH2]2} 2.17 Phosphine 2.3 (0.101 g, 0.115 mmol) was added to a stirred solution of Pd(Me)Cl(cod) (0.030 g, 0.113
mmol) in CH₂Cl₂ (20 cm³). The resulting solution was stirred at RT for 0.5 h before being concentrated under reduced pressure to approximately 2 cm³. Diethyl ether (25 cm³) was added and the precipitate stirred for a further 0.5 h, filtered and dried under reduced pressure. Yield: 0.067 g, 60%. FT–IR (KBr): ν₂PdCl 261 (b) cm⁻¹. Anal. Calc. for C₅₉H₅₃N₂P₂PdCl·0.25CH₂Cl₂ requires: C, 70.10; H, 5.31; N, 2.76. Found: C, 70.40; H, 5.42; N, 2.62%.

Complex 2.18 was prepared in a similar manner to 2.17.

trans–Pd(Me)Cl{[C₁₆H₉CH₂N(CH₂PPh₂)CH₂]₂} 2.18 Pd(Me)Cl(cod) (0.029 g, 0.11 mmol) and 2.4 (0.100 g, 0.113 mmol). Yield 0.084 g, 73%. ³¹P{¹H} NMR (CDCl₃): δ 14.2 ppm. ¹H NMR (CDCl₃): δ 8.26 – 6.56 (m, 38H, arom. H), 4.42 (s, 4H, CH₂), 4.16 (bs, 4H, CH₂), 3.94 (bs, 4H, CH₂), –0.07 (t, 3H, 3JₚH 6.0 Hz, CH₃).

FT–IR (KBr): ν₂PdCl 263 cm⁻¹. MS (FAB⁺): m/z 1005 [M–Cl]⁺ and 990 [M–Cl–CH₃]⁺. Anal. Calc. for C₆₃H₅₃N₂P₂PdCl requires C, 72.62; H, 5.13; N, 2.69. Found: C, 72.43; H, 5.08; N, 2.74%.

trans–RhCl(CO){[C₁₄H₉CH₂N(CH₂PPh₂)CH₂]₂} 2.19 Phosphine 2.3 (0.106 g, 0.126 mmol) was added to a stirred solution of {Rh(μ–Cl)(CO)₂}₂ (0.025 g, 0.063 mmol) in CH₂Cl₂ (20 cm³). The mixture was stirred for 1 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting suspension stirred for a further 0.5 h, filtered and dried under reduced pressure. Yield: Quantitative. FT–IR (KBr): νCO 1969 cm⁻¹. Anal. Calc. for C₅₉H₅₀N₂O₃RhCl·0.5CH₂Cl₂ requires C, 68.33; H, 4.93; N, 2.68. Found: C, 68.21; H, 4.92; N, 3.04%.

{RuCl₂(p–cym)}₂{[C₁₄H₉CH₂N(CH₂PPh₂)CH₂]₂} 2.20 Phosphine 2.3 (0.101 g, 0.121 mmol) was added to a stirred solution of [RuCl(μ–Cl)(p–cym)]₂ (0.038 g, 0.062 mmol) in CH₂Cl₂ (25 cm³). The resulting solution was stirred for 0.5 h and the solvent was concentrated under reduced pressure to ca. 2 cm³. Diethyl ether (25 cm³) was added and the resulting yellow suspension stirred for 0.5 h, filtered and dried under reduced pressure. Yield: 0.086 g, 97%. Anal. Calc. for C₇₆H₇₈N₂P₂Cl₄Ru₂ requires: C, 64.54; H, 5.42; N, 1.93. Found: C, 64.54; H, 5.12; N, 2.11%.
Complex 2.21 was prepared in a similar manner to 2.20, however due to the light sensitive nature of Au⁺ the reaction was conducted in the dark.

{AuCl}2[{C14H9CH2N(CH2PPh2)CH2}2] 2.21 AuCl(tht) (0.050 g, 0.16 mmol), 2.3 (0.065 g, 0.077 mmol) and CH2Cl2 (20 cm³). Yield: 0.087 g, 87%. FT–IR (KBr): νAuCl 331 cm⁻¹. Anal. Calc. for C58H50N2P2Au2Cl2 requires: C, 53.51; H, 3.87; N, 2.15. Found: C, 53.51; H, 3.85; N, 2.22%.

cis–Mo(CO)₄[{C14H9CH2N(CH2PPh2)CH2}2] 2.22 Under a nitrogen atmosphere, a solution of 2.3 (0.104 g, 0.063 mmol) and Mo(CO)₄(nbd) (0.019 g, 0.063 mmol) in CH2Cl2 (20 cm³) was stirred at reflux for 33 h. The solvent was concentrated under reduced pressure to approximately 2 cm³ and degassed Et₂O (15 cm³) added. The resulting cream suspension was stirred for 1 h, filtered and dried under reduced pressure. Yield: 0.071 g, 55%. ³¹P{¹H} NMR (CDCl₃): δ 19.1 ppm. ¹H NMR (CDCl₃): δ 8.17 – 7.06 (m, 38H, arom. H), 3.94 (s, 4H, CH₂), 3.65 (s, 4H, CH₂), 3.12 (s, 4H, CH₂). FT–IR (KBr): νCO 2017, 1893 cm⁻¹. MS (FAB⁺): m/z 1045 [M]⁺, 989 [M–2CO]⁺. Anal. Calc. for C₆2H₅₀N₂P₂Mo·3H₂O requires C, 67.76; H, 5.14; N, 2.55. Found: C, 67.41; H, 4.49; N, 2.56%.

6.6.5 Preparation of the monophosphines 2.23 – 2.25.

The precursor amines and imines below were prepared following slight modification to the known method reported by Zhang et al.¹⁸⁷

(C₁₄H₉)C(H)NCH₂CH₃ Ice chilled ethylamine (0.90 cm³, 14 mmol) was added to a chilled solution of 9–anthracene-carboxaldehyde (1.270 g, 5.973 mmol) in MeOH (100 cm³). The resulting suspension was stirred for 0.25 h at ca. 0 °C before stirring for a further 4 h at RT. The solvent was evaporated under reduced pressure. Yield: Quantitative. ¹H NMR (CDCl₃): δ 9.36 (s, 1H, CHN), 8.42 – 7.39 (m, 9H, arom. H), 3.90 (q, 2H, ³JHH 7.6 Hz, CH₂CH₃), 1.46 (t, 3H, ³JHH 7.6 Hz, CH₂CH₃). FT–IR (KBr): νC=O 1636 cm⁻¹. MS (FAB⁺): m/z 233 [M]⁺ and 234 [M+H]⁺. Anal. Calc. for C₁₇H₁₅N requires C, 87.52; H, 6.48; N, 6.00. Found: C, 87.20; H, 6.67; N, 6.20%.
(C_{16}H_{9})C(H)NCH_{2}CH_{3} was prepared in a similar manner to (C_{14}H_{9})C(H)NCH_{2}CH_{3}.

(C_{16}H_{9})C(H)NCH_{2}CH_{3} Ethylamine (0.5 cm3, 7.652 mmol) and 1–pyrenecarboxaldehyde (0.797 g, 3.43 mmol). Yield: Quantitative. 1H NMR (CDCl$_{3}$): δ 9.32 (s, 1H, CHN), 8.89 – 7.97 (m, 9H, arom. H), 3.85 (q, 2H, 3J$_{HH}$ 7.4 Hz, CH$_{2}$CH$_{3}$), 1.46 (t, 3H, 3J$_{HH}$ 7.4 Hz, CH$_{2}$CH$_{3}$). FT–IR (KBr): νC=N 1624 cm$^{-1}$. MS (FAB$^+$): m/z 257 [M]$^{+}$ and 258 [M+H]$^{+}$. Anal. Calc. for C$_{19}$H$_{15}$N requires C, 88.68; H, 5.88; N, 5.44. Found: C, 88.49; H, 5.65; N, 4.85%.

(C_{16}H_{9})C(H)NPh Aniline (0.208 g, 2.21 mmol) in MeOH (30 cm3) was added dropwise to a refluxing suspension of 1–pyrenecarboxaldehyde (0.514 g, 2.21 mmol) in MeOH (70 cm3). The resulting solution was stirred at reflux for 4 h to afford a yellow solution. The solvent was evaporated under reduced pressure to give a yellow product. Yield: Quantitative. 1H NMR (CDCl$_{3}$): δ 9.38 (s, 1H, CHN), 8.93 – 6.16 (m, 14H, arom. H). FT–IR (KBr): νC=N 1577 cm$^{-1}$. Anal. Calc. for C$_{23}$H$_{15}$N·0.25H$_{2}$O requires C, 89.15; H, 5.04; N, 4.52. Found: C, 89.66; H, 5.14; N, 4.31%.

(C_{14}H_{9})CH$_{2}$N(H)CH$_{2}$CH$_{3}$ NaBH$_{4}$ (1.143 g, 29.61 mmol) and (C$_{14}$H$_{9}$)C(H)NCH$_{2}$CH$_{3}$ (1.161 g, 4.976 mmol). Yield: 1.089 g, 93%. 1H NMR (CDCl$_{3}$): δ 8.46 – 7.37 (m, 9H, arom. H), 4.67 (s, 2H, (C$_{14}$H$_{9}$)CH$_{2}$N), 2.86 (q, 2H, 3J$_{HH}$ 7.2 Hz, CH$_{2}$CH$_{3}$), 1.14 (t, 3H, 3J$_{HH}$ 6.8 Hz, CH$_{2}$CH$_{3}$). FT–IR (KBr): νNH 3318 cm$^{-1}$. MS (FAB$^+$): m/z 235 [M]$^{+}$, 234 [M–H]$^{+}$. Anal. Calc. for C$_{17}$H$_{17}$N·0.5H$_{2}$O requires C, 83.57; H, 7.43; N, 5.73. Found: C, 83.18; H, 7.32; N, 5.72%.

(C$_{16}$H$_{9}$)CH$_{2}$N(H)(C$_{2}$H$_{5}$) NaBH$_{4}$ (0.697 g, 18.06 mmol) and (C$_{16}$H$_{9}$)C(H)NCH$_{2}$CH$_{3}$ (0.768 g, 2.98 mmol). Yield: Quantitative. 1H NMR (CDCl$_{3}$): δ 8.29 – 7.82 (m, 9H, arom. H), 4.42 (s, 2H, (C$_{16}$H$_{9}$)CH$_{2}$N), 2.78 (q, 2H, 3J$_{HH}$ 7.2 Hz, CH$_{2}$CH$_{3}$), 1.13 (t, 3H, 3J$_{HH}$ 7.2 Hz, CH$_{2}$CH$_{3}$). FT–IR (KBr): νNH 3300 cm$^{-1}$. MS (FAB$^+$): m/z 259 [M]$^{+}$, 258 [M–H]$^{+}$. Anal. Calc. for C$_{19}$H$_{17}$N·0.5H$_{2}$O requires C, 85.04; H, 6.76; N, 5.22. Found: C, 84.59; H, 6.39; N, 5.11%.

(C$_{16}$H$_{9}$)CH$_{2}$N(H)Ph NaBH$_{4}$ (0.458 g, 11.7 mmol) and (C$_{14}$H$_{9}$)C(H)NPh (0.602 g, 1.97 mmol). Yield: Quantitative. 1H NMR (CDCl$_{3}$): δ 8.45 – 6.17 (m, 14H, arom. H),
4.90 (s, 2H, CH₂), 4.02 (bs, 1H, NH). FT–IR (KBr): v_{NH} 3405 cm⁻¹. MS (FAB⁺): m/z 307 [M+H]⁺, 306 [M]⁺. Anal. Calc. for C₂₃H₁₇N·0.5C₂H₅OH requires C, 87.24; H, 6.10; N, 4.24. Found: C, 86.93; H, 5.56; N, 3.70%.

(C₁₄H₉)CH₂N(C₂H₅)CH₂PPh₂ 2.23 Under a nitrogen atmosphere, a solution of (C₁₄H₉)CH₂N(H)C₂H₅ (0.228 g, 0.969 mmol) and Ph₂PCH₂OH (0.227 g, 0.976 mmol) in MeOH (20 cm³) was stirred at RT for 3 d to yield a yellow suspension. The solvent was concentrated to approximately 5 cm³ and the precipitate filtered and dried under reduced pressure. Yield: 0.280 g, 67%. ³¹P{¹H} NMR (freeze–thawed CDCl₃): δ –27.6 ppm. ¹H NMR (freeze–thawed CDCl₃): δ 8.45 – 7.06 (m, 19H, arom. H), 4.66 (s, 2H, (C₁₄H₉)C₆H₂N), 3.35 (d, 2H, ²JₚH 2.8 Hz, CH₂P), 2.74 (q, 2H, ³Jₕₕ 7.2 Hz, CH₂CH₃), 0.99 (t, 3H, ³Jₕₕ 7.2 Hz, CH₂C₆H₃). MS (FAB⁺): m/z 432 [M]⁺.

(C₁₆H₉)CH₂N(C₂H₅)CH₂PPh₂ 2.24 Under a nitrogen atmosphere, a solution of (C₁₆H₉)CH₂N(H)C₂H₅ (0.216 g, 0.833 mmol) and Ph₂PCH₂OH (0.196 g, 0.843 mmol) in MeOH (20 cm³) was stirred at RT for 3 d to yield a clear solution containing a small amount of oily solid. The solvent was evaporated under reduced pressure to yield a viscous oil. ³¹P{¹H} NMR (freeze–thawed CDCl₃): δ –27.7 ppm. ¹H NMR (freeze–thawed CDCl₃): δ 8.41 – 7.05 (m, 19H, arom. H), 4.36 (s, 2H, (C₁₆H₉)C₆H₂N), 3.34 (d, 2H, ²JₚH 3.6 Hz, CH₂P), 2.75 (q, 2H, ³Jₕₕ 7.2 Hz, CH₂CH₃), 1.02 (t, 3H, ³Jₕₕ 7.2 Hz, CH₂CH₃). MS (FAB⁺): m/z 456 [M–H]⁺, 215 [(C₁₆H₉)CH₂]⁺.

6.6.6 Coordination chemistry of 2.23 and 2.24

Complex 2.26 was prepared in a similar manner to 2.7.

cis–PtCl₂[(C₁₄H₉)CH₂N(CH₂PPh₂)CH₂CH₃]₂ 2.26 PtCl₂(cod) (0.082 g, 0.22 mmol), 2.23 (0.199 g, 0.441 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.227 g, 92%. ³¹P{¹H} NMR (CDCl₃): δ 2.6 ppm, ¹Jₚp 3636 Hz. ¹H NMR (CDCl₃): δ 8.02 – 6.39 (m, 58H, arom. H), 4.23 (s, 4H, (C₁₄H₉)C₆H₂N), 3.94 (bs, 4H, CH₂P), 2.58 (q, 4H, ³Jₕₕ 6.8 Hz, CH₂CH₃), 0.95 (t, 6H, ³Jₕₕ 6.8 Hz, CH₂CH₃). MS (FAB⁺): m/z 1097 [M–Cl]⁺.
cis–PtCl₂[(C₁₆H₉)CH₂N(CH₂PPh₂)CH₂CH₃]₂ 2.27 A solution of 2.24 (0.330 g, 0.584 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of PtCl₂(cod) (0.108 g, 0.289 mmol) in CH₂Cl₂ (10 cm³). The resulting mixture was stirred for 1 h to yield a yellow solution. The solvent was concentrated to ca. 2 cm³ under reduced pressure and Et₂O (25 cm³) was added to give a yellow suspension. The suspension was filtered and dried under reduced pressure. Yield: 0.213 g, 62%. ³¹P{¹H} NMR (CDCl₃): δ 3.7 ppm, ¹Jₚₚ 3628 Hz, 71%. ¹H NMR (CDCl₃): δ 8.12 – 6.56 (m, 58H, arom. H), 4.04 (s, 4H, CH₂), 3.99 (s, 4H, CH₂), 2.26 (q, 4H, ³Jₕₕ 6.8 Hz, CH₃CH₂), 0.75 (t, 6H, ³Jₕₕ 7.2 Hz, CH₃CH₃). FT–IR (KBr): νPtCl 304, 282 cm⁻¹. MS (FAB⁺): m/z 1145 [M–Cl]⁺.

AuCl{(C₁₄H₉)CH₂N(CH₂PPh₂)CH₂CH₃} 2.28 A solution of 2.23 (0.199 g, 0.404 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of AuCl(tht) (0.129 g, 0.402 mmol) in CH₂Cl₂ (10 cm³). The resulting mixture was stirred, in the dark, for 0.5 h before the solvent was evaporated under reduced pressure to yield a viscous oil. Hexane (10 cm³) was added and the resulting yellow suspension vigorously trituated to yield a yellow suspension which was filtered and dried under reduced pressure. Yield: 0.185 g, 69%. ³¹P{¹H} NMR (CDCl₃): 18.9 ppm. ¹H NMR (CDCl₃): δ 8.31 – 7.05 (m, 19H, arom. H), 4.67 (s, 2H, (C₁₄H₉)CH₂N), 3.73 (bs, 2H, CH₂P), 3.23 (q, 2H, ³Jₕₕ 7.2 Hz, CH₃CH₂), 1.19 (t, 3H, ³Jₕₕ 7.2 Hz, CH₃CH₃). MS (FAB⁺): m/z 630 [M–Cl]⁺, 191 [(C₁₄H₉)CH₂]⁺. Anal. Calc. for C₃₀H₂₈N₂PAuCl·0.25C₆H₁₄ requires: C, 55.03; H, 4.62; N, 2.04. Found: C, 55.03; H, 4.47; N, 1.85%.

AuCl{(C₁₆H₉)CH₂N(CH₂PPh₂)CH₂CH₃} 2.29 Ligand 2.24 (0.224 g, 0.426 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of AuCl(tht) (0.136 g, 0.424 mmol) in CH₂Cl₂ (10 cm³). The resulting mixture was stirred, in the dark, for 0.5 h before the solvent was evaporated under reduced pressure to yield a viscous oil. The oil was dissolved in CH₂Cl₂ (2 cm³) and hexane (10 cm³) added, the resulting yellow solution was vigorously trituated to yield a sticky yellow suspension, which over 0.5 h of vigorous stirring, congealed into a “gummy” solid. The solid was removed and dried under reduced pressure to afford a yellow crystalline solid. Yield: 0.183 g, 63%. ³¹P{¹H} NMR (CDCl₃): 18.5 ppm. ¹H NMR (CDCl₃): δ 8.21 – 6.91 (m, 19H, arom. H), 4.41 (bs, 2H, (C₁₄H₉)CH₂N), 3.73 (bs, 2H, CH₂P), 3.17 (bd, 2H, ³Jₕₕ 6.8 Hz).
Hz, CH₂CH₃), 1.20 (t, 3H, JHH 6.8 Hz, CH₂CH₃). MS (FAB⁺): m/z 688 [M–2H]⁺, 654 [M–Cl]⁺, 215 [(C₁₆H₉)CH₂]⁺. Anal. Calc. for C₃₂H₂₈NPAuCl·0.25C₆H₁₄ requires: C, 56.55; H, 4.46; N, 1.97. Found: C, 56.24; H, 4.33; N, 1.80%.

6.6.7 Preparation of the monophosphine 2.30.

The precursor amine and imine below were prepared following slight modification to the known method reported by Zhang et al.¹⁸⁷

{(C₁₆H₉)C(H)NCH₂}₂CH₂ A solution of 1,3-diaminopropane (0.254 g, 3.39 mmol) in MeOH (5 cm³) was added dropwise to a refluxing solution of 1-pyrenecarboxaldehyde (1.562 g, 6.716 mmol) in MeOH (50 cm³). The resulting mixture was stirred at reflux for 4 h to afford a suspended yellow solid which was filtered and dried under reduced pressure. Yield: 1.185 g, 70%. FT–IR (KBr): νC=N 1623 cm⁻¹. Anal. Calc. for C₃₇H₂₆N₂·0.25H₂O requires C, 88.33; H, 5.31; N, 5.57. Found: C, 88.25; H, 5.19; N, 5.61%.

{(C₁₆H₉)CH₂N(H)CH₂}₂CH₂ NaBH₄ (0.323 g, 8.37 mmol) and {(C₁₆H₉)C(H)NCH₂}₂CH₂ (0.696 g, 1.40 mmol). Yield: Quantitative. ¹H NMR (CDCl₃): δ 8.27 – 7.81 (m, 18H, arom. H), 4.35 (s, 4H, (C₁₆H₉)CCH₂N), 2.82 (t, 4H, JHH 6.8 Hz, NCH₂CH₂), 1.76 (m, 2H, JHH 6.8 Hz, NCH₂CH₂). FT–IR (KBr): νNH 3289 cm⁻¹. MS (FAB⁺): m/z 503 [M⁺]. Anal. Calc. for C₃₇H₃₀N₂·1.5H₂O requires C, 83.90; H, 6.27; N, 5.29. Found: C, 83.62; H, 5.99; N, 5.15%.

{(C₁₆H₉)CH₂N(CH₂PPh₂)CH₂}₂CH₂ 2.30 Under a nitrogen atmosphere, a solution of {(C₁₆H₉)CH₂N(H)CH₂}₂CH₂ (0.101 g, 0.201 mmol) and Ph₂PCH₂OH (0.093 g, 0.41 mmol) in MeOH:toluene (1:1, 20 cm³) was refluxed for 3 d. The solvent was removed under reduced pressure to yield a viscous yellow oil. MeOH (20 cm³) was added and the resulting solid stirred for 2 h, filtered and dried under reduced pressure. Yield: 0.124 g, 69%. ³¹P {¹H} NMR (freeze–thawed CDCl₃): δ ~28.1 ppm. ¹H NMR (freeze–thawed CDCl₃): δ 8.43 – 6.99 (m, 38H, arom. H), 4.22 (s, 4H, (C₁₆H₉)CH₂N), 3.24 (d, 4H, JPH 4.0 Hz, NCH₂PPh₂), 2.56 (t, 4H, JHH 7.2 Hz, NCH₂CH₂), 1.61 (m, 2H, JHH 6.8 Hz, NCH₂CH₂).
6.7 Chapter 3 Experimental

6.7.1 Preparation of 3.1 – 3.3.

The precursor imine \(\{\text{FcC(H)NCH}_2\}_2 \) and the parent amine \(\{\text{FcCH}_2\text{N(H)CH}_2\}_2 \) were prepared following slight modification to the known method reported by Benito \textit{et al.}218

\(\{\text{FcC(H)NCH}_2\}_2 \) Ethylenediamine (0.165 g, 2.72 mmol), ferrocenealdehyde (1.186 g, 5.430 mmol) and MeOH (50 cm\(^3\)). Yield: 1.218 g, 99%. \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 8.08 (s, 2H, CHN), 4.54 (s, 4H, C\(_5\)H\(_4\)), 4.25 (s, 4H, C\(_5\)H\(_4\)), 4.06 (s, 10H, C\(_5\)H\(_5\)), 3.68 (s, 4H, CH\(_2\)N). FT–IR (KBr): \(\nu \)C=N 1639 cm\(^{-1}\). MS (FAB\(^+\)): m/z 452 [M]\(^+\), 453 [M+H]\(^+\).

Anal. Calc. for C\(_{24}\)H\(_{24}\)N\(_2\)Fe\(_2\) requires C, 63.75; H, 5.35; N, 6.20. Found C, 63.51; H, 5.27; N, 6.14%.

\(\{\text{FcCH}_2\text{N(H)CH}_2\}_2 \) NaBH\(_4\) (0.470 g, 12.2 mmol), \(\{\text{FcC(H)NCH}_2\}_2 \) (0.913 g, 2.02 mmol) and CH\(_2\)Cl\(_2\):EtOH (120 cm\(^3\), 2:1). Yield: 0.911 g, 99%. \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 4.11 (s, 4H, C\(_5\)H\(_4\)), 4.06 (s, 10H, C\(_5\)H\(_5\)), 4.02 (s, 4H, C\(_5\)H\(_4\)), 3.43 (s, 4H, C\(_5\)H\(_2\)NH), 2.68 (s, 4H, CH\(_2\)C\(_5\)H\(_4\)). \(\nu \)NH 3334 cm\(^{-1}\). FAB mass spectrum: m/z 456 [M]\(^+\), 199 [CH\(_2\)Fc]\(^+\).

Anal. Calc. for C\(_{24}\)H\(_{28}\)N\(_2\)Fe\(_2\)·2H\(_2\)O requires C, 59.10; H, 6.35; N, 5.74. Found C, 59.41; H, 6.28; N, 5.54%.

\(\{\text{FcCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2\}_2 \) 3.1 Under a nitrogen atmosphere, an orange suspension of \(\{\text{FcCH}_2\text{N(H)CH}_2\}_2 \) (0.496 g, 1.09 mmol) and Ph\(_2\)PCH\(_2\)OH (0.495 g, 2.18 mmol) in degassed MeOH (20 cm\(^3\)) was stirred at room temperature for 72 h. The yellow suspension was concentrated under reduced pressure to ca. 10 cm\(^3\) and the solid filtered and dried under reduced pressure. Yield: 0.663 g, 72%. \(^{31}\)P\{\(^1\)H\} NMR (CDCl\(_3\)): \(\delta \) –27.3 ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta \) 7.52 – 7.19 (m, 20H, arom. H), 4.01 (s, 4H, C\(_5\)H\(_4\)), 3.98 (s, 14H, C\(_5\)H\(_5\) and C\(_5\)H\(_4\)), 3.54 (s, 4H, CH\(_2\)N), 3.11 (d, 4H, \(^{2j_{PH}} \) 3.6 Hz, CH\(_2\)P), 2.58 (s, 4H, CH\(_2\)C\(_5\)H\(_4\)). MS (FAB\(^+\)): m/z 667 [M–PPh\(_2\)]\(^+\), 199 [CH\(_2\)Fc]\(^+\).

Anal. Calc. for C\(_{50}\)H\(_{50}\)N\(_2\)Fe\(_2\)P\(_2\)·0.75H\(_2\)O requires: C, 69.35; H, 6.00; N, 3.25. Found: C, 69.25; H, 5.95; N, 3.35%.

237
{FeCH₂N(CH₂PCy₂)CH₂}₂ 3.2 Under a nitrogen atmosphere, an orange solution of {FeCH₂N(H)CH₂}₂ (0.139 g, 0.305 mmol) and Cy₂PCH₂OH (0.175 g, 0.613 mmol) in MeOH (20 cm³, freeze–thawed) was stirred at RT for 6 d. The resulting yellow suspension was concentrated to ca. 2 cm³ and the precipitate filtered and dried under reduced pressure. Yield: 0.093 g, 34%. ³¹P{¹H} NMR (CDCl₃): –18.1 ppm. ¹H NMR (CDCl₃): δ 4.08 (s, 4H, C₅H₄), 4.04 (s, 10H, C₅H₅), 4.02 (s, 4H, C₅H₄), 3.52 (s, 4H, CH₂P), 2.49 (s, 4H, CH₂CH₂), 2.46 (s, 4H, CH₂CH₃), 1.67 – 1.12 (m, 44H, cyclohexyl H). MS (FAB⁺): m/z 875 [M–H]⁺, 678 [M–CH₂Fc]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₅₀H₇₄N₂Fe₂P₂·1.25H₂O requires: C, 66.78; H, 8.29; N, 3.12. Found: C, 66.80; H, 8.46; N, 3.17%.

{FcCH₂N(CH₂PAd)CH₂}₂ 3.3 Under a nitrogen atmosphere, an orange suspension of {FcCH₂N(H)CH₂}₂ (0.108 g, 0.238 mmol) and PAdCH₂OH (0.141 g, 0.476 mmol) in MeOH (20 cm³, freeze–thawed) was stirred at reflux for 44 h to yield a dark orange solution. Upon standing for 2 h at RT an orange solid precipitated. The suspension was concentrated to approximately 10 cm³ under reduced pressure and the precipitate filtered and dried under reduced pressure. Yield: 0.081 g, 37%. ³¹P{¹H} NMR (CDCl₃): –42.8 ppm. ¹H NMR (CDCl₃): δ 4.08 – 4.02 (m, 18H, C₅H₄ and C₅H₅), 3.59 (bm, 2H, CH₂N, enantiomer A), 3.42 (bm, 2H, CH₂N, enantiomer B), 2.71 (m, 2H, PCH₂, enantiomer A), 2.54 (bm, 2H, NCH₂CH₂), 2.31 (m, 2H, PCH₂, enantiomer B), 1.89 – 1.24 (m, 32H, Ad. cage H). Anal. Calc. for C₄₆H₆₂N₂Fe₂P₂O₆·0.5H₂O requires: C, 59.94; H, 6.90; N, 3.04. Found: C, 59.99; H, 6.88; N, 3.11%.

6.7.2 Coordination Chemistry of 3.1 – 3.3.

cis–PtCl₂{FeCH₂N(CH₂PPh₂)CH₂}₂ 3.4 Ligand 3.1 (0.075 g, 0.088 mmol) was added to a stirred solution of PtCl₂(cod) (0.033 g, 0.087 mmol) in CH₂Cl₂ (20 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting yellow suspension stirred for a further 0.5 h. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.085 g, 86%. ³¹P{¹H} NMR (CDCl₃): 2.6 ppm, ¹J_Pₚₚ 3666 Hz. ¹H NMR (CDCl₃): δ 7.59 – 7.19 (m, 20H, arom. H), 4.11 (s, 4H, C₅H₄), 4.01 (s, 10H, C₅H₅), 3.98 (s, 4H, C₅H₄), 3.76 (bs, 4H, CH₂P), 3.09 (s, 4H, CH₂N), 3.45 (s, 4H, CH₂CH₂), 2.74 (s, 4H, CH₂CH₂), 2.46 (s, 4H, CH₂CH₃), 1.74 – 1.16 (m, 40H, Ph cage H). MS (FAB⁺): m/z 859 [M–H]⁺, 662 [M–CH₂Fc]⁺, 197 [CH₂Fc]⁺. Anal. Calc. for C₃₉H₅₀N₂Fe₂P₂·0.5H₂O requires: C, 63.51; H, 7.31; N, 2.69. Found: C, 63.56; H, 7.27; N, 2.69%.
cis–PtCl₂{FcCH₂N(CH₂PCy₂)CH₂}₂ 3.5. A solution of 3.2 (0.069 g, 0.079 mmol) in CH₂Cl₂ (5 cm³) was added to a stirred solution of PtCl₂(cod) (0.029 g, 0.078 mmol) in CH₂Cl₂ (5 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting yellow suspension stirred for a further 0.5 h. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.032 g, 36%. ³¹P{¹H} NMR (CDCl₃): 18.8 (s, ¹Jₚₚ 3586 Hz), 17.9 (s, ¹Jₚₚ 3402 Hz). MS (FAB⁺): m/z 1071 [M–Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₅₀H₇₄N₂Fe₂P₂PtCl₂·2CH₂Cl₂ requires: C, 47.58; H, 5.99; N, 2.13. Found: C, 47.94; H, 5.94; N, 2.16%.

Complex 3.6 was prepared in a similar manner to 3.5 unless otherwise stated.

cis–PtCl₂{FcCH₂N(CH₂PAd)CH₂}₂ 3.6 A solution of 3.3 (0.051 g, 0.056 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of PtCl₂(cod) (0.021 g, 0.056 mmol) in CH₂Cl₂ (10 cm³). Following the addition of Et₂O no precipitation was observed and the solvent was concentrated to ca. 2 cm³. Hexane (25 cm³) was added and the resulting yellow suspension refrigerated overnight to yield further solid. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.026 g, 39%. ³¹P{¹H} NMR (CDCl₃): 2.9 (s, ¹Jₚₚ 3411 Hz), −27.5 (s, ¹Jₚₚ 3397 Hz). ¹H NMR (CDCl₃): δ 4.19 – 4.13 (m, 18H, C₅H₅ and C₅H₄), 4.03 (bs, 4H, CH₂), 3.70 (bs, 4H, CH₂), 2.96 (bs, 4H, CH₂), 2.37 – 1.12 (m, 32H, Ad. cage H). FT–IR (KBr): νₚₚ 316, 290 cm⁻¹. MS (FAB⁺): m/z 1071 [M–2Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₄₆H₆₂N₂P₂O₆Fe₂PtCl₂ requires: C, 46.88; H, 5.30; N, 2.38. Found: C, 47.03; H, 4.87; N, 2.82%.

cis–PdCl₂{FcCH₂N(CH₂PPh₂)CH₂}₂ 3.7 Ligand 3.1 (0.011 g, 0.12 mmol) was added to a stirred solution of PdCl₂(cod) (0.034 g, 0.12 mmol) in CH₂Cl₂ (20 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting cream suspension stirred for a further 0.5 h. The cream precipitate was filtered and dried
under reduced pressure. Yield: 0.089 g. Attempts to obtain an analytically pure sample of 3.7 were hampered by slow decomposition to PdCl2(Ph2POCH2PPh2).

\textit{cis–PdCl}_2(\textit{Ph}_2\text{POCH}_2\textit{PPh}_2) \textbf{3.7A} Ligand 3.1 (0.158 g, 0.176 mmol) was added to a stirred solution of PdCl2(cod) (0.050 g, 0.175 mmol) in CH2Cl2 (20 cm³). The solution was stirred for 4 d and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting suspension stirred for a further 0.5 h. The precipitate was filtered and dried under reduced pressure (Yield: 0.128 g). The complex 3.7A was recrystallised from CH2Cl2 and Et2O using 0.050 g of crude product. Yield: 0.019 g. $^{31}\text{P}\{^1\text{H}\}$ NMR (CDCl3): 159.9 (d, $^2\text{J}_{\text{PP}}$ 17.0 Hz), 79.9 (d, $^2\text{J}_{\text{PP}}$ 17.0 Hz). ^1H NMR (CDCl3): δ 7.87 – 7.45 (m, 20H, arom. H), 3.41 (d, 2H, $^2\text{J}_{\text{PH}}$ 6.8 Hz CH2P). FT–IR (KBr): νPdCl 308, 289 cm–1. MS (FAB+): m/z 542 [M–Cl]+, 199 [C11H11Fe]+.

\textit{cis–PtMe}_2\{\textit{FeCH}_2\textit{N(CH}_2\textit{PPh}_2\textit{)CH}_2\}\textit{2} \textbf{3.8} Ligand 3.1 (0.090 g, 0.11 mmol) was added to a stirred solution of PtMe2(cod) (0.035 g, 0.11 mmol) in CH2Cl2 (10 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (20 cm³) and hexane (15 cm³) were added and the resulting orange suspension stirred for a further 0.5 h. The orange precipitate was filtered and dried under reduced pressure. Yield: 0.037 g, 33%. $^{31}\text{P}\{^1\text{H}\}$ NMR (CDCl3): 19.7, (s, $^1\text{J}_{\text{PtP}}$ 1866 Hz). ^1H NMR (CDCl3): δ 7.55 – 7.07 (m, 20H, arom. H), 3.95 (s, 4H, C5H4), 3.88 (s, 10H, C6H5), 3.80 (s, 4H, C6H4), 3.55 (bs, 4H, CH2P), 2.85 (s, 4H, CH2N), 2.56 (s, 4H, CH2C5H4), 0.25 (m, 6H, $^2\text{J}_{\text{PH}}$ 69.2Hz, $^3\text{J}_{\text{PH}}$ 13.2 Hz, $^2\text{J}_{\text{PH}}$ 12.8 Hz, PtCH3). MS (FAB+): m/z 1062 [M–CH3]+, 199 [CH2Fc]+. Anal. Calc. for C52H56N2Fe2P2Cl2Pt·0.75H2O requires: C, 57.23; H, 5.31; N, 2.58. Found: C, 57.25; H, 5.16; N, 2.43%.

\textit{Trans, trans}–{\textit{Pd(CH}_3\text{)}Cl\{}\textit{FeCH}_2\textit{N(CH}_2\textit{PPh}_2\textit{)CH}_2\}\textit{2} \textbf{3.9} Ligand 3.1 (0.111 g, 0.121 mmol) was added to a stirred solution of Pd(CH3)Cl(cod) (0.032 g, 0.12 mmol) in CH2Cl2 (20 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Hexane (25 cm³) was added and the resulting cream suspension stirred for a further 0.5 h. The cream precipitate was filtered and dried under reduced pressure. Yield: 0.074 g, 61%. $^{31}\text{P}\{^1\text{H}\}$ NMR (CDCl3): 13.0 ppm. ^1H NMR (CDCl3): δ 7.82 – 7.36 (m, 20H, arom. H), 4.29 (t, 4H, $^1\text{J}_{\text{HH}}$ 1.6 Hz,
C₅H₄), 4.24 (t, 4H, JHH 1.6 Hz, C₅H₄), 4.20 (s, 10H, C₅H₅), 3.81 (s, 4H, CH₂), 3.67 (s, 4H, CH₂), 3.59 (br, 4H, CH₂), 0.00 (t, 3H, JPH 12 Hz, CH₃). FT–IR (KBr): νPdC 263 cm⁻¹. MS (FAB⁺): m/z 973 [0.5M–Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₅₁H₅₃N₂Fe₂P₂PdCl·2.5H₂O requires: C, 58.09; H, 5.07; N, 2.72. Found: C, 58.03; H, 5.10; N, 2.72%.

Trans, trans–[Rh(CO)Cl{FcCH₂N(CH₂PPh₂)CH₂}₂ 3.10 Ligand 3.1 (0.098 g, 0.11 mmol) was added to a stirred solution of {Rh(µ–Cl)(CO)₂}₂ (0.023 g, 0.056 mmol) in CH₂Cl₂ (20 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting orange suspension stirred for a further 0.5 h. The orange precipitate was filtered and dried under reduced pressure. Yield: 0.033 g, 29%. ³¹P{¹H} NMR (CDCl₃): 16.6 (d, JRhP 130 Hz). ¹H NMR (CDCl₃): δ 7.73 – 7.29 (m, 20H, arom. H), 4.19 (s, 4H, C₅H₄), 4.16 (s, 4H, C₅H₄), 4.11 (s, 10H, C₅H₅), 3.94 (s, 4H, CH₂), 3.76 (s, 4H, CH₂), 3.57 (s, 4H, CH₂). FT–IR (KBr): νCO 1969 cm⁻¹. MS (FAB⁺): m/z 983 [0.5M–Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₁₀₂H₁₀₀N₄O₂Fe₄P₄Rh₂Cl₂·2.5H₂O requires: C, 58.81; H, 5.08; N, 2.69. Found: C, 58.37; H, 4.79; N, 3.22%.

cis–Mo(CO)₄{FcCH₂N(CH₂PPh₂)CH₂}₂ 3.11 Under a nitrogen atmosphere, a solution of 3.1 (0.096 g, 0.11 mmol) and Mo(CO)₄(nbd) (0.032 g, 0.11 mmol) in degassed CH₂Cl₂ (10 cm³) was stirred at RT for 10 d. The solvent was concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting orange suspension stirred for a further 0.5 h. The orange precipitate was filtered and dried under reduced pressure. Yield: 0.065 g, 58%. ³¹P{¹H} NMR (CDCl₃): 29.0 ppm. ¹H NMR (CDCl₃): δ 7.44 – 7.32 (m, 20H, arom. H), 3.99 (s, 4H, C₅H₄), 3.85 (bs, 14H, C₅H₄ and C₅H₅), 3.29 (s, 4H, CH₂), 2.78 (s, 4H, CH₂), 1.97 (s, 4H, CH₂). FT–IR (KBr): νCO 2018, 1918, 1898, 1870 cm⁻¹. MS (FAB⁺): m/z 1061 [M]⁺, 1005 [M–2CO]⁺. Anal. Calc. for C₅₄H₅₀N₂O₄Fe₄P₂Mo·1.75CH₂Cl₂ requires: C, 55.37; H, 4.46; N, 2.32. Found: C, 55.40; H, 4.25; N, 2.45%.

{RuCl₂(p–cym)}₂{FcCH₂N(CH₂PPh₂)CH₂}₂ 3.12 Phosphine 3.1 (0.038 g, 0.043 mmol) was added to a stirred solution of [RuCl(µ–Cl)(p–cym)]₂ (0.026 g, 0.043 mmol) in CH₂Cl₂ (20 cm³). The resulting solution was stirred for 0.5 h before concentrating the solvent under reduced pressure to ca. 2 cm³. Hexane (25 cm³) was
added and the resulting orange suspension stirred for a further 0.5 h. The orange precipitate was filtered and dried under reduced pressure. Yield: 0.054 g, 86%.

\[^{31}P\{^1H\}\text{NMR (CD}_2\text{Cl}_2\}: 25.2 \text{ ppm. } ^{1}H\text{NMR (CD}_2\text{Cl}_2\): } \delta 7.94 – 7.46 (m, 20H, arom. H), 5.37 (s, 4H, CH₂N), 5.20 (d, 4H, \(3J_{HH}\) 5.2 Hz, CH), 5.12 (d, 4H, \(3J_{HH}\) 6 Hz, CH), 3.99 (t, 4H, \(2J_{PH}\) 2.8 Hz, CH₂P), 2.52 (s, 4H, CH₂C₃H₄), 2.39 (sept, \(3J_{HH}\) 6.8 Hz, 2H, CH), 1.79 (s, 6H, CH₃), 0.96 (d, 12H, \(3J_{HH}\) 6.8 Hz, CH₃). FT–IR (KBr): \(v_{\text{RuCl}}\) 295 cm⁻¹. MS (FAB⁺): m/z 973 [M–RuCl₂(₆–cym)PPh₂]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₇₈H₇₈N₂Fe₂P₂Cl₄Ru₂ requires: C, 55.01; H, 5.21; N, 1.81. Found: C, 54.93; H, 5.26; N, 2.17%.

\{{AuCl}_2\{FeCH}_2\text{N(CH}_2\text{PPh}_2\}\text{CH}_2\}_2 \text{ 3.13 Ligand 3.1 (0.108 g, 0.118 mmol) was added to a stirred solution of AuCl(tht) (0.076 g, 0.24 mmol) in CH}_2\text{Cl}_2\ (20 \text{ cm}^3\). The resulting solution was stirred in the dark for 0.5 h and concentrated under reduced pressure to \textit{ca.} 2 cm³. Hexane (25 cm³) was added and the resulting yellow suspension stirred for a further 0.5 h. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.130 g, 84%. \(^{31}P\{^1H\}\text{NMR (CDCl}_3\): 19.4 ppm. \(^1H\text{NMR (CDCl}_3\): } \delta 7.68 – 7.40 (m, 20H, arom. H), 4.03 (s, 18H, C₅H₄ and C₅H₅), 3.64 (d, 4H, \(2J_{PH}\) 1.2 Hz, CH₂P), 3.51 (s, 4H, CH₂N), 2.60 (s, 4H, CH₂C₃H₄). FT–IR (KBr): \(v_{\text{AuCl}}\) 330 cm⁻¹. MS (FAB⁺): m/z 1317 [M]⁺, 1316 [M–H]⁺, 1281 [M–H–Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₅₀H₅₀N₂Fe₂P₂Au₂Cl₂ requires: C, 45.58; H, 3.83; N, 2.13. Found: C, 45.45; H, 3.84; N, 2.02%.

6.7.3 Preparation of 3.14

FeC(H)NCH₂CH₃ Ice chilled ethylamine (0.50 cm³, 7.6 mmol) was added to an ice chilled solution of ferrocenecarboxaldehyde (0.575 g, 2.63 mmol) in MeOH (100 cm³). The resulting solution was stirred for 0.25 h at \textit{ca.} 0 °C before stirring for a further 6.5 h at RT. The solvent was removed under reduced pressure. Yield: Quantitative. \(^1H\text{NMR (CDCl}_3\): } \delta 8.15 (bs, 1H, CHN), 4.66 (bs, 2H, C₅H₄), 4.38 (bs, 2H, C₅H₄), 4.20 (bs, 5H, C₅H₅), 3.51 (bs, 2H, CH₂CH₃), 1.28 (bs, 3H, CH₂CH₃). FT–IR (KBr): \(v_{\text{C=N}}\) 1644. MS (FAB⁺): m/z 241 [M]⁺, 240 [M–H]⁺, 242 [M+H]⁺.
Amine FcCH₂N(H)CH₂CH₃ was prepared in a similar manner to amine \{FcCH₂N(H)CH₂\}_2

\textbf{FcCH₂N(H)CH₂CH₃}\quad \text{NaBH₄ (0.585 g, 15.2 mmol), FeC(H)NCH₂CH₃ (0.615 g, 2.55 mmol) and CH₂Cl₂:EtOH (120 cm³; 2:1). Yield: 0.568 g, 92%.

\textit{H} NMR (CDCl₃): δ 4.12 (t, 2H, J_HH 1.6 Hz, C₅H₄), 4.05 (bs, 5H, C₅H₅), 4.03 (t, 2H, J_HH 1.6 Hz, C₅H₄), 3.45 (s, 2H, CH₂C₅H₄), 2.61 (q, 2H, J_HH 7.2 Hz, CH₂CH₃), 1.04 (t, 3H, J_HH 7.2 Hz, CH₂CH₃). FT–IR (KBr): ν_NH 3310. MS (FAB⁺): m/z 243 [M]+, 242 [M–H]+, 244 [M+H]+, 199 [CH₂Fc]+. Anal. Calc. for C₁₃H₁₇NFe·0.5H₂O requires C, 61.93; H, 7.20; N, 5.56. Found C, 62.48; H, 6.87; N, 5.27%.

\textbf{FcCH₂N(CH₂PPh₂)CH₂CH₃}\quad 3.14\quad \text{Under a nitrogen atmosphere, an orange solution of FcCH₂N(H)CH₂CH₃ (0.615 g, 2.55 mmol) (0.173 g, 0.712 mmol) and Ph₂PCH₂OH (0.165 g, 0.714 mmol) in MeOH (20 cm³) was stirred at RT for 5 d. The solvent was removed under reduced pressure. Yield: Quantitative.} \textit{31P}{¹\textit{H}} NMR (CDCl₃): δ –27.7 ppm. \textit{H} NMR (CDCl₃): δ 7.43 – 7.23 (m, 10H, arom. H), 4.07 (bs, 2H, C₅H₄), 4.02 (bs, 7H, C₅H₄ and C₅H₅), 3.62 (s, 2H, CH₂C₅H₄), 3.16 (d, 2H, J_PH 3.2 Hz, CH₂P), 2.54 (q, 2H, J_HH 7.2 Hz, CH₂CH₃), 0.93 (t, 3H, J_HH 7.2 Hz, CH₂CH₃). MS (FAB⁺): m/z 457 [M+O]+, 199 [CH₂Fc]+.

\textbf{AuCl\{FcCH₂N(CH₂PPh₂)CH₂CH₃\}}\quad 3.15\quad \text{A solution of 3.14 (0.101 g, 0.181 mmol) in CH₂Cl₂ (5 cm³) was added to a stirred solution of AuCl(tht) (0.057 g, 0.18 mmol) in CH₂Cl₂ (5 cm³). The mixture was stirred in the dark for 0.5 h before the solvent was concentrated to ca. 2 cm³ under reduced pressure. Hexane (15 cm³) was added to precipitate an orange solid which dissolved after a brief period of stirring. Hexane (10 cm³) was added and the resulting cream suspension stirred for 1 d in the dark. The orange precipitate was filtered and dried under reduced pressure. Yield: 0.068 g, 56%. \textit{31P}{¹\textit{H}} NMR (CDCl₃): δ 50.1 – 29.9 (bm), 17.4 (s) ppm. Anal. Calc. for C₂₆H₂₈NPFeAuCl·0.75CH₂Cl₂ requires C, 43.57; H, 4.03; N, 1.90. Found C, 43.54; H, 3.93; N, 1.57%.
6.7.5 Preparation of 3.16 and 3.17

The precursor imines \{\text{FcCH}_2\text{NC(H)}\}_2\text{Fc}, \{\text{FcC(H)NCH}_2\}_2\text{CH}_2\text{ and amines } \{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{Fc}, \{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{CH}_2\text{ were prepared in a similar manner to their ethylenediamine analogues,}\text{ }^{218}\text{ and their polyaromatic analogues discussed in Chapter 2.}\text{ }^{187}

\{\text{FcCH}_2\text{NC(H)}\}_2\text{Fc}
\((\text{C}_5\text{H}_4\text{CHO})_2\text{Fe}\) (0.205 g, 0.847 mmol), \text{FcCH}_2\text{NH}_2\) (0.364 g, 1.69 mmol) and \text{MeOH} (50 cm\(^3\)). Yield: Quantitative. \(^1\text{H} \text{NMR (CDCl}3\): } \delta 7.93 \text{ (s, 2H, CHN)}, 4.52 \text{ (s, 4H, CH}_2\text{C}_5\text{H}_4\text{)}, 4.35 \text{ – 4.09 (m, 26H, CH}_5\text{H}_4\text{ and CH}_5\text{H}_5\text{). FT–IR (KBr): } \nu_{\text{C=\text{N}}} \text{ } 1636 \text{ cm}^{-1}. \text{ MS (FAB\(^+\): m/z 636 } [\text{M}]^{+}, 437 [\text{M–CH}_2\text{Fc}]^{+}, 199 [\text{CH}_2\text{Fc}]^{+}. \text{ Anal. Calc. for C} 34\text{H}_32\text{N}_2\text{Fe}_3\cdot0.5\text{H}_2\text{O requires: C, 63.29; H, 5.16; N, 4.34. Found: C, 63.05; H, 5.21; N, 4.23%}.

\{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{Fc}
\(\text{NaBH}_4\) (0.183 g, 4.74 mmol), \{\text{FcCH}_2\text{NC(H)}\}_2\text{Fc}\) (0.498 g, 0.783 mmol) and \text{CH}_2\text{Cl}_2\text{:EtOH} (60 cm\(^3\), 2:1). Yield: Quantitative. \(^1\text{H} \text{NMR (CDCl}3\): } \delta 4.12 \text{ (s, 8H, C}_5\text{H}_4\text{)}, 4.04 \text{ (s, 10H, C}_5\text{H}_3\text{)}, 3.99 \text{ (s, 8H, C}_5\text{H}_4\text{)}, 3.45 \text{ (bs, 8H, CH}_2\text{C}_5\text{H}_4\text{). FT–IR (KBr): } \nu_{\text{NH}} \text{ } 3091 \text{ cm}^{-1}. \text{ MS (FAB\(^+\): m/z 640 } [\text{M}]^{+}, 639 [\text{M–H}]^{+}, 243 [\text{M–2(C}11\text{H}_11\text{Fe})]\text{]}^{+}, 199 [\text{CH}_2\text{Fc}]^{+}. \text{ Anal. Calc. for C} 34\text{H}_36\text{N}_2\text{Fe}_3\cdot1.5\text{H}_2\text{O requires: C, 61.20; H, 5.89; N, 4.20. Found: C, 61.14; H, 5.88; N, 3.90%}.

\{\text{FcCH}_2\text{N(CH}_2\text{PPh}_2\text{)}\text{CH}_2\}_2\text{Fc}
3.16 Under a nitrogen atmosphere, a solution of \{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{Fc}\) (0.309 g, 0.483 mmol) and \text{Ph}_2\text{PCH}_2\text{OH} (0.223 g, 0.959 mmol) in \text{toluene:MeOH} (20 cm\(^3\), 2:1) was stirred for 44 h at RT. The solvent was removed under reduced pressure. Yield: Quantitative. \(^{31}\text{P}\{\text{H}\} \text{NMR (CDCl}3\): } –27.8 \text{ (s ppm). } \(^1\text{H} \text{NMR (CDCl}3\): } \delta 7.42 \text{ – 7.07 (m, 20H, arom. H)}, 4.08 \text{ (s, 4H, C}_5\text{H}_4\text{)}, 4.04 \text{ (s, 4H, C}_5\text{H}_4\text{)}, 4.00 \text{ (s, 10H, C}_5\text{H}_3\text{)}, 3.98 \text{ (s, 8H, C}_5\text{H}_4\text{)}, 3.55 \text{ (s, 4H, CH}_2\text{C}_5\text{H}_4\text{)}, 3.51 \text{ (s, 4H, CH}_2\text{C}_5\text{H}_4\text{)}, 3.02 \text{ (d, 4H, } ^2\text{J}_{\text{PH}} \text{ 3.6 Hz, CH}_2\text{P). MS (FAB\(^+\): m/z 199 } [\text{CH}_2\text{Fc}]^{+}.

Imine \{\text{FcC(H)NCH}_2\}_2\text{CH}_2\text{ and amine } \{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{CH}_2\text{ were prepared in a similar manner to their ethylene diamine counterparts,}\text{ }^{218}\text{ and their polyaromatic analogues discussed in Chapter 2.}\text{ }^{187}
\{\text{FcC(H)NCH}_2\}_2\text{CH}_2 1,3–\text{diaminopropane} (0.185 \text{ g}, 2.47 \text{ mmol}), \text{ferrocenealdehyde} (1.079 \text{ g}, 4.942 \text{ mmol}) \text{ and MeOH} (60 \text{ cm}^3). \text{Yield: Quantitative.} ^1\text{H NMR} (\text{CDCl}_3): \delta 8.15 \text{ (s, 2H, CHN), 4.64 (s, 4H, C}_5\text{H}_4\text{), 4.36 (s, 4H, C}_5\text{H}_4\text{), 4.18 (s, 10H, C}_5\text{H}_5\text{), 3.53 (t, 4H, }^3J_{\text{HH}} 6.4 \text{ Hz, CH}_2\text{CH}_2\text{N). FT–IR} (\text{KBr}): \nu_{\text{C=N}} 1637 \text{ cm}^{-1}. \text{Anal. Calc. for C}_{25}\text{H}_{26}\text{N}_2\text{Fe}_2\cdot0.25\text{H}_2\text{O requires C, 63.79; H, 5.67; N, 5.95. Found C, 63.88; H, 5.67; N, 5.83%}.

\{\text{FcCH}_2\text{N(H)CH}_2\}_2\text{CH}_2 \text{NaBH}_4 (0.581 \text{ g}, 15.1 \text{ mmol}), \{\text{FcC(H)NCH}_2\}_2\text{CH}_2 (1.125 \text{ g}, 2.413 \text{ mmol}) \text{ and CH}_2\text{Cl}_2:\text{EtOH} (120 \text{ cm}^3, 2:1). \text{Yield: Quantitative.} ^1\text{H NMR} (\text{CDCl}_3): \delta 4.10 \text{ (t, 4H, }^3J_{\text{HH}} 1.6 \text{ Hz C}_5\text{H}_4\text{), 4.05 (s, 10H, C}_5\text{H}_5\text{), 4.03 (t, 4H, }^3J_{\text{HH}} 1.6 \text{ Hz, C}_5\text{H}_4\text{), 3.44 (s, 4H, CH}_2\text{C}_5\text{H}_4\text{), 2.63 (t, 4H, }^3J_{\text{HH}} 7.2 \text{ Hz, CH}_2\text{CH}_2\text{N). FT–IR} (\text{KBr}): \nu_{\text{NH}} 3302 \text{ cm}^{-1}. \text{MS (FAB+):} m/z 470 [M]^{+}, 471 [M+H]^{+}. \text{Anal. Calc. for C}_{25}\text{H}_{30}\text{N}_2\text{Fe}_2\cdot1.5\text{H}_2\text{O requires C, 60.39; H, 6.69; N, 5.63. Found C, 60.37; H, 6.44; N, 5.35%}.

\{\text{FcCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2\}_2\text{CH}_2 3.17 \text{Under a nitrogen atmosphere, an orange suspension of \{FcCH}_2\text{N(H)CH}_2\}_2\text{CH}_2 (0.126 \text{ g}, 0.268 \text{ mmol}) \text{ and Ph}_2\text{PCH}_2\text{OH} (0.122 \text{ g}, 0.536 \text{ mmol}) \text{ in MeOH} (20 \text{ cm}^3) \text{ was stirred at RT for 14 d. The solvent was slowly removed under reduced pressure to afford a viscous oil. Yield: 0.198 \text{ g}, 85\%.} ^3\text{P} ^1\text{H} \text{NMR} (\text{CDCl}_3): \delta –26.9 \text{ (bs), –27.6 (bs), –28.5 (bs); respective % ratio ca. 1:5:1.} ^1\text{H NMR} (\text{CDCl}_3): \delta 4.00 \text{ (bs, 18H, C}_5\text{H}_5 \text{ and C}_5\text{H}_4's), 3.56 \text{ (s, 4H, CH}_2\text{C}_5\text{H}_4), 3.08 \text{ (bs, 4H, C}_5\text{H}_2\text{PPh}_2), 2.89 \text{ (bs, 4H, CH}_2\text{CH}_2\text{N), 1.43 \text{ (bs, 2H, CH}_2\text{CH}_2\text{N). MS (FAB+):} m/z 681 [M–PPh}_2^{+}, 483 [M–PPh}_2–\text{C}_11\text{H}_11\text{Fe}^{+}, 199 [\text{CH}_2\text{Fc}]^{+}. \text{6.7.6 Coordination chemistry of 3.16}

\{\text{AuCl}}_2\{\text{FeCH}_2\text{N(CH}_2\text{PPh}_2\text{)CH}_2\}_2\text{Fc 3.18} \text{A colourless solution of AuCl(tht) (0.118 \text{ g}, 0.368 \text{ mmol}) \text{ in CH}_2\text{Cl}_2 (5 \text{ cm}^3) \text{ was added to a stirred solution of 3.16 (0.222 \text{ g}, 0.186 \text{ mmol}) \text{ in CH}_2\text{Cl}_2 (5 \text{ cm}^3). The resulting solution was stirred, in the dark, for 1 h and concentrated under reduced pressure to ca. 2 \text{ cm}^3. Hexane (25 \text{ cm}^3) \text{ was added and the resulting yellow suspension stirred for a further 0.5 h. The precipitate was filtered and dried under reduced pressure. Yield: 0.239 \text{ g}, 87\%.} ^3\text{P} ^1\text{H} \text{NMR} (\text{CDCl}_3): 17.4 \text{ (s) ppm.} ^1\text{H NMR} (\text{CDCl}_3): \delta 7.71 – 7.25 \text{ (m, 20H,}
arom. H), 4.02 (bm, 26H, C₅H₄ and C₅H₅), 3.81 (bs, 4H, CH₂), 3.56 (bs, 4H, CH₂),
Calc. for C₆₀H₅₈N₂Fe₃P₂Au₂Cl₂·0.75C₆H₁₄ requires: C, 49.47; H, 4.41; N, 1.79.
Found: C, 49.40; H, 4.43; N, 1.79%.

The ruthenium complex 3.19 was prepared in a similar manner to 3.18.

{RuCl₂(p–cym)}₂{FcCH₂N(CH₂PPh₂)CH₂}₂Fc 3.19 [RuCl(µ–Cl)(p–cym)]₂ (0.083
g, 0.14 mmol), 3.16 (0.162 g, 0.136 mmol) and CH₂Cl₂ (10 cm³). Yield: 0.136 g,
61%. ³¹P{¹H} NMR (CDCl₃): 26.1 (s) ppm. ¹H NMR (CDCl₃): δ 7.93 – 7.36 (m,
20H, arom. H), 5.13 (d, 4H, ³JHH 5.2 Hz, CH), 5.06 (d, 4H, ³JHH 5.2 Hz, CH), 3.92 (s,
4H, C₅H₄), 3.82 (s, 4H, C₅H₄), 3.77 (bs, 14H, C₅H₅ and C₅H₄), 3.62 (s, 4H, C₅H₄),
3.42 (bs, 4H, CH₂P), 2.59 (s, 4H, CH₂C₅H₄), 2.49 (s, 4H, CH₂C₅H₄), 2.35 (sept, 2H,
³JHH 6.8 Hz, CH), 1.71 (s, 6H, CH₃), 0.85 (d, 12H, ³JHH 6.8 Hz, CH₃). MS (FAB⁺):
m/z 1651 [M]⁺, 1615 [M–Cl]⁺. Anal. Calc. for C₈₀H₈₆N₂Fe₃P₂Ru₂Cl₄ requires: C,
58.20; H, 5.25; N, 1.70. Found: C, 57.80; H, 5.26; N, 1.78%.

cis–PtCl₂{FcCH₂N(CH₂PPh₂)CH₂}₂Fc} PtCl₂(cod) (0.075 g, 0.20 mmol) in CH₂Cl₂
(5 cm³) and 3.16 (0.239 g, 0.201 mmol) in CH₂Cl₂ (5 cm³). Yield: 0.178 g, 68%. FT–
IR (KBr): νPtCl 313, 288 cm⁻¹. MS (FAB⁺): m/z 1266 [M–Cl]⁺. Anal. Calc. for
C₆₀H₅₈N₂P₂Fe₃PtCl₂·1.5H₂O requires C, 54.20; H, 4.62; N, 2.11. Found: C, 54.13; H,
4.57; N, 1.95%.

6.7.7 Preparation of 3.20 – 3.22.

The precursor imine FcCH₂NC(H)Fc and amine (FcCH₂)₂NH were prepared in a
similar manner to {FcC(H)NCH₂}₂ and {FcCH₂N(H)CH₂}₂.

FcCH₂NC(H)Fc Ferrocenecarboxaldehyde (0.366 g, 1.68 mmol), FeC₂H₂NH₂ (0.360
g, 1.67 mmol) and MeOH (35 cm³). Yield 0.666 g, 97%. Attempts to obtain an
analytically pure sample of FcCH₂NC(H)Fc were hampered by hydrolysis and the
incomplete nature of the reaction. ¹H NMR (CDCl₃): δ 8.04 (s, 1H, CHN). FT–IR
(FcCH$_2$)$_2$NH NaBH$_4$ (0.241 g, 6.24 mmol), FeCH$_2$NC(H)Fe (0.614 g, 1.08 mmol) and CH$_2$Cl$_2$:EtOH (60 cm3, 2:1). Yield: Quantitative. 1H NMR (CDCl$_3$): δ 4.13 (s, 4H, C$_5$H$_4$), 4.11 (s, 4H, C$_5$H$_4$), 4.04 (s, 10H, C$_5$H$_5$), 3.47 (s, 4H, CH$_2$NH). FT–IR (KBr):v$_{NH}$ 3331 cm$^{-1}$. FAB mass spectrum: m/z 413 [M$^+$], 199 [CH$_2$Fc$^+$]. Anal. Calc. for C$_{22}$H$_{23}$NFe$_2$·0.5H$_2$O requires C, 62.60; H, 5.73; N, 3.32. Found C, 62.74; H, 5.81; N, 3.08%.

The tertiary phosphines 3.20 – 3.22 were prepared in a similar manner to 3.4 – 3.6.

(FeCH$_2$)$_2$NCH$_2$PPh$_2$ 3.20 Ph$_2$PCH$_2$OH (0.227 g, 0.976 mmol), (FeCH$_2$)$_2$NH (0.404 g, 0.978 mmol) and MeOH (20 cm3). Yield: 0.345 g, 58%. 31P{1H} NMR (CDCl$_3$): δ –27.9 ppm. 1H NMR (CDCl$_3$): δ 7.27 – 7.19 (m, 10H, arom. H), 4.09 (s, 4H, C$_5$H$_4$), 4.05 (s, 4H, C$_5$H$_4$), 4.01 (s, 10H, C$_5$H$_5$), 3.55 (s, 4H, CH$_2$C$_5$H$_4$), 3.04 (d, 2H, 2J$_{PH}$ 4.0 Hz, CH$_2$P). MS (FAB+): m/z 413 [M–CH$_2$Fc$^+$]. Anal. Calc. for C$_{35}$H$_{34}$NPFe$_2$·0.25H$_2$O requires C, 68.26; H, 5.65; N, 2.27. Found C, 68.05; H, 5.71; N, 2.40%.

(FeCH$_2$)$_2$NCH$_2$PCy$_2$ 3.21 An orange solution of (FeCH$_2$)$_2$NH (0.397 g, 0.961 mmol) and Cy$_2$PCH$_2$OH (0.274 g, 0.960 mmol) in MeOH (20 cm3, freeze–thawed) was stirred at RT for 6 d. The resulting yellow suspension was concentrated to ca. 2 cm3 and the precipitate filtered and dried under reduced pressure. Yield: 0.352 g, 59%. 31P{1H} NMR (CDCl$_3$): δ –19.3 ppm. 1H NMR (CDCl$_3$): δ 7.27 – 7.19 (m, 10H, arom. H), 4.09 (s, 4H, C$_5$H$_4$), 4.05 (s, 4H, C$_5$H$_4$), 4.01 (s, 10H, C$_5$H$_5$), 3.55 (s, 4H, CH$_2$C$_5$H$_4$), 2.41 (d, 2H, 2J$_{PH}$ 1.6 Hz, CH$_2$P), 1.61 – 1.10 (m, 22H, Cy H). MS (FAB+): m/z 639 [M+O$^+$], 623 [M$^+$], 622 [M–H$^+$], 199 [CH$_2$Fc$^+$]. Anal. Calc. for C$_{35}$H$_{46}$NPFe$_2$·0.5H$_2$O requires C, 66.47; H, 7.49; N, 2.21. Found C, 66.11; H, 7.44; N, 2.12%.

(FeCH$_2$)$_2$NCH$_2$PAd 3.22 An orange solution of (FeCH$_2$)$_2$NH (0.150 g, 0.363 mmol) and PAdCH$_2$OH (0.113 g, 0.367 mmol) in MeOH (20 cm3, freeze–thawed) was stirred at RT for 7 d. The resulting yellow suspension was concentrated to ca. 2 cm3 and the precipitate filtered and dried under reduced pressure. Yield: 0.109 g, 47%. 31P{1H} NMR (CDCl$_3$): δ –44.5 ppm. 1H NMR (CDCl$_3$): δ 4.10 (bs, 2H, C$_5$H$_4$), 4.08 (bs, 2H, C$_5$H$_4$), 4.06 (s, 4H, C$_5$H$_4$), 4.03 (s, 10H, C$_5$H$_5$), 3.56 (d, 2H, 2J$_{HH}$ 13.2 Hz, CH$_2$C$_5$H$_4$), 3.31 (d, 2H, 2J$_{HH}$ 13.6 Hz, CH$_2$H$_6$C$_2$H$_4$), 2.49 (m, 2H, CH$_2$P),
1.83 – 1.19 (m, 16H, Ad. cage H). MS (FAB\(^+\)): m/z 641 [M\(^+\)], 199 [CH\(_2\)Fc\(^+\)]. Anal. Calc. for C\(_{33}\)H\(_{40}\)NO\(_3\)PFe\(_2\).0.5H\(_2\)O requires C, 60.95; H, 6.35; N, 2.15. Found C, 60.96; H, 6.35; N, 2.23%.

6.7.8 Coordination chemistry of 3.20 – 3.22.

RuCl\(_2\)(\(\mu\)–Cl)(\(\mu\)–cym){(FcCH\(_2\))\(_2\)NCH\(_2\)PPh\(_2\)} 3.23 [RuCl(\(\mu\)–Cl)(\(\mu\)–cym)]\(_2\) (0.051 g, 0.083 mmol), 3.20 (0.103 g, 0.168 mmol) in CH\(_2\)Cl\(_2\) (10 cm\(^3\)). Yield: 0.135 g, 88%. \(^{31}\)P\(_{\{1\}H}\) NMR (CDCl\(_3\)): 26.1 ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.99 – 7.39 (m, 10H, arom. H), 5.14 (d, 2H, \(J_{HH}\) 5.6 Hz, CH), 5.06 (d, 2H, \(J_{HH}\) 6 Hz, CH), 3.89 (bs, 8H, C\(_5\)H\(_4\)), 3.64 (bs, 12H, C\(_5\)H\(_5\) and CH\(_2\)P), 2.73 (s, 4H, CH\(_2\)C\(_5\)H\(_4\)), 2.38 (sept, \(J_{HH}\) 7.2 Hz, 1H, CH/CH\(_3\)), 1.72 (s, 3H, CH\(_3\)), 0.85 (d, \(J_{HH}\) 7.2 Hz, 6H, CHCH\(_3\)). MS (FAB\(^+\)): m/z 917 [M\(^+\)], 918 [M+H\(^+\)], 199 [CH\(_2\)Fc\(^+\)]. Anal. Calc. for C\(_{45}\)H\(_{48}\)NPFe\(_2\)Cl\(_2\)Ru·0.5CH\(_2\)Cl\(_2\) requires: C, 56.92; H, 5.14; N, 1.46. Found: C, 57.16; H, 5.34; N, 1.43%.

The complex 3.24 was prepared in a similar manner to 3.23.

RuCl\(_2\)(\(\mu\)–Cl)(\(\mu\)–cym){(FcCH\(_2\))\(_2\)NCH\(_2\)PCy\(_2\)} 3.24 [RuCl(\(\mu\)–Cl)(\(\mu\)–cym)]\(_2\) (0.062 g, 0.10 mmol), 3.21 (0.128 g, 0.205 mmol) and CH\(_2\)Cl\(_2\) (10 cm\(^3\)). Yield: 0.156 g, 83%. \(^{31}\)P\(_{\{1\}H}\) NMR (CDCl\(_3\)): 32.3 ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 5.50 (bs, 4H, CH), 4.18 (s, 4H, C\(_5\)H\(_4\)), 4.03 (s, 4H, C\(_5\)H\(_4\)), 3.96 (s, 10H, C\(_5\)H\(_5\)), 3.39 (s, 2H, CH\(_2\)P), 3.27 (s, 4H, CH\(_2\)C\(_5\)H\(_4\)), 2.74 (sept, \(J_{HH}\) 6.8 Hz, 1H, CH(CH\(_3\))\(_2\)), 2.03 (s, 3H, CH\(_3\)), 1.23 (d, 6H, \(J_{HH}\) 6.8 Hz, CH(CH\(_3\))\(_2\)). MS (FAB\(^+\)): m/z 894 [M–Cl\(^+\)], 859 [M–2Cl\(^+\)], 199 [CH\(_2\)Fc\(^+\)]. Anal. Calc. for C\(_{45}\)H\(_{60}\)NPFe\(_2\)Cl\(_2\)Ru·0.75CH\(_2\)Cl\(_2\) requires: C, 55.32; H, 6.24; N, 1.41. Found: C, 55.81; H, 6.47; N, 1.44%.

The complex 3.25 was prepared in a similar manner to 3.12.

RuCl\(_2\)(\(\mu\)–Cl)(\(\mu\)–cym){(FcCH\(_2\))\(_2\)NCH\(_2\)PAd} 3.25 Ligand 3.22 (0.099 g, 0.15 mmol) and [RuCl(\(\mu\)–Cl)(\(\mu\)–cym)]\(_2\) (0.047 g, 0.076 mmol). Yield: 0.121 g, 83%. \(^{31}\)P\(_{\{1\}H}\) NMR (CDCl\(_3\)): 20.7 ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 5.75 (d, 2H, \(J_{HH}\) 6.0 Hz, CH, enantiomer A and B), 5.58 (d, 1H, \(J_{HH}\) 6.0 Hz, CH, enantiomer A), 5.12 (d, 1H, \(J_{HH}\) 5.2 Hz, CH, enantiomer B), 4.15 (bs, 4H, C\(_5\)H\(_4\)), 4.01 (bs, 4H, C\(_5\)H\(_4\)), 3.97 (bs, 10H, C\(_5\)H\(_5\)), 3.40 (m, 6H, CH\(_2\), enantiomer A and B), 2.85 (m, \(J_{HH}\) 6.8 Hz, 1H, CH(CH\(_3\))\(_2\), enantiomer
A and B), 2.06 (s, 3H, CH₃, enantiomer A and B), 1.68 – 1.15 (m, 22H, Ad. cage H and CH(CH₃)₂, enantiomer A and B). MS (FAB⁺): m/z 948 [M⁺], 947 [M–H]⁺, 912 [M–Cl]⁺, 199 [CH₂Fc]⁺. Anal. Calc. for C₄₃H₅₄NO₃PFe₂Cl₂Ru·0.5C₄H₁₀O requires: C, 54.89; H, 6.04; N, 1.42. Found: C, 55.09; H, 6.14; N, 1.40%.

cis–PtCl₂{(FeCH₂)₂NCH₂PPh₂}₂ 3.26 Ligand 3.20 (0.064 g, 0.11 mmol) was added to a stirred solution of PtCl₂(cod) (0.020 g, 0.052 mmol) in CH₂Cl₂ (10 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Hexane (25 cm³) was added and the resulting yellow suspension stirred for a further 0.5 h. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.032 g, 41%. ³¹P{¹H} NMR (CDCl₃): 4.9 (s, 1 J₉₃ 3625 Hz). ¹H NMR (CDCl₃): δ 7.62 – 6.63 (m, 20H, arom. H), 4.20 (s, 8H, C₅H₄), 3.95 (s, 8H, C₅H₄), 3.82 (s, 20H, C₅H₅), 2.90 (s, 8H, CH₂N), 2.77 (s, 4H, CH₂PPh₂). MS (FAB⁺): m/z 1453 [M–Cl]⁺, 199 [CH₂Fc]⁺.

6.7.9 Preparation of 3.27 – 3.29.

The synthesis for the precursor aldoxime and amine are described as follows.

FeC(H)NOH was prepared following a slight modification to the procedure previously reported by Schlögl.²⁹⁰ Sodium acetate (4.780 g, 57.69 mmol) and hydroxylammonium hydrochloride (2.700 g, 38.47 mmol) were dissolved separately in the minimum amount of deionised water and were added to a stirred solution of ferrocenealdehyde (4.199 g, 19.23 mmol) in EtOH (100 cm³). The resulting suspension was stirred at 60 °C for 6 h before being reduced to dryness. EtOH (20 cm³) and Et₂O (120 cm³) were added and the resulting suspension stirred for 0.5 h before the suspended inorganic solid was filtered and washed with Et₂O. The combined filtrate and washes were reduced to dryness. Yield: 4.490 g, Quantitative. ¹H NMR (CDCl₃): δ 7.91 (bs, 1H, CHN), 7.16 (bs, 1H, OH), 4.74 (t, 2H, J₉₉ 2 Hz, C₅H₄), 4.46 (t, 2H, J₉₉ 2 Hz, C₅H₄), 4.30 (t, 2H, J₉₉ 2 Hz, C₅H₄), 4.28 (t, 2H, J₉₉ 2 Hz, C₅H₄), 4.16 (s, 5H C₅H₅), 4.13 (s, 5H C₅H₅). FT–IR (KBr): νOH 3448, νC=O 1636 cm⁻¹. MS (FAB⁺): m/z 229 [M⁺].
\(\text{FcCH}_2\text{NH}_2 \) was prepared via a modified procedure to that reported by Beer. An excess of lithium aluminum hydride (1.453 g, 37.14 mmol) was added portion wise with care to a solution of FcC(H)NOH (1.838 g, 8.024 mmol) in dry THF (80 cm\(^3\)). The resulting mixture was stirred under a nitrogen atmosphere for 6 h before dry toluene (80 cm\(^3\)) was added followed by ethyl acetate (15 cm\(^3\)), with caution. NaOH solution (5 M) was added dropwise until precipitation of inorganic solids was complete. The resulting mixture was filtered to yield an orange filtrate and a “gummy” solid residue. The residue was washed with copious amounts of toluene–MeOH (80:20) and the combined filtrate and washes evaporated to dryness. Further inorganic impurities were removed by dissolution of the organic phase in dichloromethane followed by filtration and evaporation of the filtrate. The product was further purified by column chromatography on silica using MeOH–NH\(_4\)OH (95:5) as eluent. Yield: 1.012 g, 59%. \(^1\text{H} \) NMR (CDCl\(_3\)): \(\delta \) 4.10 (bs, 2H, C\(_5\)H\(_4\)), 4.07 (s, 5H, C\(_5\)H\(_5\)), 4.04 (bs, 2H, C\(_5\)H\(_4\)), 3.48 (s, 2H, CH\(_2\)C\(_5\)H\(_4\)), 1.42 (bs, 2H, NH\(_2\)). FT–IR (KBr): \(\nu \text{NH} \) 3430 cm\(^{-1}\). MS (FAB\(^{+}\)): m/z 215 [M\(^+\)], 199 [M–NH\(_2\)]\(^+\). Anal. Calc. for C\(_{11}\)H\(_{13}\)NFe·0.5H\(_2\)O requires C, 58.96; H, 6.07; N, 6.25. Found: C, 59.11; H, 6.05; N, 6.12%.

\(\text{FcCH}_2\text{N} (\text{CH}_2\text{PPh}_2)\text{2} \) Under a nitrogen atmosphere, a freeze–thawed solution of FcCH\(_2\text{NH}_2\) (0.203 g, 0.944 mmol) in MeOH (20 cm\(^3\)) was cannulated onto Ph\(_2\)PCH\(_2\)OH (0.430 g, 1.89 mmol) and the orange solution stirred for 72 h. The resulting suspension was concentrated to ca. 2 cm\(^3\) and the solid filtered and dried under reduced pressure. Yield: 0.419 g, 73%. \(^{31}\text{P}\{^1\text{H}\} \) NMR (CDCl\(_3\)): \(\delta \) –28.1 ppm. \(^1\text{H} \) NMR (CDCl\(_3\)): \(\delta \) 7.30 – 7.15 (m, 20H, arom. H), 4.07 (s, 2H, C\(_5\)H\(_4\)), 4.02 (bs, 7H, C\(_5\)H\(_4\) and C\(_5\)H\(_5\)), 3.86 (s, 2H, CH\(_2\)C\(_5\)H\(_4\)), 3.35 (d, 4H, \(~J_{PH}\) 3.6 Hz, CH\(_2\)P). MS (FAB\(^{+}\)): m/z 644 [M+2O]\(^+\), 611 [M–H]\(^+\), 426 [M–PPh\(_2\)]\(^+\). Anal. Calc. for C\(_{37}\)H\(_{35}\)NP\(_2\)Fe requires C, 72.68; H, 5.77; N, 2.29. Found C, 72.40; H, 5.87; N, 2.38%.

Phosphine \(\text{3.28} \) and \(\text{3.29} \) were prepared in a similar manner to \(\text{3.27} \).

\(\text{FcCH}_2\text{N} (\text{CH}_2\text{PCy}_2)\text{2} \) \(\text{3.28} \) Cy\(_2\)PCH\(_2\)OH (0.293 g, 1.04 mmol), FcCH\(_2\)NH\(_2\) (0.112 g, 0.521 mmol) and MeOH (10 cm\(^3\)). Yield: 0.239 g, 73%. \(^{31}\text{P}\{^1\text{H}\} \) NMR (CDCl\(_3\)): \(\delta \) –18.3 ppm. \(^1\text{H} \) NMR (CDCl\(_3\)): \(\delta \) 4.11 (t, 2H, J\(_{HH}\) 1.6, C\(_5\)H\(_4\)), 4.06 (s, 5H, C\(_5\)H\(_5\)), 4.01 (t, 2H, J\(_{HH}\) 1.6, C\(_5\)H\(_4\)), 2.57 (s, 2H, CH\(_2\)C\(_5\)H\(_4\)), 1.66 – 1.14 (m,

FeCH\(_2\)N(CH\(_2\)PAd\(_2\)) 3.29 PAdCH\(_2\)OH (0.313 g, 1.09 mmol) and FeCH\(_2\)NH\(_2\) (0.117 g, 0.544 mmol). Yield: 0.227 g, 62%. \(^{31}\)P\({^1}\)H NMR (CDCl\(_3\)): \(\delta\) –42.9 (s) and –43.1 (s) ppm; respective % ratio ca. 1:2. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 4.11 (bs, 2H, C\(_5\)H\(_4\)), 4.05 (bs, 7H, C\(_5\)H\(_4\) and C\(_5\)H\(_5\)), 3.69 (bs, 2H, CH\(_2\)C\(_5\)H\(_4\)), 2.82 (m, 2H, \(^2\)J\(_{PH}\) 4.4 Hz, CH\(_2\)P, enantiomer A), 2.79 (m, 2H, \(^2\)J\(_{PH}\) 4.4 Hz, CH\(_2\)P, enantiomer B), 2.50 – 1.22 (m, Ad. cage H). MS (FAB\(^+\)): m/z 472 [M–CH\(_2\)Fc\(^+\)]. Anal. Calc. for C\(_{33}\)H\(_{47}\)NP\(_2\)O\(_6\)Fe requires C, 59.02; H, 7.05; N, 2.09. Found C, 58.88; H, 6.82; N, 2.11%.

6.7.10 Coordination chemistry of 3.27 – 3.29.

Complexes 3.30 – 3.32 were prepared in a similar manner to 3.4.

cis–PtCl\(_2\){FeCH\(_2\)N(CH\(_2\)PPh\(_2\))\(_2\)} 3.30 Phosphine 3.27 (0.246 g, 0.382 mmol), PtCl\(_2\)(cod) (0.143 g, 0.382 mmol) and CH\(_2\)Cl\(_2\) (20 cm\(^3\)). Yield: 0.320 g, 96%. \(^{31}\)P\({^1}\)H NMR (CDCl\(_3\)): \(\delta\) –9.1 ppm, \(^1\)J\(_{PP}\) 3389 Hz. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 7.67 – 7.25 (m, 20H, arom. H), 4.09 (s, 2H, C\(_5\)H\(_4\)), 4.02 (s, 5H, C\(_5\)H\(_5\)), 3.95 (s, 2H, C\(_5\)H\(_4\)), 3.45 (s, 2H, CH\(_2\)C\(_5\)H\(_4\)), 3.23 (d, 4H, CH\(_2\)P, \(^2\)J\(_{PH}\) 2.8 Hz). FT–IR (KBr): \(\nu\) PtCl 312, 292 cm\(^{-1}\). MS (FAB\(^+\)): m/z 877 [M\(^+\)], 875 [M–2H\(^+\)]. Anal. Calc. for C\(_{37}\)H\(_{35}\)NP\(_2\)FePtCl\(_2\)·0.75H\(_2\)O requires C, 49.88; H, 4.13; N, 1.57. Found C, 49.51; H, 4.08; N, 1.46%.

cis–PtCl\(_2\){FeCH\(_2\)N(CH\(_2\)PCy\(_2\))\(_2\)} 3.31 Phosphine 3.28 (0.151 g, 0.239 mmol), PtCl\(_2\)(cod) (0.089 g, 0.24 mmol) and CH\(_2\)Cl\(_2\) (20 cm\(^3\)). Yield: 0.211 g, 99%. \(^{31}\)P\({^1}\)H NMR (CDCl\(_3\)): \(\delta\) 5.5 ppm, \(^1\)J\(_{PP}\) 3473 Hz. \(^1\)H NMR (CDCl\(_3\)): \(\delta\) 4.14 (s, 2H, C\(_5\)H\(_4\)), 4.09 (s, 5H, C\(_5\)H\(_5\)), 4.07 (s, 2H, C\(_5\)H\(_4\)), 3.36 (s, 2H, CH\(_2\)C\(_5\)H\(_4\)), 2.60 (d, 4H, \(^2\)J\(_{PH}\) 2.4 Hz). FT–IR (KBr): \(\nu\) PtCl 302, 279 cm\(^{-1}\). MS (FAB\(^+\)): m/z 901 [M\(^+\)], 866 [M–Cl\(^+\)], 199 [M–CH\(_2\)Fc\(^+\)]. Anal. Calc. for C\(_{37}\)H\(_{59}\)NP\(_2\)FePtCl\(_2\)·CH\(_2\)Cl\(_2\) requires C, 46.26; H, 6.23; N, 1.42. Found C, 46.61; H, 6.33; N, 1.57%.
cis–PtCl₂{FcCH₂N(CH₂PAd)₂} 3.32 Phosphine 3.29 (0.150 g, 0.223 mmol), PtCl₂(cod) (0.084 g, 0.23 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.198 g, 95%. ³¹P{¹H} NMR (CDCl₃): δ –16.4 (¹Jₚₚ 3390 Hz) and –17.9 (¹Jₚₚ 3377 Hz); respective % ratio ca. 1:2. ¹H NMR (CDCl₃): δ 3.69 – 3.59 (m, 11H, C₅H₄ and C₅H₂C₅H₄), 3.20 – 2.82 (m, 4H, CH₂P), 1.22 – 0.60 (m, 32H, Ad. cage H). FT–IR (KBr): νₚₚ 320, 296 cm⁻¹. MS (FAB⁺): m/z 938 [M⁺], 937 [M–H⁺]. Anal. Calc. for C₃₃H₄₇NP₂O₆FePtCl₂·0.25CH₂Cl₂ requires C, 41.65; H, 4.99; N, 1.46. Found C, 41.63; H, 4.97; N, 1.48%.

cis–PdCl₂{FcCH₂N(CH₂PPh₂)₂} 3.33 Compound 3.27 (0.121 g, 0.198 mmol), PdCl₂(cod) (0.056 g, 0.20 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.144 g, 93%. ³¹P{¹H} NMR (CDCl₃): δ 7.6 (s) ppm. ¹H NMR (CDCl₃): δ 7.71 – 7.26 (m, 20H, arom. H), 4.09 (s, 2H, C₅H₄), 4.03 (s, 5H, C₅H₅), 3.96 (s, 2H, C₅H₄), 3.52 (s, 2H, CH₂C₅H₄), 3.18 (bs, 4H, CH₂P). FT–IR (KBr): νₚₚ 303 and 294 cm⁻¹. MS (FAB⁺): m/z 788 [M⁺], 753 [M–Cl⁺], 199 [M–CH₂Fc⁺]. Anal. Calc. for C₃₇H₃₅NP₂FePdCl₂·1.25CH₂Cl₂ requires C, 51.34; H, 4.22; N, 1.57. Found C, 51.38; H, 4.29; N, 1.68%.

cis–PdCl₂{FcCH₂N(CH₂PCy₂)₂} 3.34 Phosphine 3.28 (0.127 g, 0.200 mmol), PdCl₂(cod) (0.057 g, 0.20 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.135 g, 83%. ³¹P{¹H} NMR (CDCl₃): δ 29.6 ppm. ¹H NMR (CDCl₃): δ 4.16 (s, 2H, C₅H₄), 4.10 (s, 5H, C₅H₅), 4.08 (s, 2H, C₅H₄), 3.43 (s, 2H, CH₂C₅H₄), 2.57 (s, 4H, CH₂P). FT–IR (KBr): νₚₚ 301, 277 cm⁻¹. MS (FAB⁺): m/z 812 [M–H⁺], 778 [M–Cl⁺], 199 [M–CH₂Fc⁺]. Anal. Calc. for C₃₇H₅₉NP₂FePdCl₂·0.5CH₂Cl₂ requires C, 52.65; H, 7.07; N, 1.63. Found C, 52.66; H, 7.04; N, 1.79%.

cis–PdCl₂{FcCH₂N(CH₂PAd)₂} 3.35 Phosphine 3.29 (0.135 g, 0.201 mmol), PdCl₂(cod) (0.057 g, 0.20 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.146 g, 86%. ³¹P{¹H} NMR (CDCl₃): δ 1.7 (s), 0.0 (s); respective % ratio ca. 1:2. ¹H NMR (CDCl₃): δ 4.32 (s, 2H, C₅H₄), 4.28 (s, 5H, C₅H₅), 4.26 (s, 2H, C₅H₄), 3.69 (s, 2H, CH₂C₅H₄), 2.69 (s, 4H, CH₂P), 2.25 – 1.26 (m, 32H, Ad. cage H). FT–IR (KBr): νₚₚ 314 and 292 cm⁻¹. MS (FAB⁺): m/z 813 [M–Cl⁺], 199 [M–CH₂Fc⁺]. Anal. Calc. for C₃₃H₄₇NP₂O₆FePdCl₂ requires C, 46.69; H, 5.58; N, 1.65. Found C, 46.32; H, 5.51; N, 1.83%.

252
cis–CrCO₄{FeCH₂N(CH₂PPh₂)₂} 3.36 Under a nitrogen atmosphere, THF (15 cm³, freeze–thawed) was added to 3.27 (0.094 g, 0.15 mmol) and Cr(CO)₄(nbd) (0.040 g, 0.15 mmol). The resulting yellow solution was stirred at 60 °C for 1 h before being reduced to dryness under vacuum. Yield: Quantitative. ³¹P{¹H} NMR (CDCl₃): δ 38.9 ppm. ¹H NMR (CDCl₃): δ 7.46 – 7.19 (m, 20H, arom. H), 4.10 (s, 2H, C₆H₄), 4.05 (bs, 7H, C₅H₅ and C₅H₄), 3.55 (s, 2H, CH₂C₅H₄), 3.18 (s, 4H, CH₂P). FT–IR (KBr): ν CO 2014 (s), 1921 (s, b), 1875 (s, b) cm⁻¹. MS (FAB⁺): m/z 775 [M]⁺, 663 [M–4CO]⁺, 199 [M–CH₂Fc]⁺. Anal. Calc. for C₄₁H₃₅NP₂FeCrO₄ requires C, 63.50; H, 4.55; N, 1.81. Found C, 63.29; H, 4.62; N, 1.77%.

cis–CrCO₄{FcCH₂N(CH₂PCy₂)₂} 3.37 Under a nitrogen atmosphere, THF (15 cm³, freeze–thawed) was added to 3.28 (0.074 g, 0.12 mmol) and Cr(CO)₄(nbd) (0.030 g, 0.12 mmol). The resulting yellow solution was stirred at 60 °C for 5 h before being reduced to dryness under vacuum. Yield: 0.076 g, 82%. ³¹P{¹H} NMR (CDCl₃): δ 37.2 (s), –18.3 (s) ppm; respective % ratio ca. 1:2. MS (FAB⁺): m/z 780 [M]⁺, 687 [M–4CO]⁺, 635 [FcCH₂N(CH₂PCy₂)₂]⁺, 199 [M–CH₂Fc]⁺.

Complex 3.38 was prepared in a similar manner to 3.37.

cis–CrCO₄{FeCH₂N(CH₂PAd)₂} 3.38 Phosphine 3.29 (0.055 g, 0.082 mmol) and Cr(CO)₄(nbd) (0.021 g, 0.083 mmol). Yield: Quantitative. ³¹P{¹H} NMR (CDCl₃): δ 31.7 (s), 29.9 (s) ppm; respective % ratio ca. 2:1. ¹H NMR (CDCl₃): δ 4.13 (s, 2H, C₅H₄), 4.08 (s, 5H, C₅H₅), 4.00 (s, 2H, C₅H₄), 3.68 (bs, 4H, CH₂P), 3.48 (bs, 2H, CH₂C₅H₄), 2.87 – 1.12 (m, 32H, Ad. cage H). FT–IR (KBr): ν CO 2006 (s), 1883 (s, b) cm⁻¹. MS (FAB⁺): m/z 835 [M]⁺, 723 [M–4CO]⁺, 199 [M–CH₂Fc]⁺.

{AuCl}₂{FeCH₂N(CH₂PPh₂)₂} 3.39 Phosphine 3.27 (0.102 g, 0.167 mmol) was added to a stirred solution of AuCl(tht) (0.107 g, 0.334 mmol) in CH₂Cl₂ (20 cm³). The solution was stirred in the dark for 0.5 h before the solvent was concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added to yield some cream precipitate. Hexane (25 cm³) was added and the resulting cream suspension stirred for a further 0.5 h in the dark. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.122 g, 68%. ³¹P{¹H} NMR (CDCl₃): δ 16.7 (s) ppm. MS (FAB⁺): m/z 1076 [M]⁺, 1075 [M–H]⁺, 1040 [M–Cl]⁺, 199 [CH₂Fc]⁺. Anal.
Calc. for C_{37}H_{35}NP_{2}FeAu_{2}Cl_{2}·0.25CH_{2}Cl_{2} requires C, 40.76; H, 3.26; N, 1.28. Found C, 40.82; H, 3.21; N, 1.25%.

6.7.11 Preparation of 3.40 – 3.42.

FeC\text{H}_2\text{N}(\text{H})\text{CO}_2\text{C(\text{CH}_3)_3} 3.40 Under a flow of nitrogen, FeCH\text{H}_2NH\text{H}_2 (0.208 g, 0.967 mmol) in degassed EtOH (15 cm\text{^3}) was added dropwise to ice cooled di-tert-butyldicarbonate (0.220 g, 0.978 mmol) over 10 min, the ensuing solution was stirred for a further 10 min at \textit{ca}. 0°C before warming back to RT, where stirring was continued for a further 1 d. The resulting orange solution was reduced to dryness under vacuum, re-dissolved in CH\text{2}Cl\text{2} (20 cm\text{^3}) and washed with NaOH solution (1 M, 20 cm\text{^3}). The organic layer was dried over MgSO\text{4}, filtered under gravity and reduced to dryness. The product was further purified by column chromatography on silica using petroleum ether and ethyl acetate (20:1) as eluent. Yield: 0.285 g, 93%. 1H NMR (CDCl\text{3}): \delta 4.62 (bs, 1H, NH), 4.11 (bs, 7H, C\text{5}H\text{5} and C\text{5}H\text{4}), 4.07 (s, 2H, C\text{5}H\text{4}), 3.93 (d, 2H, \textit{J_{HH}} 4.8 Hz, C\text{2}C\text{5}H\text{4}), 1.39 (s, 9H, CH\text{3}). FT–IR (KBr): \nu\text{NH} 3325, 1528, \nu\text{CO} 1686 cm\text{^{-1}}. MS (FAB\text{+}): m/z 315 [M]\text{+}, 259 [M–C\text{4}H\text{10}]\text{+}, 199 [CH\text{2}Fc]\text{+}. Anal. Calc. for C\text{16}H\text{21}O\text{2}NFe requires C, 60.97; H, 6.72; N, 4.44. Found C, 60.86; H, 7.04; N, 4.41%.

FeC\text{H}_2\text{N}(\text{PPh}_2)_2 3.42 Under a nitrogen atmosphere, triethylamine (0.300 cm\text{^3}, 2.13 mmol, freeze–thawed) was added to a stirred solution of FeCH\text{2}NH\text{2} (0.146 g, 0.679 mmol) in THF (15 cm\text{^3}, freeze–thawed). The orange solution was cooled to 0°C and ClP\text{Ph}_2 (0.250 cm\text{^3}, 1.36 mmol) added. The resulting suspension was stirred for 5 min. at 0°C before stirring for a further 18 h at RT. The suspension was filtered under nitrogen and the filtrate evaporated to dryness. Hexane (10 cm\text{^3}) was added and the resulting suspended orange solid stirred for 2 h. before being filtered in air, washed was EtOH (2 cm\text{^3}) and dried under reduced pressure. Yield: 0.106 g, 27%. 31P\text{\{^1H\}} NMR (CDCl\text{3}): \delta 59.4 ppm. 1H NMR (CDCl\text{3}): \delta 7.34 – 7.19 (m, 20H, arom. H), 4.18 (t, 2H, \textit{J_{PH}} 20.4 Hz, CH\text{2}N), 3.85 (s, 5H, C\text{5}H\text{5}), 3.80 (s, 2H, C\text{5}H\text{4}), 3.33 (s, 2H, C\text{5}H\text{4}). MS (FAB\text{+}): m/z 584 [M]^\text{+}, 384 [M–CH\text{2}C\text{5}H\text{4}]^\text{+}. Anal. Calc. for C\text{35}H\text{31}NP\text{2}Fe·0.75H\text{2}O requires C, 70.42; H, 5.44; N, 2.35. Found C, 70.37; H, 5.46; N, 2.38%.
6.7.12 Coordination chemistry of 3.42.

cis–PtCl₂[FeCH₂N(PPh₂)₂] 3.43. Phosphinoamine 3.42 (0.065 g, 0.11 mmol) was added to a stirred solution of PtCl₂(cod) (0.036 g, 0.096 mmol) in CH₂Cl₂ (10 cm³). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting yellow suspension stirred for a further 0.5 h. The yellow precipitate was filtered and dried under reduced pressure. Yield: 0.061 g, 75%. ³¹P{¹H} NMR (CH₂Cl₂): δ 17.8 ppm, ¹Jₚₚ 3290 Hz. ¹H NMR (CH₂Cl₂): δ 7.69 – 7.45 (m, 20H, arom. H), 3.84 (s, 5H, C₅H₅), 3.80 (s, 2H, CH₂C₅H₄), 3.76 (s, 2H, C₅H₄), 3.33 (s, 2H, C₅H₄). MS (FAB⁺): m/z 849 [M]+, 814 [M–Cl]+. Anal. Calc. for C₃₅H₃₁NP₂FePtCl₂·0.5CH₂Cl₂ requires C, 48.63; H, 3.65; N, 1.61. Found C, 48.43; H, 3.68; N, 1.64%.

6.7.13 Preparation of 3.44.

Ph₂PCH(Ph)CH₂CHO The tertiary phosphine Ph₂PCH(Ph)CH₂CHO was prepared following slight modification of a known method reported by Moiseev.²⁶⁴ Under a nitrogen atmosphere, diphenylphosphine (0.840 cm³, 4.83 mmol) was added dropwise to cinnamaldehyde (0.709 g, 5.31 mmol, freeze–thawed) at room temperature with vigorous stirring. The resulting mixture was heated briefly to 50 °C to give a pink solid which was triturated with degassed Et₂O (5 cm³), filtered, and washed with further degassed Et₂O before drying under vacuum. Yield: 1.31 g, 85%. ³¹P{¹H} NMR (CDCl₃): δ 0.0 ppm. ¹H NMR (CDCl₃): δ 9.48 (s, H, CHO), 7.58 – 6.95 (m, 15H, arom. H), 4.01 (m, H, PCH), 2.97 (m, H, CH₄H₈), 2.62 (m, H, CH₄H₈). FT–IR (KBr): νC=O 1711 cm⁻¹. MS (FAB⁺): m/z 318 [M]+, 319 [M+H]+, 335 [M+O]+. Anal. Calc. for C₂₁H₁₉OP requires C, 79.23; H, 6.02; N, 0.00. Found C, 79.21; H, 6.15; N, 0.11%.

Ph₂PCH(Ph)CH₂C(H)NCH₂Fc 3.44 Under a nitrogen atmosphere, an orange suspension of Ph₂PCH(Ph)CH₂CHO (0.517 g, 1.62 mmol) and FcCH₂NH₂ (0.350 g, 3.35 mmol) in MeOH (40 cm³, freeze–thawed) was refluxed for 4 h. The solvent was removed under reduced pressure. Yield: Quantitative. ³¹P{¹H} NMR (CDCl₃): δ 1.1 ppm. ¹H NMR (CDCl₃): δ 7.57 – 7.02 (m, 15H, arom. H), 7.36 (t, ³Jₓₓₓ 4.4 Hz, 1H, CHN), 4.01 (bs, 2H, C₅H₅), 3.96 (bs, 7H, C₅H₅ and CH₂Fc), 3.89 (bs, 1H, C₅H₅),
3.84 (bs, 1H, C₅H₄), 3.74 (m, 1H, PCH), 2.73 (m, 1H, CH₄H₈), 2.57 (m, 1H, CH₄H₈). FT–IR (KBr): νC=N 1667 (s) cm⁻¹. MS (FAB⁺): m/z 516 [M+H]⁺, 531 [M+O]⁺, 199 [CH₂Fc]⁺.

6.7.14 Coordination chemistry of 3.44.

Complex 3.45 was prepared in a similar manner to 3.43.

cis–PtCl₂{Ph₂PCH(Ph)CH₂C(H)NCH₂Fc} 3.45 PtCl₂(cod) (0.092 g, 0.25 mmol), 3.44 (0.200 g, 0.244 mmol) and CH₂Cl₂ (20 cm³). Yield: 0.182 g, 95%. ³¹P{¹H} NMR (CDCl₃): δ 12.3 ppm, ¹Jₚₚ 3745 Hz. ¹H NMR (CDCl₃): δ 8.37 (bs, 1H, CHN), 7.61 – 6.24 (15H, arom. H), 5.77 (d, ³Jₜₜ 13.2 Hz, 1H, CH₂H₈C₅H₄), 4.94 (d, ³Jₜₜ 13.6 Hz, 1H, CH₄C₅H₅C₅H₄), 4.54 (bs, 1H, C₅H₅), 4.21 (bs, 1H, C₅H₅), 4.17 (bs, 5H, C₅H₅), 4.12 (bs, 1H, C₅H₅), 4.04 (bs, 1H, C₅H₅), 3.25 (bt, ²Jₚₚ 10.4 Hz, 1H, PCH), 3.04 (m, 1H, CH₄H₈B), 2.74 (m, 1H, CH₂H₈B). FT–IR (KBr): νC=N 1640 (w) cm⁻¹. MS (FAB⁺): m/z 746 [M–Cl]⁺, 199 [M–CH₂Fc]⁺. Anal. Calc. for C₃₂H₃₀NPFePtCl₂ requires C, 49.19; H, 3.87; N, 1.79. Found C, 48.91; H, 4.20; N, 1.68%.

AuCl{Ph₂PCH(Ph)CH₂C(H)NCH₂Fc} 3.46 Phosphine 3.44 (0.069 g, 0.13 mmol) was added to a stirred solution of AuCl(tht) (0.042 g, 0.13 mmol) in CH₂Cl₂ (10 cm³). The solution was stirred in the dark for 0.5 h before the solvent was concentrated to ca. 2 cm³ under reduced pressure. Hexane (25 cm³) was added and the resulting yellow suspension was stirred for a further 0.5 h. The precipitate was filtered and dried under reduced pressure. Yield: 0.034 g, 34%. Characterisation by NMR eluded that 3.46 adopted a number of isomers in solution, as a result only regions for specific resonances have been suggested for the ¹H NMR data. ³¹P{¹H} NMR (CDCl₃): δ 45.2 (bs), 44.8 (s) ppm, respective % ratio 4.5:1. ¹H NMR (CDCl₃): δ 7.90 – 7.15 (m, arom. H and CHN), 4.41 – 4.35 (m, PCH), 4.15 – 3.83 (m, C₅H₅, C₅H₅ and CH₂C₅H₄), 3.12 (m, CH₄H₈B), 2.75 (m, CH₂H₈B). FT–IR (KBr): νC=N 1643 (w) cm⁻¹. MS (FAB⁺): m/z 747 [M⁺], 712 [M–Cl]⁺, 199 [M–CH₂Fc]⁺. Anal. Calc. for C₃₂H₃₀NPFeAuCl·1.5H₂O requires C, 49.60; H, 4.29; N, 1.81. Found C, 49.63; H, 3.95; N, 1.63%.
RuCl$_2$(p–cym){Ph$_2$PCH(Ph)CH$_2$C(H)NCH$_2$Fc} 3.47 Phosphine 3.44 (0.125 g, 0.243 mmol) was added to a stirred solution of [RuCl(μ–Cl)(p–cym)]$_2$ (0.075 g, 0.12 mmol) in CH$_2$Cl$_2$ (10 cm3). The solution was stirred for 0.5 h and the solvent concentrated to ca. 2 cm3 under reduced pressure. Hexane (25 cm3) was added and the resulting orange suspension stirred for a further 0.5 h. The precipitate was filtered and dried under reduced pressure. Yield: 0.058 g, 29%. 31P{1H} NMR (CDCl$_3$): δ 23.6 (s), 23.1 (s) and 21.0 ppm (s); respective % ratio ca. 4:3:1. FT–IR (KBr): ν$_{C=\text{N}}$ 1636 (w) cm$^{-1}$. MS (FAB$^+$): m/z 822 [M$^+$], 823 [M–H$^+$], 786 [M–Cl$^+$], 199 [M–CH$_2$Fc]$^+$. Anal. Calc. for C$_{42}$H$_{44}$NPFeRuCl$_2$·1.25CH$_2$Cl$_2$ requires C, 55.99; H, 5.05; N, 1.51. Found C, 55.72; H, 5.22; N, 1.63%.

6.7.15 Preparation of 3.48 – This involved a four step synthesis, as outlined below.

(C$_3$H$_6$CHO)$_2$Fe was prepared following slight modification to the known method.291 Under a nitrogen atmosphere, a freeze–thawed solution of ferrocene (5.005 g, 26.37 mmol) in Et$_2$O (60 cm3) was cooled to –78 °C and treated with 22.70 cm3 of 2.5 M n–BuLi (56.75 mmol) in hexane. The reaction mixture was stirred for 0.5 h at –78 °C before freeze–thawed tetramethylethylenediamine (TMEDA) (8.60 cm3, 56.7 mmol) was added dropwise. The subsequent suspension was stirred at –78 °C for a further 0.5 h before stirring for an additional 20 h at RT. DMF (6.50 cm3, 84.0 mmol, previously freeze–thawed and dried over CaH$_2$) was added dropwise to the reaction mixture at –78 °C. The resulting yellow suspension was stirred at –78 °C for a further 0.5 h before stirring for a subsequent 1.5 h at RT. The mixture was hydrolysed at –78 °C by the addition of H$_2$O (20 cm3). The organic phase was extracted into CH$_2$Cl$_2$ (60 cm3), dried over MgSO$_4$, and the solvent removed under reduced pressure. The product was purified by column chromatography, on silica using hexane : ethyl acetate (10:1) as eluent, to give shiny red crystals. Yield: 2.138 g, 34 %. 1H NMR (CDCl$_3$): δ 9.88 (s, 2H, CHO), 4.82 (s, 4H, C$_3$H$_4$), 4.61 (s, 4H, C$_3$H$_4$). FT–IR (KBr): ν$_{C=\text{O}}$ 1679 cm$^{-1}$. MS (FAB$^+$): m/z 242 [M$^+$], 265 [M+Na$^+$]. Anal. Calc. for C$_{12}$H$_{10}$O$_2$Fe requires: C, 59.54; H, 4.16; N, 0.00. Found: C, 59.41; H, 4.42; N, 0.12%.

The imine, (C$_3$H$_6$C(H)NCH$_2$)$_2$CH$_2$Fe, was prepared following a slight modification to the known preparation.265
(C₅H₄C(H)NCH₂)₂CH₂Fe 1,3-diaminopropane (0.21 cm³, 2.5 mmol) was added to a stirred solution of (C₅H₄CHO)₂Fe (0.600 g, 2.48 mmol) in absolute EtOH (50 cm³). The resulting solution was refluxed for 2 h and allowed to cool to RT to afford a deep red solution. The solution was concentrated to approximately 10 cm³ and hexane (20 cm³) added to give an orange precipitate. The resulting suspension was filtered and dried under reduced pressure to give an orange–brown solid. The organic product then extracted into CHCl₃ (30 cm³) and the solvent removed under reduced pressure. Yield: 0.333 g, 48%. ¹H NMR (CDCl₃): δ 7.21 (s, 2H, CHN), 4.51 (bs, 4H, C₅H₄), 4.33 (s, 4H, C₅H₄), 3.53 (vbs, 4H, NCH₂CH₂), 2.54 (bs, 2H, NCH₂CH₂). FT–IR (KBr): νC=N 1631 cm⁻¹. MS (FAB⁺): m/z 280 [M]⁺, 281 [M+H]⁺. Anal. Calc. for C₁₅H₁₆N₂Fe·0.25H₂O requires C, 63.29; H, 5.84; N, 9.84. Found C, 63.20; H, 5.67; N, 9.74%.

The amine, (C₅H₄CH₂N(H)CH₂)₂CH₂Fe, was prepared in a similar manner {FcCH₂N(H)CH₂}₂Fc.

(C₅H₄CH₂N(H)CH₂)₂CH₂Fe NaBH₄ (0.227 g, 5.88 mmol), (C₅H₄C(H)NCH₂)₂CH₂Fe (0.274 g, 0.978 mmol) and CH₂Cl₂:EtOH (50 cm³, 30:20). Yield: Quantitative. ¹H NMR (CDCl₃): δ 4.12 (s, 4H, C₅H₄), 4.02 (s, 4H, C₅H₄), 3.32 (s, 4H, CH₂C₅H₄), 2.98 (t, 4H, JHH 11 Hz, NCH₂CH₂), 2.51 (bs, 2H, NH), 1.66 (bm, 2H, JHH 10 Hz, NCH₂CH₂). FT–IR (KBr): νNH 3334, 3293 cm⁻¹. MS (FAB⁺): m/z 284 [M]⁺, 285 [M+H]⁺. Anal. Calc. for C₁₅H₂₀N₂Fe·0.33(CH₂Cl₂) requires C, 58.93; H, 6.67; N, 8.96. Found C, 59.26; H, 7.17; N, 8.63%.

C₁₀H₄Fe(CH₂N(CH₂PPh₂)CH₂)₂CH₂ 3.48 Under a nitrogen atmosphere, an orange solution of (C₅H₄CH₂N(H)CH₂)₂CH₂Fe (0.083 g, 0.29 mmol) and Ph₂PCH₂OH (0.132 g, 0.586 mmol) in MeOH (10 cm³) was refluxed for 4 d to yield an orange suspension upon cooling. The suspension was stirred for a further 18 h at RT before being concentrated under reduced pressure to ca. 2 cm³ and stirred for an additional 4 h to afford an oily solid. The remaining solution was cannulated off, before the oily brown solid was dried under reduced pressure. Yield 0.146 g, 73%. ³¹P{¹H} NMR (CDCl₃): –27.0 ppm. ¹H NMR (CDCl₃): δ 7.42–7.22 (m, 20H, arom. H), 3.93 (s, 4H, C₅H₄), 3.86 (s, 4H, C₅H₄), 3.49 (bs, 4H, CH₂C₅H₄), 3.30 (d, 4H, JPH 2.8 Hz,
NCH₃P), 2.92 (bs, 4H, NCH₂CH₃), 1.42 (bs, 2H, NCH₂CH₂). MS (FAB⁺): m/z 681 [M⁺], 495 [M–PPh₂]⁺.

6.8 Chapter 4 Experimental

6.8.1 Preparation of the precursor aldoxime, amine and 4.1.

(C₁₄H₉)C(H)NOH was prepared following a slight modification to the procedure previously reported by Schlögl for the preparation of FcC(H)NOH.²⁹⁰ Sodium acetate (5.462 g, 65.92 mmol) and hydroxylammonium hydrochloride (3.088 g, 43.99 mmol) were dissolved separately in the minimum amount of deionised water and were added to a stirred solution of 9–anthracencarboxaldehyde (4.672 g, 21.974 mmol) in EtOH (100 cm³). The resulting suspension was stirred at 60 °C for 6 h before the solvent was concentrated to ca. 10 cm³ under reduced pressure. EtOH (60 cm³) and Et₂O (200 cm³) were added and the resulting suspension stirred for a further 0.5 h before the suspended inorganic solid was filtered and washed with Et₂O. The combined filtrate and washes were combined and the solvent removed under reduced pressure. Yield: Quantitative. ¹H NMR (CDCl₃): δ 9.89 (s, 1H, CHN), 8.72 – 7.58 (m, 9H, arom. H), 8.19 (s, 1H, OH). FT–IR (KBr): νOH 3271, νC=N 1562 cm⁻¹. MS (FAB⁺): m/z 221 [M⁺].

(C₁₄H₉)CH₂NH₂ was prepared via a modified procedure to that reported by Beer for the preparation of FcCH₂NH₂.²⁴⁷ The aldoxime (C₁₄H₉)C(H)NOH (4.008 g, 18.12 mmol) was dissolved in dry THF (160 cm³) and an excess of lithium aluminum hydride (3.270 g, 83.58 mmol) added, portionwise with care. The resulting mixture was stirred under nitrogen for 6 h before dry toluene (160 cm³) was added followed by ethyl acetate (30 cm³) with caution. NaOH solution (5 M) was added dropwise until precipitation of inorganic solids was complete. The resulting mixture was filtered to yield an orange filtrate and a gummy solid residue. The residue was washed with copious amounts of toluene–MeOH (200 cm³, 80:20) and the combined filtrate and washes evaporated to dryness. Further inorganic impurities were removed by dissolution of the organic phase in CH₂Cl₂ followed by filtration and evaporation of the solvent. Attempts to obtain an analytically pure sample of (C₁₄H₉)CH₂NH₂ by column chromatography were hampered by the lack of any suitable solvent system.
Crude yield: 2.649 g, 71%. FT–IR (CH₂Cl₂ mull): νₙᵢ₇ 3360 and νᵢ₇ 2963 cm⁻¹. MS (FAB⁺): m/z 207 [M]⁺, 191 [M–NH₂]⁺.

(C₁₄H₉)CH₂N(CH₂PPh₂)₂ 4.1 Under a nitrogen atmosphere, a solution of (C₁₄H₉)CH₂NH₂ (0.224 g, 1.08 mmol) and Ph₂PCH₂OH (0.502 g, 2.16 mmol) in MeOH (20 cm³) was refluxed for 3 d to yield a small amount of suspended yellow solid. The solvent was concentrated to approximately 2 cm³ and the precipitate filtered and dried under reduced pressure. Yield: 0.145 g, 22%. ³¹P{¹H} NMR (CDCl₃): δ –28.1 ppm. ¹H NMR (CDCl₃): δ 8.60 – 6.97 (m, 29H, arom. H), 4.88 (s, 2H, (C₁₄H₉)CH₂N), 3.59 (d, 4H, 2JₚH 2.8 Hz, CH₂P). MS (FAB⁺): m/z 601 [M–3H]⁺, 418 [M–PPh₂]⁺ and 191 [(C₁₄H₉)CH₂]⁺.

6.8.2 Preparation of 4.2a.

C₁₀H₈O₂N(H)CH₂PPh₂ 4.2a Under a nitrogen atmosphere, a pale yellow solution of 4–methyl–7–amino–coumarin (0.101 g, 0.565 mmol) and Ph₂PCH₂OH (0.256 g, 1.14 mmol) in MeOH (20 cm³) was refluxed for 4 d to yield a pale yellow suspension. The suspension was stirred for a further 2 d at RT to give further precipitate. The solvent was concentrated to ca. 2 cm³ and the precipitate filtered and dried under reduced pressure. Yield 0.049 g, 23%. ³¹P{¹H} NMR (CDCl₃): δ –19.6 ppm. ¹H NMR (CDCl₃): δ 7.40 – 6.40 (m, 13H, arom. H), 5.92 (s, 1H, COCH), 4.20 (bs, 1H, NH), 3.81 (bs, 2H, CH₂P), 2.27 (s, 3H, CH₃). FT–IR (KBr): νₙᵢ₇ 3311, νCO 1697. Anal. Calc. for C₂₃H₂₀NO₂P·H₂O requires C, 70.58; H, 5.67; N, 3.58. Found: C, 70.86; H, 5.56; N, 3.86%.

6.8.3 Coordination chemistry of 4.1 and 4.2a.

Complex 4.3 and 4.4 were both prepared in a similar manner to 3.42.

cis–PtCl₂{(C₁₄H₉)CH₂N(CH₂PPh₂)₂} 4.3 PtCl₂(cod) (0.045 g, 0.12 mmol) in CH₂Cl₂ (10 cm³) and 4.1 (0.104 g, 0.124 mmol). Yield: 0.104 g, 99%. ³¹P{¹H} NMR (CDCl₃): δ –7.0 ppm, ¹JₚH 3416 Hz. ¹H NMR (CDCl₃): δ 8.38 – 7.00 (m, 19H, arom. H), 4.45 (s, 2H, (C₁₄H₉)CH₂N), 3.53 (m, 4H, ²JₚH 3.2 Hz, ³JₚH 36.0 Hz, CH₂P). MS
cis-\(\text{PtCl}_2\{\text{C}_{10}\text{H}_8\text{O}_2\text{N(H)}\text{CH}_2\text{PPh}_2\}_2 \) 4.4 \(\text{PtCl}_2(\text{cod}) \) (0.013 g, 0.035 mmol) and 4.2a (0.026 g, 0.070 mmol). Yield: 0.024 g, 68%. \(^{31}\text{P}\{^1\text{H}\} \text{NMR (CDCl}_3): \delta 6.3 \text{ ppm, } ^{1}\text{J}_{\text{PtP}} 3709 \text{ Hz. } ^1\text{H NMR (CDCl}_3): \delta 7.88 - 6.46 \text{ (m, 26H, arom. H), 5.95 (s, 2H, NH or COCH), 5.90 (s, 2H, NH or COCH), 4.24 (d, 4H, } ^{2}\text{J}_{\text{PH}} 6.4 \text{ Hz, CH}_2\text{P), 2.25 (s, 6H, CH}_3\text{). FT–IR (KBr): } \nu_{\text{NH}} 3355, \nu_{\text{CO}} 1711, \nu_{\text{PtCl}} 318, 282 \text{ cm}^{-1}. \text{ MS (FAB\(^{+}\)): m/z 1013 }[\text{M}]^{+}, 977 [\text{M–Cl}]^{+}. \text{ Anal. Calc. for C}_{46}\text{H}_{40}\text{N}_2\text{O}_4\text{P}_2\text{PtCl}_2\cdot2\text{H}_2\text{O requires C, 52.68; H, 4.22; N, 2.67. Found: C, 52.24; H, 3.90; N, 2.55%.

6.8.4 Preparation of the ditertiary phosphines 4.22 – 4.29.

The synthesis of the precursor benzyl methylcarbamates and the 2–aminoacetamides are described as follows. The benzyl methylcarbamates 4.5 – 4.13 were prepared following the known procedure,\(^{271}\) unless otherwise stated.

\(\text{PhNHCOCH}_2\text{NHCOCOCH}_2\text{Ph} \) 4.5 Aniline (1.510 g, 16.21 mmol), dicyclohexylcarbodiimide (3.677 g, 17.82 mmol) and n–carbobenzyloxyglycine (3.392 g, 16.21 mmol). Yield: 3.098 g, 67%. \(^1\text{H NMR (CD}_3\text{)SO: } \delta 9.96 \text{ (s, 1H, CH}_2\text{NHCO), 7.60 - 7.03 \text{ (m, 10H, arom. H), 7.55 \text{ (t, 1H, } ^{4}\text{J}_{\text{HH}} 6.0 \text{ Hz, PhNHCO), 5.06 \text{ (s, 2H, CO}_2\text{CH}_2\text{Ph), 3.81 \text{ (d, 2H, } ^{4}\text{J}_{\text{HH}} 6.0 \text{ Hz, COCH}_2\text{NH). FT–IR (KBr): } \nu_{\text{NH}} 3341, 1536, \nu_{\text{CO}} 1673 \text{ cm}^{-1}. \text{ EI–MS: m/z 284 }[\text{M}]^{+}. \text{ Anal. Calc. for C}_{16}\text{H}_{16}\text{N}_2\text{O}_3 \text{ requires C, 67.59; H, 5.67; N, 9.85. Found C, 67.16; H, 5.67; N, 9.41%.

\(\text{(C}_{10}\text{H}_7)\text{NHCOCOCH}_2\text{Ph} \) 4.6 Naphthylamine (3.001 g, 20.96 mmol), dicyclohexylcarbodiimide (4.671g, 22.64 mmol) and n–carbobenzyloxyglycine (4.391 g, 20.99 mmol). Yield: 6.459 g, 92%. \(^1\text{H NMR (CD}_3\text{)SO: } \delta 9.96 \text{ (s, 1H, CH}_2\text{NH/CO), 8.09 - 7.31 \text{ (m, 13H, arom. H and NH), 5.09 \text{ (s, 2H, CO}_2\text{CH}_2\text{Ph), 4.00 \text{ (d, 2H, } ^{4}\text{J}_{\text{HH}} 6.0 \text{ Hz, COCH}_2\text{NH). FT–IR (KBr): } \nu_{\text{NH}} 3252, 1544, \nu_{\text{CO}} 1656 \text{ cm}^{-1}. \text{ MS (FAB}\(^{+}\)): m/z 334 }[\text{M}]^{+}. \text{ Anal. Calc. for C}_{20}\text{H}_{18}\text{N}_2\text{O}_3\cdot0.25\text{H}_2\text{O requires C, 70.89; H, 5.50; N, 8.27. Found C, 71.12; H, 5.49; N, 8.54%.

261
Dicyclohexylcarbodiimide (1.176 g, 5.700 mmol) and n–carbobenzyloxyglycine (1.084 g, 5.181 mmol) were added to a stirred solution of 2–aminoanthracene (1.001 g, 5.180 mmol) in THF (100 cm³). The solution was refluxed at 85 °C for ca. 23 h before cooling to RT. The resulting precipitate was filtered under gravity and the filtrate taken to dryness under reduced pressure to yield a dark green solid. The solid was recrystallised by addition of ethyl acetate (100 cm³) followed by addition of light petroleum (100 cm³) and stirred for 30 min. The suspension was filtered and dried under reduced pressure to yield a dark green solid. Yield: 0.431 g, 22%. ¹H NMR ((CD₃)₂SO: δ 10.25 (s, 1H, CH₂N), 8.50 – 7.32 (m, 14H, arom. H), 7.63 (t, 1H, JH₃ 6.0 Hz, C₁₄H₉NCO), 5.09 (s, 2H, CO₂CH₂Ph), 3.91 (d, 2H, JH₂ 6.0 Hz, COCH₂N). FT–IR (KBr): νNH 3319, 1540, νCO 1672 cm⁻¹. MS (FAB⁺): m/z 384 [M]⁺.

2–aminofluorene (1.009 g, 5.567 mmol), dicyclohexylcarbodiimide (1.264 g, 6.126 mmol) and n–carbobenzyloxyglycine (1.165 g, 5.569 mmol). The resulting deep red solution was stirred for 7 h. Yield: 2.209 g, 60%. ¹H NMR ((CD₃)₂SO: δ 10.09 (s, 1H, CH₂N), 7.92 – 7.25 (m, 12H, arom. H), 7.61 (t, 1H, JH₃ 6.0 Hz, C₁₃H₉N), 5.07 (s, 2H, CO₂CH₂Ph), 3.91 (s, 2H, CH₂), 3.85 (d, JH₂ 6.0 Hz, COCH₂N). FT–IR (KBr): νNH 3338, 1541, νCO 1675 cm⁻¹. MS (FAB⁺): m/z 372 [M]⁺. Anal. Calc. for C₂₃H₂₀N₂O₃·H₂O requires C, 73.39; H, 5.89; N, 7.44. Found C, 73.02; H, 5.73; N, 7.85%.

N–carbobenzyloxyglycine (1.858 g, 8.882 mmol) and dicyclohexylcarbodiimide (2.015 g, 9.781 mmol) were added to a stirred solution of 2–aminobiphenyl (1.503 g, 8.884 mmol) in THF (100 cm³). The resulting deep red solution was stirred at RT for 4 h to yield a white suspension. The suspension was filtered under gravity and the resulting filtrate evaporated to dryness under reduced pressure, to yield a brown solid. Ethyl acetate (100 cm³) and light petroleum (100 cm³) were added and the resulting suspension was stirred for 0.5 h to yield a fine solid. The solid was filtered under gravity and the filtrate taken to dryness under reduced pressure to yield a viscous orange oil. The solid was characterised by ¹H NMR and IR to be N,N’–dicyclohexylurea, the known byproduct of the peptide coupling. Compound 4.9 was recrystallised from the viscous orange oil by addition of ethyl acetate (10 cm³) and petroleumether (50 cm³). The resulting
suspension was filtered and dried under reduced pressure. Yield 2.429 g, 76%. 1H NMR ((CD$_3$)$_2$SO: δ 9.10 (s, 1H, CH$_2$NCO), 7.71 – 7.26 (m, 10H, arom. H), 7.51 (bs, 1H (C$_{12}$H$_9$NHO)), 5.03 (s, 2H, CO$_2$CH$_2$Ph), 3.66 (d, 2H, 4J$_{HH}$ 5.6 Hz, COCH$_2$NH). FT–IR (KBr): $\nu$$_{NH}$ 3371, 3317, 1518, $\nu$$_{CO}$ 1674 cm$^{-1}$. MS (FAB$^-$): m/z 360 [M]$^-$. Anal. Calc. for C$_{22}$H$_{20}$N$_2$O$_3$ requires C, 72.11; H, 5.59; N, 7.65. Found C, 72.04; H, 5.99; N, 8.25%.

(C$_{14}$H$_{12}$N)NHCOCH$_2$NHCOOCH$_2$Ph 4.10 3–amino–9–ethylcarbazole (2.507 g, 11.92 mmol), dicyclohexylcarbodiimide (2.701 g, 13.09 mmol) and n–carbobenzyloxyglycine (2.495 g, 11.93 mmol). Yield: 3.644 g, 76%. 1H NMR ((CD$_3$)$_2$SO: δ 9.98 (s, 1H, CH$_2$NCO), 8.46 – 7.05 (m, 12H, arom. H), 7.45 (t, 1H, 4J$_{HH}$ 7.2 Hz, (C$_{14}$H$_{12}$)NHCO), 5.08 (s, 2H, CO$_2$CH$_2$Ph), 4.41 (q, 2H, 3J$_{HH}$ 7.2 Hz, CH$_2$CH$_3$), 3.87 (d, 4J$_{HH}$ 6.0 Hz, COCH$_2$NH), 1.30 (t, 3H, 3J$_{HH}$ 7.6 Hz, CH$_2$CH$_3$). FT–IR (KBr): $\nu$$_{NH}$ 3317, 1561, $\nu$$_{CO}$ 1678 cm$^{-1}$. MS (FAB$^+$): m/z 401 [M]$^+$. Anal. Calc. for C$_{24}$H$_{23}$N$_3$O$_3$·0.5H$_2$O requires C, 70.23; H, 5.89; N, 10.24. Found C, 70.62; H, 5.47; N, 10.03%.

(C$_{10}$H$_7$O$_2$)NHCOCH$_2$NHCOOCH$_2$Ph 4.11 7–amino–4–methylcoumarin (3.001 g, 18.74 mmol), dicyclohexylcarbodiimide (4.670 g, 22.63 mmol) and n–carbobenzyloxyglycine (4.380 g, 20.94 mmol). Yield: 2.020 g, 32%. 1H NMR ((CD$_3$)$_2$SO: δ 10.56 (s, 1H, CH$_2$NCO), 8.06 – 7.07 (m, 8H, arom. H), 7.67 (t, 1H, 4J$_{HH}$ 5.6 Hz, (C$_{10}$H$_7$O$_2$)NHCO), 6.32 (s, 1H, COCH), 5.17 (s, 2H, CO$_2$CH$_2$Ph), 3.92 (d, 4J$_{HH}$ 5.6 Hz, COCH$_2$NH), 2.46 (s, 3H, CH$_3$). FT–IR (KBr): $\nu$$_{NH}$ 3324, 1583, $\nu$$_{CO}$ 1694, 1625 cm$^{-1}$. MS (FAB$^+$): m/z 367 [M+H]$^+$, 366 [M]$^+$.

FeCH$_2$NHCOCH$_2$NHCOOCH$_2$Ph 4.12 To a solution of aminomethylferrocene (0.190 g, 0.883 mmol) in THF (10 cm3) was added dicyclohexylcarbodiimide (0.203 g, 0.974 mmol) and n–carbobenzyloxyglycine (0.188 g, 0.885 mmol) both in THF (5 cm3 each). The mixture was stirred at RT for 4 h. The insoluble N,N’–dicyclohexylurea was removed by filtration and the solvent replaced by dichloromethane (5 cm3). Addition of hexane afforded a yellow suspension which was stirred for 0.5 h. The suspended solid was filtered and dried under reduced pressure. Yield: 0.263 g, 73%. 1H NMR CDCl$_3$: δ 7.28 – 7.26 (m, 5H, arom. H), 6.21 (bs, 1H, NH), 5.38 (bs, 1H, NH), 5.06 (s, 2H, CO$_2$CH$_2$Ph), 4.09 – 4.07 (m, 11H, ...

(C₁₃H₈N)NHCOCH₂NHCOOCH₂Ph 4.13 9–fluorenone hydrazone (1.194 g, 6.145 mmol), dicyclohexylcarbodiimide (1.395 g, 6.760 mmol) and n–carbobenzyloxyglycine (1.286 g, 6.149 mmol). Following the second addition of ethyl acetate and petroleumether and subsequent filtration, 4.13 was obtained as an orange solid upon evaporation of the filtrate. Yield: 1.829 g, 77%. ¹H NMR ((CD₃)₂SO: δ 8.79 – 7.30 (m, 14H, arom. H and (C₁₃H₈N)NHCO), 5.08 (s, 2H, CO₂CH₂Ph), 3.86 (d, 2H, JHH 6.0 Hz, COCH₂NH). FT–IR (KBr): νₗH 3326, 1551, νCO 1695 cm⁻¹. MS (FAB⁺): m/z 386 [M+H]⁺.

The substituted 2–aminoacetamide 4.14 was prepared following a slight modification to the known procedure.²⁷¹

PhNHCOCH₂NH₂ 4.14 Cyclohexene (2.6 cm³, in excess of the molar proportion required) and activated palladium on charcoal (0.252 g, palladium 10% w/w) were added to a stirred suspension of 4.5 (1.003 g, 3.528 mmol) in absolute EtOH (50 cm³). The resulting black suspension was refluxed for 6 h at 120 °C, filtered hot under gravity and the filtrate evaporated under reduced pressure. Yield 0.521 g, 98%. ¹H NMR ((CD₃)₂SO): δ 7.58 – 6.68 (m, 5H, arom. H), 3.33 (bs, 2H, COCH₂NH₂). FT–IR (KBr): νₗH 3341, 3322, 1561, νCO 1655 cm⁻¹. EI–MS: m/z 150 [M].

The substituted 2–aminoacetamides 4.15 – 4.21 were prepared in a similar manner to 4.14 unless otherwise stated.

(C₁₀H₇)NHCOCH₂NH₂ 4.15 Compound 4.6 (1.001 g, 2.994 mmol), cyclohexene (2.6 cm³, in excess of the molar proportion required) and activated palladium on charcoal (0.248 g, palladium 10% w/w). Yield 0.547 g, 91%. ¹H NMR ((CD₃)₂SO): δ 8.11 – 7.53 (m, 7H, arom. H), 3.60 (s, 2H, COCH₂NH₂). FT–IR (KBr): νₗH 3350, 3264, 1553, νCO 1696 cm⁻¹. MS (FAB⁺): m/z 200 [M]⁺ and 201 [M+H]⁺.
(C\textsubscript{14}H\textsubscript{9})NHCO\textsubscript{2}NH\textsubscript{2} 4.16 Compound 4.7 (0.394 g, 1.03 mmol), cyclohexene (2.6 cm3, in excess of the molar proportion required) and activated palladium on charcoal (0.250 g, palladium 10% w/w). The resulting black suspension was refluxed for 19 h (118°C). Yield: 0.265 g, Quantitative. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 8.53 – 7.45 (m, 10H, arom. H), 3.30 (bs, 2H, COCH\textsubscript{2}NH\textsubscript{2}). FT–IR (KBr): ν\textsubscript{NH} 3326, 1574, ν\textsubscript{CO} 1626 cm–1. MS (FAB+): m/z 250 [M]+.

(C\textsubscript{13}H\textsubscript{9})NHCO\textsubscript{2}NH\textsubscript{2} 4.17 Compound 4.8 (0.998 g, 2.69 mmol), cyclohexene (2.6 cm3, in excess of the molar proportion required) and activated palladium on charcoal (0.252 g, palladium 10% w/w). The resulting black suspension was refluxed for 17 h (118°C). Yield: 0.565 g, 88%. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 7.97 – 7.24 (m, 7H, arom. H), 3.90 (s, 2H, CH\textsubscript{2}), 3.30 (bs, 2H, COCH\textsubscript{2}NH\textsubscript{2}). FT–IR (KBr): ν\textsubscript{NH} 3395, 3255, 1531, ν\textsubscript{CO} 1668 cm–1. MS (FAB+): m/z 238 [M]+, 239 [M+H]+. Anal. Calc. for C\textsubscript{15}H\textsubscript{14}N\textsubscript{2}O·0.5H\textsubscript{2}O requires C, 72.86; H, 6.11; N, 11.33. Found C, 73.40; H, 6.11; N, 11.32%.

(C\textsubscript{12}H\textsubscript{9})NHCO\textsubscript{2}NH\textsubscript{2} 4.18 Compound 4.9 (1.002 g, 2.779 mmol), cyclohexene (2.6 cm3, in excess of the molar proportion required) and activated palladium on charcoal (0.250 g, palladium 10% w/w). Yield: 0.599 g, 95%. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 8.35 – 7.13 (m, 9H, arom. H), 3.14 (s, 2H, COCH\textsubscript{2}NH\textsubscript{2}). FT–IR (KBr): ν\textsubscript{NH} 3393, 3226, 1521, ν\textsubscript{CO} 1656 cm–1. MS (FAB+): m/z 227 [M+H]+.

(C\textsubscript{13}H\textsubscript{12}N)NHCO\textsubscript{2}NH\textsubscript{2} 4.19 Compound 4.10 (1.009 g, 2.513 mmol), cyclohexene (2.6 cm3, in excess of the molar proportion required) and activated palladium on charcoal (0.252 g, palladium 10% w/w). Yield: 0.623 g, 93%. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 8.45 – 7.16 (m, 7H, arom. H), 4.41 (q, 2H, 3J\textsubscript{HH} 7.2 Hz, CH\textsubscript{2}CH\textsubscript{3}), 3.30 (bs, 2H, COCH\textsubscript{2}NH\textsubscript{2}), 1.27 (t, 3H, 3J\textsubscript{HH} 6.8 Hz, CH\textsubscript{2}CH\textsubscript{3}). FT–IR (KBr): ν\textsubscript{NH} 3385, 3278, 1590, ν\textsubscript{CO} 1658 cm–1. MS (FAB+): m/z 267 [M]+.

(C\textsubscript{10}H\textsubscript{7}O\textsubscript{2})NHCO\textsubscript{2}NH\textsubscript{2} 4.20 Cyclohexene (1.3 cm3), activated palladium on charcoal (0.125 g, palladium 10% w/w) and 4.11 (0.502 g, 2.161 mmol). The resulting black suspension was refluxed for 1 h (118°C). Yield: 0.258 g, 83%. 1H NMR ((CD\textsubscript{3})\textsubscript{2}SO): δ 7.89 – 7.61 (m, 3H, arom. H), 6.31 (s, 1H, COCH), 3.40 (s, 2H,
COCH$_2$N), 2.45 (s, 3H, CH$_3$). FT–IR (KBr): ν_{NH} 3325, 1589, ν_{CO} 1686, 1624 cm$^{-1}$. MS (FAB$^+$): m/z 233 [M+H]$^+$.

FeCH$_2$NHCOC$_2$NH$_2$ 4.21 Compound 4.12 (0.518 g, 1.272 mmol), cyclohexene (1.6 cm3, in excess of the molar proportion required) and activated palladium on charcoal (0.157 g, palladium 10% w/w). The resulting black suspension was refluxed for 1 h (110°C), under a nitrogen atmosphere. Yield: 0.223 g, 92%. 1H NMR ((CD$_3$)$_2$SO): δ 7.49 (bs, 1H, NH), 4.12 – 4.05 (bm, 9H, C$_5$H$_5$ and C$_5$H$_4$), 3.51 – 3.41 (bm, 4H, CH$_2$). FT–IR (KBr): ν_{NH} 3325, 1574, ν_{CO} 1628 cm$^{-1}$. MS (FAB$^+$): m/z 272 [M]$^+$.

PhNHCOCH$_2$N(CH$_2$PPh$_2$)$_2$ 4.22 Under a nitrogen atmosphere, a solution of 4.14 (0.108 g, 0.719 mmol) and Ph$_2$PCH$_2$OH (0.365 g, 1.52 mmol) in MeOH (20 cm3) was stirred for 23 h. The solution was concentrated to ca. 5 cm3 under reduced pressure and the resulting cream precipitate filtered and dried under reduced pressure. Yield: 0.252 g, 64%. 31P{$_1$H} NMR (CDCl$_3$): δ –26.4 ppm. 1H NMR (CDCl$_3$): δ 8.13 (s, 1H, NH), 7.47 – 6.83 (m, 25H, arom. H), 3.67 (s, 4H, CH$_2$P), 3.66 (s, 2H, COCH$_2$N). FT–IR (KBr): ν_{NH} 3300, 1519, ν_{CO} 1677 cm$^{-1}$. Anal. Calc. for C$_{34}$H$_{32}$N$_2$O.P$_2$ requires C, 74.71; H, 5.90; N, 5.12. Found C, 74.76; H, 5.86; N, 4.90%.

Unless otherwise stated phosphines 4.23 – 4.29 were prepared in a similar manner to 4.22.

(C$_{10}$H$_7$)NHCOCH$_2$N(CH$_2$PPh$_2$)$_2$ 4.23 Compound 4.15 (0.157 g, 0.786 mmol), Ph$_2$PCH$_2$OH (0.355 g, 1.48 mmol) and stirred for 21 h. Yield: 0.337 g, Quantitative. 31P{$_1$H} NMR (CDCl$_3$): δ –26.3 ppm. 1H NMR (CDCl$_3$): δ 8.67 (s, 1H, NH), 7.92 – 6.91 (m, 27H, arom. H), 3.84 (s, 2H, COCH$_2$N), 3.74 (d, 4H, 2J$_{PH}$ 3.6 Hz, CH$_2$P). FT–IR (KBr): ν_{NH} 3319, 1522, ν_{CO} 1684 cm$^{-1}$.

(C$_{14}$H$_9$)NHCOCH$_2$NHC$_2$PPh$_2$ 4.24a Under a nitrogen atmosphere, a solution of Ph$_2$PCH$_2$OH in MeOH (10 cm3) was added dropwise, over a period of 40 min via a pressure equalizing dropping funnel, to a stirred solution of 4.16 in MeOH (10 cm3). The resulting solution was stirred at RT for 2 h to yield a white precipitate which was
filtered and dried under reduced pressure. Yield: 0.025 g, 15%. \(^{31}P\{^1H\} \) NMR ((CD\(_3\))\(_2\)SO): \(\delta -21.6 \) ppm. \(^1\)H NMR ((CD\(_3\))\(_2\)SO): \(\delta 10.06 \) (s, 1H, NH), 8.55 – 7.45 (m, 20H, arom. H and NH), 3.61 (s, 2H, COCH\(_3\)N), 3.55 (d, 2H, \(^2J_{PH} \) 3.2 Hz, CH\(_2\)P). FT–IR (KBr): \(\nu_{NH} \) 3317, 3222, 1513, \(\nu_{CO} \) 1664 cm\(^{-1}\). Attempts to obtain an ideal elemental analysis result were unsuccessful: Anal. Calc. for C\(_{29}\)H\(_{22}\)N\(_2\)OP\(\cdot\)1.25H\(_2\)O requires C, 73.95; H, 5.88; N, 5.95. Found C, 73.94; H, 5.37; N, 5.69%.

(C\(_{13}\)H\(_9\))NHCOCH\(_2\)N(CH\(_2\)PPh\(_2\))\(_2\) 4.25 Compound 4.17 (0.334 g, 1.40 mmol), Ph\(_2\)PCH\(_2\)OH (0.675 g, 2.81 mmol) and stirred for 17 h. Yield: 0.654 g, 75%. \(^{31}P\{^1H\} \) NMR (CDCl\(_3\)): \(\delta -26.3 \) ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta 8.17 \) (s, 1H, NH), 7.63 – 6.60 (m, 27H, arom. H), 3.72 (s, 2H, CH\(_2\)), 3.62 (s, 4H, CH\(_2\)P), 3.61 (s, 2H, CH\(_2\)). FT–IR (KBr): \(\nu_{NH} \) 3314, 1500, \(\nu_{CO} \) 1687 cm\(^{-1}\). Anal. Calc. for C\(_{41}\)H\(_{36}\)N\(_2\)OP\(_2\)\(\cdot\)0.5H\(_2\)O requires C, 76.50; H, 5.79; N, 4.35. Found C, 76.88; H, 5.41; N, 4.16%.

(C\(_{12}\)H\(_9\))NHCOCH\(_2\)N(CH\(_2\)PPh\(_2\))\(_2\) 4.26 Compound 4.18 (0.101 g, 0.445 mmol), Ph\(_2\)PCH\(_2\)OH (0.209 g, 0.888 mmol), stirred for 22 h. Yield: Quantitative. \(^{31}P\{^1H\} \) NMR (CDCl\(_3\)): \(\delta -28.6 \) ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta 8.31 \) (s, 1H, NH), 7.86 – 6.94 (m, 29H, arom. H), 3.47 (s, 2H, COCH\(_2\)N), 3.32 (d, 4H, \(^2J_{PH} \) 2.4 Hz, CH\(_2\)P). FT–IR (KBr): \(\nu_{NH} \) 3312, 1519, \(\nu_{CO} \) 1651 cm\(^{-1}\).

(C\(_{14}\)H\(_{12}\)N)NHCOCHN(CH\(_2\)PPh\(_2\))\(_2\) 4.27 Compound 4.19 (0.203 g, 0.801 mmol), Ph\(_2\)PCH\(_2\)OH (0.398 g, 1.66 mmol), stirred for 17 h. Yield: 0.410 g, 77%. \(^{31}P\{^1H\} \) NMR (CDCl\(_3\)): \(\delta -26.3 \) ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta 8.24 \) (s, 1H, NH), 8.04 – 7.14 (m, 27H, arom. H), 4.32 (q, 2H, \(^3J_{HH} \) 7.2 Hz, CH\(_2\)CH\(_3\)), 3.73 (s, 2H, CH\(_2\)), 3.72 (s, 2H, CH\(_2\)), 3.71 (s, 2H, CH\(_2\)), 1.40 (t, 3H, \(^3J_{HH} \) 7.2 Hz, CH\(_2\)CH\(_3\)). FT–IR (KBr): \(\nu_{NH} \) 3282, 1532, \(\nu_{CO} \) 1677 cm\(^{-1}\). Anal. Calc. for C\(_{42}\)H\(_{36}\)N\(_3\)OP\(_2\)\(\cdot\)0.5H\(_2\)O requires C, 74.99; H, 5.99; N, 6.25. Found C, 75.37; H, 6.00; N, 6.34%.

(C\(_{10}\)H\(_7\)O\(_2\))NHCOCH\(_2\)N(CH\(_2\)PPh\(_2\))\(_2\) 4.28 Ph\(_2\)PCH\(_2\)OH (0.200 g, 0.926 mmol), 4.20 (0.096 g, 0.42 mmol), stirred for 3 h. Yield: 0.149 g, 57%. \(^{31}P\{^1H\} \) NMR (CDCl\(_3\)): \(\delta -26.2 \) ppm. \(^1\)H NMR (CDCl\(_3\)): \(\delta 8.32 \) – 6.44 (m, 23H, arom. H), 6.18 (s, 1H, COCH), 4.10 (bs, 1H, NH), 3.71 (s, 2H, COCH\(_2\)N), 3.67 (d, 4H, \(^2J_{PH} \) 5.2 Hz, CH\(_2\)P), 2.39 (s, 3H, CH\(_3\)). FT–IR (KBr): \(\nu_{NH} \) 3314, 1577, \(\nu_{CO} \) 1717, 1685 cm\(^{-1}\).
FcNHCOCH₂N(CH₂PPh₂)₂ 4.29 Compound 4.21 (0.100 g, 0.367 mmol), Ph₂PCH₂OH (0.178 g, 0.741 mmol), stirred at reflux for 10 d and solvent evaporated under reduced pressure. Attempts to obtain an analytically pure sample of 4.29 were hampered by incomplete reaction. 31P{¹H} NMR (CDCl₃): δ –27.0 ppm. MS (FAB⁺): m/z 667 [M⁺], 199 [CH₂Fc]⁺.

5.8.5 Coordination chemistry of 4.22 – 4.28.

Complexes 4.30 – 4.37 were prepared in a similar manner to 3.42.

cis–PtCl₂{PhNHCOCH₂N(CH₂PPh₂)₂} 4.30 Phosphine 4.22 (0.091 g, 0.17 mmol) and PtCl₂(cod) (0.062 g, 0.17 mmol) in CH₂Cl₂ (20 cm³). Yield: 0.132 g, 97%. 31P{¹H} NMR (CDCl₃): δ –6.4 ppm, ¹JPtP 3411 Hz. ¹H NMR (CDCl₃): δ 7.85 – 6.86 (m, 25H, arom. H), 7.64 (s, 1H, NH), 3.76 (dd, 4H, ²JPH 2.0 Hz, ³JPH 15.2 Hz, CH₂PPt), 3.41 (s, 2H, COCH₂N). FT–IR (KBr): νₕ (NH) 3301, 1525, νₕ (CO) 1684, νₕ (PtCl) 314, 290 cm⁻¹. MS (FAB⁺): m/z 777 [M–Cl]⁺. Anal. Calc. for C₃₄H₃₂N₂OP₂PtCl₂·1.5CH₂Cl₂ requires C, 45.36; H, 3.75; N, 2.99. Found C, 45.74; H, 3.91; N, 2.55%.

cis–PtCl₂{(C₁₀H₇)NHCOCH₂N(CH₂PPh₂)₂} 4.31 Phosphine 4.23 (0.103 g, 0.173 mmol) and PtCl₂(cod) (0.065 g, 0.17 mmol). Yield: 0.149 g, Quantitative. 31P{¹H} NMR (CDCl₃): δ –5.0 ppm, ¹JPtP 3416 Hz. ¹H NMR (CDCl₃): δ 8.06 (s, 1H, NH), 7.88 – 6.98 (m, 27H, arom. H), 3.75 (dd, 4H, ²JPH 2.8 Hz, ³JPH 16.8 Hz, CH₂PPt), 3.55 (s, 2H, COCH₂N). FT–IR (KBr): νₕ (NH) 3280, 1528, νₕ (CO) 1684, νₕ (PtCl) 314, 291 cm⁻¹. MS (FAB⁺): m/z 827 [M–Cl]⁺. Anal. Calc. for C₃₈H₃₄N₂OP₂PtCl₂·CH₂Cl₂ requires C, 49.43; H, 3.83; N, 2.96. Found C, 49.17; H, 4.08; N, 2.68%.

cis–PtCl₂{(C₁₃H₉)NHCOCH₂N(CH₂PPh₂)₂} 4.32 Phosphine 4.25 (0.107 g, 0.169 mmol) and PtCl₂(cod) (0.061 g, 0.162 mmol). Yield: 0.145 g, 95%. 31P{¹H} NMR (CDCl₃): δ –8.0 ppm, ¹JPtP 3406 Hz. ¹H NMR (CDCl₃): δ 8.74 (s, 1H, NH), 7.86 – 6.99 (m, 29H, arom. H), 3.88 (dd, 4H, ²JPH 1.2 Hz, ³JPH 16.8 Hz, CH₂PPt), 3.80 (s, 2H, CH₂), 3.49 (s, 2H, CH₂). FT–IR (KBr): νₕ (NH) 3305, 1529, νₕ (CO) 1675, νₕ (PtCl) 313, 291 cm⁻¹. MS (FAB⁺): m/z 865 [M–Cl]⁺, 829 [M–2Cl]⁺. Anal. Calc. for...
cis–PtCl₂{[(C₁₂H₀)NHC(O)CH₂]N(CH₂PPh₂)₂} 4.33 Phosphine 4.26 (0.051 g, 0.058 mmol) and PtCl₂(cod) (0.022 g, 0.059 mmol). Yield: 0.037 g, 72%. ³¹P{¹H} NMR (CDCl₃): δ –11.1 ppm, ¹J₃P-Pt 3393 Hz. ¹H NMR (CDCl₃): δ 8.43 (s, 1H, NH), 7.73 – 7.07 (m, 29H, arom. H), 3.64 (bm, 4H, ³J₃P-Pt 18.0 Hz, CH₂PPh₂), 3.23 (s, 2H, COCH₂N). FT–IR (KBr): ν NH 3285, 1512, ν CO 1680, ν PtCl 310, 283 cm⁻¹. MS (FAB⁺): m/z 853 [M–Cl]⁺. Anal. Calc. for C₄₁H₃₆N₂O₂P₂PtCl₂·0.5H₂O requires C, 53.60; H, 4.17; N, 3.05. Found C, 53.72; H, 4.13; N, 2.96%.

cis–PtCl₂{[(C₁₄H₁₂N)NHC(O)CH₂]N(CH₂PPh₂)₂} 4.34 Phosphine 4.27 (0.102 g, 0.153 mmol) and PtCl₂(cod) (0.570 g, 0.152 mmol). Yield: 0.124 g, 87%. ³¹P{¹H} NMR (CDCl₃): δ –9.3 ppm, ¹J₃P-Pt 3405 Hz. ¹H NMR (CDCl₃): δ 8.24 (s, 1H, NH), 8.04 – 7.16 (m, 27H, arom. H), 4.32 (q, 2H, ³J₃H-H 7.2 Hz, CH₂CH₃), 3.73 (s, 2H, CH₃), 3.72 (s, 2H, CH₂), 3.71 (s, 2H, CH₂), 1.40 (s, 3H, ³J₃H-H 7.2 Hz, CH₂CH₃). FT–IR (KBr): ν NH 3345, 1531, ν CO 1677, ν PtCl 316, 296 cm⁻¹. MS (FAB⁺): m/z 929 [M]⁺, 894 [M–Cl]⁺. Anal. Calc. for C₄₆H₃₈N₃O₃P₂PtCl₂·H₂O requires C, 53.39; H, 4.18; N, 3.11. Found C, 52.95; H, 4.18; N, 2.89%.

cis–PdCl₂{[(C₁₀H₇O₂)NHC(O)CH₂]N(CH₂PPh₂)₂} 4.35 PdCl₂(cod) (0.044 g, 0.12 mmol) and 4.28 (0.103 g, 0.103 mmol). Yield: Quantitative. ³¹P{¹H} NMR ((CD₃)₂SO): δ –9.7 ppm, ¹J₃P-P 3419 Hz. ¹H NMR ((CD₃)₂SO): δ 10.18 (s, 1H, NH), 7.95 – 7.36 (m, 23H, arom. H), 6.34 (s, 1H, COCH), 4.28 (bs, 4H, CH₂P), 3.59 (s, 2H, COCH₂N), 2.45 (s, 3H, CH₃). FT–IR (KBr): ν NH 3324, 1577, ν CO 1718, 1701, 1618, ν PtCl 314, 293 cm⁻¹. MS (FAB⁺): m/z 859 [M–Cl]⁺. Attempts to obtain an ideal elemental analysis result were unsuccessful: Anal. Calc. for C₃₈H₃₄N₂O₃P₂PdCl₂·0.1CH₂Cl₂ requires C, 50.67; H, 3.82; N, 3.10. Found C, 50.80; H, 4.11; N, 3.70%.

cis–PdCl₂{[(C₁₀H₇O₂)NHC(O)CH₂]N(CH₂PPh₂)₂} 4.36 PdCl₂(cod) (0.034 g, 0.12 mmol) and 4.28 (0.075 g, 0.12 mmol). Yield: Quantitative. ³¹P{¹H} NMR ((CD₃)₂SO): δ 6.0 ppm. ¹H NMR ((CD₃)₂SO): δ 10.15 (s, 1H, NH), 7.88 – 7.29 (m, 23H, arom. H), 6.25 (s, 1H, COCH), 4.16 (bs, 4H, CH₂P), 3.54 (s, 2H, COCH₂N),
2.38 (s, 3H, CH₃). FT–IR (KBr): ν_{NH} 3316, 3263, 1579, ν_{CO} 1719, 1702, 1617, ν_{PdCl} 304 and 298 cm⁻¹. MS (FAB⁺): m/z 771 [M–Cl]⁺. Anal. Calc. for C₃₈H₃₄N₂O₃P₂PdCl₂·0.5CH₂Cl₂ requires C, 54.50; H, 4.16; N, 3.30. Found C, 54.58; H, 4.17; N, 3.64%.

cis–Pd(Me)Cl{(C₁₀H₇O₂)NHCOCHN(CH₂PPh₂)₂} 4.37 Pd(Me)Cl(cod) (0.032 g, 0.12 mmol) and 4.28 (0.075 g, 0.12 mmol). Yield: Quantitative. ³¹P{¹H} NMR ((CD₃)₂SO): δ 22.4, –10.8 ppm, ḡ_{PP} 48 Hz. ¹H NMR ((CD₃)₂SO): δ 9.73 (s, 1H, NH), 7.58 – 7.00 (m, 23H, arom. H), 6.04 (s, 1H, COCH), 3.94 (bs, 2H, CH₂P), 3.80 (bs, 2H, CH₂P), 3.24 (s, 2H, COCH₂N), 2.17 (s, 3H, CH₃), 0.12 (bs, 3H, PdCH₃). FT–IR (KBr): ν_{NH} 3317, 1579, ν_{CO} 1724, 1702, 1617 cm⁻¹. MS (FAB⁺): m/z 771 [M–CH₃]⁺. Anal. Calc. for C₃₉H₃₇N₂O₃P₂PdCl·0.5CH₂Cl₂ requires C, 57.30; H, 4.63; N, 3.38. Found C, 57.48; H, 4.65; N, 3.62%.

{RuCl₂(p–cym)}₂{PhNHCOCH₂N(CH₂PPh₂)₂} 4.38 A solution of 4.22 (0.067 g, 0.12 mmol) in CH₂Cl₂ (10 cm³) was added to a stirred solution of [RuCl(µ–Cl)(p–cym)]₂ (0.108 g, 0.176 mmol) in CH₂Cl₂ (10 cm³). The resulting solution was stirred for 0.5 h and concentrated to ca. 2 cm³ under reduced pressure. Diethyl ether (25 cm³) was added and the resulting orange precipitate filtered and dried under reduced pressure. Yield: 0.096 g, 67%. ³¹P{¹H} NMR (CDCl₃): δ 16.5 ppm. ¹H NMR (CDCl₃): δ 8.00 (s, 1H, NH), 7.86–7.01 (m, 25H, arom. H), 5.18 (d, 4H, ḡ_{HH} 6.0 Hz, CH), 5.04 (d, 4H, ḡ_{HH} 6.0 Hz, CH), 3.94 (s, 4H, CH₂P), 2.53 (s, 2H, COCH₂N), 2.37 (sept, ḡ_{HH} 6.8 Hz, 2H, CH), 1.74 (s, 6H, CH₃), 0.85 (d, ḡ_{HH} 6.8 Hz, 12H, CH₃). FT–IR (KBr): ν_{NH} 3283, 1522, ν_{CO} 1684, ν_{RuCl} 291 cm⁻¹. MS (FAB⁺): m/z 1123 [M−Cl]⁺. Anal. Calc. for C₅₄H₆₆N₂OP₂Cl₄Ru₂·3H₂O requires: C, 53.47; H, 5.48; N, 2.31. Found: C, 53.72; H, 5.13; N, 2.23%.

Complexes 4.39 – 4.41 were made in a similar manner to 4.38.

{RuCl₂(p–cym)}₂{(C₁₀H₇)NHCOCH₂N(CH₂PPh₂)₂} 4.39 Phosphine 4.23 (0.081 g, 0.14 mmol) and [RuCl(µ–Cl)(p–cym)]₂ (0.100 g, 0.163 mmol). Yield: 0.122 g, 59%. ³¹P{¹H} NMR (CDCl₃): δ 18.3 ppm. ¹H NMR (CDCl₃): δ 7.92 (s, 1H, NH), 7.88–7.35 (m, 27H, arom. H), 5.13 (d, 4H, ḡ_{HH} 6.0 Hz, CH), 4.97 (d, 4H, ḡ_{HH} 5.6 Hz, CH), 3.95 (s, 4H, CH₂P), 2.92 (s, 2H, COCH₂N), 2.37 (sept, ḡ_{HH} 7.2 Hz, 2H, CH),
1.72 (s, 6H, CH₃), 0.79 (d, 12H, JHH 6.8 Hz, CH₃). FT–IR (KBr): νNH 3314, 1509, νCO 1692, νRuCl 290 cm⁻¹. MS (FAB⁺): m/z 1173 [M–Cl]⁺.

{RuCl₂(p–cym)}₂{(C₁₃H₉)NHCOCH₂N(CH₂PPh₂)₂} 4.40 Phosphine 4.25 (0.104 g, 0.163 mmol) and [RuCl(µ–Cl)(p–cym)]₂ (0.100 g, 0.163 mmol). Yield: 0.181 g, 89%. ³¹P{¹H} NMR (CDCl₃): δ 16.9 ppm. ¹H NMR (CDCl₃): δ 7.97 (s, 1H, NH), 7.80–7.06 (m, 27H, arom. H), 5.11 (d, 4H, JHH 6.0 Hz, CH), 4.96 (d, 4H, JHH 6 Hz, CH), 3.90 (bs, 4H, CH₂P), 3.79 (s, 2H, CH₂), 2.55 (s, 2H, COCH₂N), 2.30 (sept, JHH 6.8 Hz, 2H, CH), 1.67 (s, 6H, CH₃), 0.77 (d, JHH 6.8 Hz, 12H, CH₃). FT–IR (KBr): νNH 3281, 1520, νCO 1686, νRuCl 290 cm⁻¹. MS (FAB⁺): m/z 1213 [M–Cl]⁺. Anal. Calc. for C₆₁H₆₄N₂O₃P₂Cl₄Ru₂ requires: C, 58.65; H, 5.16; N, 2.24. Found: C, 58.23; H, 4.85; N, 2.26%.

{RuCl₂(p–cym)}₂{(C₁₄H₁₂N)NHCOCHN(CH₂PPh₂)₂} 4.41 Phosphine 4.27 (0.121 g, 0.182 mmol) and [RuCl(µ–Cl)(p–cym)]₂ (0.114 g, 0.186 mmol). Yield: 0.144 g, 62%. ³¹P{¹H} NMR (CDCl₃): δ 17.2 ppm. ¹H NMR (CDCl₃): δ 7.96 (s, 1H, NH), 7.90–7.21 (m, 27H, arom. H), 5.17 (d, 4H, JHH 6.0 Hz, CH), 5.02 (d, 4H, JHH 6.0 Hz, CH), 4.35 (q, 2H, JHH 7.2 Hz, CH₂CH₂), 3.97 (s, 4H, CH₂P), 2.63 (s, 2H, COCH₂N), 2.38 (sept, JHH 6.8 Hz, CH₂), 1.75 (s, 6H, CH₃), 1.43 (t, 3H, JHH 7.2 Hz, CH₂CH₃), 0.83 (d, JHH 6.8 Hz, 12H, CH₃). FT–IR (KBr): νNH 3272, 1528, νCO 1676, νRuCl 290 cm⁻¹. MS (FAB⁺): m/z 1277 [M⁺], 1242 [M–Cl]⁺.
Chapter 7

References

200. Y. Han, H. V. Huynh and G. K. Tan, Organometallics, 2007, 26, 4612.

289. G. M. Sheldrick, Cell–now and Twinabs software, University of Göttingen, Germany.
Chapter 8

Appendix
8.1 List of Publications:

Publications directly related to this research (copies of papers overleaf and on enclosed CD);

Collaborative publications not directly related to the research discussed therein (copies of papers on enclosed CD);

8.2 Presentations / Conferences attended:

Poster at the RSC Dalton Division Meeting, Warwick, March 2008.

Poster at the joint meeting of the RSC UK Macrocycles and Supramolecular Chemistry Group and The Coordination Chemistry Discussion Group, Belfast, December 2006.

Poster at the RSC Dalton Division Meeting, Birmingham, September 2006.
8.3 Details of Refinements for Molecular Structures.

Table 8.1 Crystal data and structure refinement for the solid solution of 2.4 and 2.6.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₆₃H₅₄N₂O₁.₄₀P₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>923.42</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P 1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 9.4580(13) Å, α = 68.121(2)°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1170.6(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.142 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>487</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.32 × 0.09 × 0.07 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>11831 (θ range 2.25 to 28.22°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω range for data collection</td>
<td>1.62 to 28.39°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −12 to 12, k −13 to 13, l −18 to 18</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.5%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11831</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5778 (Rint = 0.0289)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>4400</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.9560 and 0.9901</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0784, 0.2893</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5778 / 7 / 328</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0515, wR2 = 0.1313</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0723, wR2 = 0.1449</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.040</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.470 and −0.354 e Å⁻³</td>
</tr>
</tbody>
</table>

2.4 / 2.6: The asymmetric unit was found to contain half a molecule of 2.4 and a solvating MeOH molecule of crystallisation. The ligand was positioned on a crystallographic inversion centre, located at the mid-point of the ethylenediaminyl backbone [symmetry operator for equivalent atoms, ' = −x+2, −y+1, −z]. The phosphorus atom P(1) was found to be partially oxidised, to give a solid solution containing 2.4 and its component oxide (2.6) [occupancy freely refined to 19.77(3)%]. Anisotropic displacement parameters of C(32) and O(2) (of the solvating molecule of MeOH) were restrained to be similar.
Table 8.2 Crystal data and structure refinement for 2.5.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₆₃H₅₉D₆N₂O₅P₂S₃</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1094.33</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, C2/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 20.6510(8) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 17.1299(6) Å, β = 107.234(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 16.9338(6) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>5721.4(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.236 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2300</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 1.06 × 0.62 × 0.54 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>9947 (θ range 2.20 to 28.32°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.57 to 28.32°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = -27 to 27, k = -22 to 22, l = -22 to 22</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>29134</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7110 (R_int = 0.0216)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>6135</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.788 and 0.883</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0909, 6.1408</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7110 / 15 / 350</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0477, wR2 = 0.1430</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0548, wR2 = 0.1509</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.049</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.071 and −0.660 e Å⁻³</td>
</tr>
</tbody>
</table>

2.5: The asymmetric unit was found to contain half a molecule of 2.5 and one and a half molecules of solvating SO(CD₃)₂. Compound 2.5 was found to be located on a crystallographic inversion centre located at the mid-point of the ethylenediaminyl backbone [symmetry operation for equivalent atoms, = °x, -y+2, -z+1]. The half (CD₃)₂SO molecule was found to be disordered over a second symmetry operator (" = -x, y, -z+3/2). The anisotropic displacement parameters were restrained to be similar for this disordered solvent molecule.
Table 8.3 Crystal data and structure refinement for 2.7.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{43}H_{44}Cl_{4}N_{2}P_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>987.63</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P ⎯</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 10.4196(10) Å</td>
</tr>
<tr>
<td></td>
<td>α = 81.036(10)°</td>
</tr>
<tr>
<td></td>
<td>b = 11.6938(11) Å</td>
</tr>
<tr>
<td></td>
<td>β = 82.278(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 18.0832(17) Å</td>
</tr>
<tr>
<td></td>
<td>γ = 68.640(10)°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>2019.7(3) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.851 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>984</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.59 × 0.49 × 0.13 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>8981 (θ range 2.28 to 30.38°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.88 to 30.55°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h –14 to 14, k –16 to 16, l –25 to 25</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.7 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>23941</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>12068 (R_{int} = 0.0461)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>10504</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.2097 and 0.6344</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0636, 0.4231</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>12068 / 3 / 459</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0448, wR2 = 0.1104</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0527, wR2 = 0.1150</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.025</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>4.251 and −1.700 e Å⁻³</td>
</tr>
</tbody>
</table>

2.7: The asymmetric unit was found to contain one molecule of 2.7 and one solvating molecule of CH₂Cl₂. The geometry of the phenyl ring containing C(37) to C(42) was restrained to be more planar. The anisotropic displacement parameters of the chlorine atoms within the solvating CH₂Cl₂ were restrained to be similar.
Table 8.4. Crystal data and structure refinement for 2.8.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₃₀H₄₆Cl₂N₂P₂Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1002.82</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, P₂₁2₁2₁</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11.3131(7) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>18.3971(11) Å</td>
</tr>
<tr>
<td>β</td>
<td>90°</td>
</tr>
<tr>
<td>c</td>
<td>19.9341(12) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4148.8(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.627 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2008</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.66 × 0.17 × 0.12 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>8461 (θ range 2.21 to 29.40°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.51 to 29.63°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −15 to 15, k −25 to 24, l −27 to 27</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>45385</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11673 (Rint = 0.0398)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>10390</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.1981 and 0.6701</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0322, 3.9366</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11673 / 0 / 515</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0319, wR2 = 0.0686</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0421, wR2 = 0.0730</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.060</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.354(5)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.008 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.416 and −1.184 e Å⁻³</td>
</tr>
</tbody>
</table>

2.8: The asymmetric unit was found to contain one molecule of complex 2.8. The non–centrosymmetric structure was found to be twinned by inversion [major twin domain 64.5(5)%].
Table 8.5. Crystal data and structure refinement for 2.9.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>(\text{C}{60.50}\text{H}{56}\text{Cl}{3}\text{N}{2}\text{O}{0.50}\text{P}{2}\text{Pt})</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1182.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.8462 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, (P_{2_1}/n)</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>(a = 26.658(3)) Å, (\alpha = 90^\circ) (b = 14.9329(16)) Å, (\beta = 102.741(2)^\circ) (c = 27.408(3)) Å, (\gamma = 90^\circ)</td>
</tr>
<tr>
<td>Cell volume</td>
<td>10642(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Absorption coefficient (\mu)</td>
<td>2.890 mm⁻¹</td>
</tr>
<tr>
<td>(F(000))</td>
<td>4768</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>pale yellow, 0.12 × 0.07 × 0.04 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>2545 ((\theta) range 3.70 to 21.67°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX II CCD diffractometer</td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>3.70 to 31.57°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>(h) from -32 to 32, (k) from -18 to 18, (l) from -33 to 32</td>
</tr>
<tr>
<td>Completeness to (\theta = 31.57^\circ)</td>
<td>98.6 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>74210</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>20842 ((R_{int} = 0.1310))</td>
</tr>
<tr>
<td>Reflections with (F^2 > 2\sigma)</td>
<td>12315</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.723 and 0.893</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Weighting parameters (a, b)</td>
<td>0.0865, 18.9717</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>20842 / 14 / 1254</td>
</tr>
<tr>
<td>Final R indices ([F^2 > 2\sigma])</td>
<td>(R_1 = 0.0780, \ wR_2 = 0.1803)</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>(R_1 = 0.1367, \ wR_2 = 0.2085)</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.022</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.00035(4)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.002 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.266 and (-1.885) e Å⁻³</td>
</tr>
</tbody>
</table>

2.9: The asymmetric unit was found to contain two molecules of **2.9** and two solvating molecules of crystallisation (one \(\text{Et}_2\text{O} \) and one \(\text{CH}_2\text{Cl}_2 \)). The methylene group, \(\text{C}(117) \), of the solvating \(\text{CH}_2\text{Cl}_2 \) was found to be disordered over two sets of positions [major occupancy 71(4)%]. The minor and major disorder components of the solvating \(\text{CH}_2\text{Cl}_2 \) were restrained to have similar anisotropic displacement parameters and geometry. The methylene group, \(\text{C}(11X) \), of the minor disorder component was also restrained to be more isotropic.
Table 8.6 Crystal data and structure refinement for 2.10.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{68}H_{65}Cl_{2}N_{2}O_{1.50}P_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1262.15</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 16.3600(6) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 23.2479(8) Å, β = 117.030(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 17.7823(6) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>6024.5(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient µ</td>
<td>2.516 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2564</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.36 × 0.23 × 0.17 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>7607 (θ range 2.24 to 25.42°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.56 to 25.42°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −19 to 19, k −28 to 28, l −21 to 21</td>
</tr>
<tr>
<td>Completeness to θ = 25.42°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>49139</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11111 (R_{int} = 0.0256)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>9716</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.465 and 0.674</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0310, 0.4271</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11111 / 0 / 622</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0192, wR2 = 0.0489</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0235, wR2 = 0.0502</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.039</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.009 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.849 and −0.485 e Å⁻³</td>
</tr>
</tbody>
</table>

2.10: The asymmetric unit was found to contain one molecule of 2.10 and one and a half molecules of Et₂O. Platon was used to model the highly disordered Et₂O solvate molecules as a diffuse region of electron density within the unit cell (“squeeze” procedure).229
Table 8.7 Crystal data and structure refinement for 2.17.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{59}H_{53}ClN_{2}P_{2}Pd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>993.82</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 24.1237(9) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 11.1156(4) Å, β = 109.427(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 18.7303(7) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4736.6(3) Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.558 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>2056</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.49 × 0.10 × 0.04 mm^3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>49443 (θ range 2.40 to 24.48°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.79 to 28.34°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −32 to 32, k −14 to 14, l −24 to 24</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>48077</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11786 (R_{int} = 0.0631)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>8726</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.7716 and 0.9780</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0464, 1.1363</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11786 / 0 / 587</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0419, wR2 = 0.0908</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0664, wR2 = 0.1009</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.016</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.659 and −0.601 e Å^3</td>
</tr>
</tbody>
</table>

2.17: The asymmetric unit was found to contain one molecule of 2.17.
Table 8.8. Crystal data and structure refinement for 2.22.

Chemical formula \(\text{C}_{64}\text{H}_{54}\text{Cl}_4\text{MoN}_2\text{O}_4\text{P}_2 \)
Formula weight 1214.77
Temperature 120(2) K
Radiation, wavelength MoK\(\alpha \), 0.71073 Å
Crystal system, space group orthorhombic, Pna\(_2 \)
Unit cell parameters
\[

a = 19.6207(3) \, \text{Å} \quad \alpha = 90^\circ \\
b = 14.2242(2) \, \text{Å} \quad \beta = 90^\circ \\
c = 20.2724(4) \, \text{Å} \quad \gamma = 90^\circ
\]
Cell volume 5657.80(16) Å\(^3\)
Z 4
Absorption coefficient \(\mu \) 0.528 mm\(^{-1}\)
\(F(000) \) 2496
Crystal colour and size Colourless, 0.26 \(\times \) 0.22 \(\times \) 0.10 mm\(^3\)
Reflections for cell refinement 43360 (θ range 2.91 to 27.48°)
Data collection method Bruker-Nonius 95mm CCD camera on κ-goniostat
θ range for data collection 3.21 to 27.56°
Index ranges h −25 to 24, k −18 to 18, l −26 to 26
Completeness to θ = 26.00° 99.6 %
Reflections collected 43355
Independent reflections 12805 (R\text{int} = 0.0340)
Reflections with F\(^2\)>2\(σ\) 12166
Absorption correction semi-empirical from equivalents
Min. and max. transmission 0.875 and 0.949
Structure solution direct methods
Refinement method Full-matrix least-squares on F\(^2\)
Weighting parameters a, b 0.0212, 2.6430
Data / restraints / parameters 12805 / 1 / 694
Final R indices [F\(^2\)>2\(σ\)] R1 = 0.0278, wR2 = 0.0619
R indices (all data) R1 = 0.0305, wR2 = 0.0633
Goodness-of-fit on F\(^2\) 1.014
Absolute structure parameter −0.008(16)
Largest and mean shift/su 0.001 and 0.000
Largest diff. peak and hole 0.672 and −0.645 e Å\(^−3\)

2.22: The asymmetric unit was found to contain one molecule of 2.22 and two solvating molecules of CH\(_2\)Cl\(_2\).
Table 8.9 Crystal data and structure refinement for 3.1.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{50}H_{50}Fe_{2}N_{2}P_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>852.56</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.6710 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P-bar</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>7.6347(4) Å</td>
</tr>
<tr>
<td>α</td>
<td>95.6966(5) °</td>
</tr>
<tr>
<td>b</td>
<td>11.3939(5) Å</td>
</tr>
<tr>
<td>β</td>
<td>103.7690(5) °</td>
</tr>
<tr>
<td>c</td>
<td>12.7421(6) Å</td>
</tr>
<tr>
<td>γ</td>
<td>102.5657(5) °</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1037.36(9) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.814 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>446</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.19 × 0.04 × 0.03 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>6520 (θ range 3.00 to 30.81°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>0 range for data collection</td>
<td>1.75 to 31.02 °</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −11 to 11, k −17 to 17, l −18 to 19</td>
</tr>
<tr>
<td>Completeness to θ = 25.00°</td>
<td>97.4 %</td>
</tr>
<tr>
<td>Intensity decay</td>
<td>3%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>13143</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6964 (R_{int} = 0.0326)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>5999</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.861 and 0.976</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0483, 0.1963</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6964 / 0 / 253</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0360, wR2 = 0.0944</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0429, wR2 = 0.0988</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.038</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.673 and −0.368 e Å⁻³</td>
</tr>
</tbody>
</table>

3.1: The asymmetric unit was found to contain half a unique molecule of 3.1, as the phosphine was found to lie on a crystallographic inversion centre located at the mid-point of the ethylenediamine backbone. The molecular structure was determined using synchrotron radiation, with data collected at Daresbury Laboratory Station 9.8, due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature.
Table 8.10 Crystal data and structure refinement for 3.3.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>$C_{46}H_{62}Fe_2N_2O_6P_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>912.62</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>Synchrotron, 0.6710 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P 1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>$a = 12.8278(7)$ Å, $\alpha = 81.7595(7)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$b = 13.4835(8)$ Å, $\beta = 65.1133(7)^\circ$</td>
</tr>
<tr>
<td></td>
<td>$c = 14.4471(8)$ Å, $\gamma = 79.1612(7)^\circ$</td>
</tr>
<tr>
<td>Cell volume</td>
<td>2220.6(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.775 mm$^{-1}$</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>964</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, $0.13 \times 0.09 \times 0.04$ mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>8295 (θ range 2.47 to 30.18°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td></td>
<td>ω rotation with narrow frames</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.47 to 30.83°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h $-$18 to 18, k $-$19 to 19, 1 $-$21 to 21</td>
</tr>
<tr>
<td>Completeness to $\theta = 25.00^\circ$</td>
<td>99.1 %</td>
</tr>
<tr>
<td>Intensity decay</td>
<td>3%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>28081</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>14806 ($R_{int} = 0.0252$)</td>
</tr>
<tr>
<td>Reflections with $F^2>2\sigma$</td>
<td>10184</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.906 and 0.970</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0637, 1.0595</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>14806 / 0 / 531</td>
</tr>
<tr>
<td>Final R indices [$F^2>2\sigma$]</td>
<td>$R1 = 0.0485$, $wR2 = 0.1211$</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>$R1 = 0.0795$, $wR2 = 0.1388$</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.037</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.858 and −0.645 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.3: The asymmetric unit was found to contain one unique molecule of 3.3. The molecular structure was determined using synchrotron radiation, with data collected at Daresbury Laboratory Station 9.8, due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature.
Table 8.11 Crystal data and structure refinement for 3.4.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{51}H_{52}Cl_{4}Fe_{2}N_{2}P_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1203.48</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_{1}/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 17.6469(17) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 12.6761(12) Å, β = 104.448(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 21.866(2) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4736.6(8) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.882 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>2400</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.29 \times 0.18 \times 0.11 mm(^3)</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>48941 (θ range 1.18 to 12.95°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td></td>
<td>ω rotation with narrow frames</td>
</tr>
<tr>
<td>0 range for data collection</td>
<td>1.71 to 28.34°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = -23 to 23, k = -16 to 16, l = -29 to 29</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.9%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>47747</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11782 (R_{int} = 0.0867)</td>
</tr>
<tr>
<td>Reflections with F^{2}>2σ</td>
<td>8537</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.387 and 0.655</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^{2}</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0533, 4.5153</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11782 / 37 / 578</td>
</tr>
<tr>
<td>Final R indices [F^{2}>2σ]</td>
<td>R1 = 0.0485, wR2 = 0.1056</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0788, wR2 = 0.1187</td>
</tr>
<tr>
<td>Goodness-of-fit on F^{2}</td>
<td>1.025</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.002 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.286 and −1.260 e Å(^{-3})</td>
</tr>
</tbody>
</table>

3.4: The asymmetric unit was found to contain one unique molecule of 3.4 and a CH\(_2\)Cl\(_2\) molecule of crystallisation. The CH\(_2\)Cl\(_2\) molecule was found to be disordered over two sets of positions, with Cl(3) common to both disorder components [major occupancy 59.2(9)\%]. The minor and major disorder components were restrained to have similar anisotropic displacement parameters and geometry.
Table 8.12 Crystal data and structure refinement for 3.10.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C102H100Cl2Fe4N4O2P4Rh2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2037.86</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>Synchrotron, 0.6884 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a = 13.0780(10) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 20.4797(16) Å</td>
<td>β = 105.1038(11)°</td>
</tr>
<tr>
<td>c = 17.3102(13) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4476.1(6) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>1.176 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2088</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>Yellow, 0.07 × 0.04 × 0.02 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>4694 (θ range 2.26 to 23.30°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.52 to 29.50°</td>
</tr>
<tr>
<td>Index ranges</td>
<td></td>
</tr>
<tr>
<td>Completeness to θ = 29.00°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Intensity decay</td>
<td>8%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>51962</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>13698 (R_int = 0.0895)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>8236</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.922 and 0.977</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0480, 0.0000</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>13698 / 0 / 541</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0488, wR2 = 0.0975</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1034, wR2 = 0.1169</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>0.957</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.079 and −0.457 e Å⁻³</td>
</tr>
</tbody>
</table>

3.10 : The molecular structure was determined using synchrotron radiation, with data collected at Daresbury Laboratory Station 9.8, due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature. The dimer was found to lie on a crystallographic inversion centre located at the centroid of the 18-membered ring. As a consequence, the asymmetric unit was found to contain half a unique molecule of 3.10.

302
Table 8.13 Crystal data and structure refinement for 3.11.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${54.50}$H${50.50}$Cl$_{1.50}$Fe$_2$MoN$_2$O$_4$P$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1120.22</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2$_1$/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>18.1242(3) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>12.7301(2) Å</td>
</tr>
<tr>
<td>β</td>
<td>109.4910(8)°</td>
</tr>
<tr>
<td>c</td>
<td>22.9350(3) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4988.39(13) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>1.014 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>2292</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>Orange, 0.26 × 0.09 × 0.05 mm3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>34662 (θ range 2.91 to 27.48°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker-Nonius Roper CCD camera on κ-goniostat φ & ω scans</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>2.97 to 27.89°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −23 to 23, k −16 to 16, l −29 to 29</td>
</tr>
<tr>
<td>Completeness to θ = 27.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>53164</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11463 (R$_{int}$ = 0.0500)</td>
</tr>
<tr>
<td>Reflections with F2>2σ</td>
<td>9498</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.779 and 0.951</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0572, 5.8741</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11463 / 0 / 587</td>
</tr>
<tr>
<td>Final R indices [F2>2σ]</td>
<td>R1 = 0.0433, wR2 = 0.1148</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0555, wR2 = 0.1212</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.050</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.0024(3)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.508 and −0.558 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.11: The molecular structure of 3.11 was determined from reflection data files collected by the EPSRC National Crystallography Service. The asymmetric unit was found to contain one unique molecule of 3.11 and half a molecule of disordered CHCl$_3$ of crystallisation. Platon was used to model the disordered CHCl$_3$ molecule as a diffuse region of electron density (Platon “squeeze” procedure).
Table 8.14 Crystal data and structure refinement for 3.12.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${72}$H${82}$Cl$_8$Fe$_2$N$_2$P$_2$Ru$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1634.78</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoK$_\alpha$, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P $\bar{1}$</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 10.4845(4) Å $\alpha = 96.720(2)^\circ$</td>
</tr>
<tr>
<td></td>
<td>b = 12.6125(5) Å $\beta = 105.962(2)^\circ$</td>
</tr>
<tr>
<td></td>
<td>c = 15.1788(7) Å $\gamma = 106.968(2)^\circ$</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1802.81(13) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>1.188 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>834</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.40 × 0.28 × 0.11 mm3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>9792 (θ range 2.16 to 30.52$^\circ$)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.99 to 30.56$^\circ$</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −14 to 14, k −18 to 18, l −21 to 21</td>
</tr>
<tr>
<td>Completeness to $\theta = 27.50^\circ$</td>
<td>99.4 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>21443</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>10789 ($R_{\text{int}} = 0.0187$)</td>
</tr>
<tr>
<td>Reflections with $F^2>2\sigma$</td>
<td>9248</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.648 and 0.880</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0381, 0.1006</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>10789 / 0 / 373</td>
</tr>
<tr>
<td>Final R indices [$F^2>2\sigma$]</td>
<td>R1 = 0.0280, wR2 = 0.0691</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0338, wR2 = 0.0715</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.040</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.712 and -0.469 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.12: The asymmetric unit was found to contain half a unique molecule of 3.12 and one molecule of badly disordered CH$_2$Cl$_2$ of crystallisation. Platon was used to model the disordered CH$_2$Cl$_2$ molecule as a diffuse region of electron density (Platon “squeeze” procedure).229
Table 8.15 Crystal data and structure refinement for 3.13.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${51}$H${52}$Au$_2$Cl$_4$Fe$_2$N$_2$P$_2$</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1402.32</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P $\overline{1}$</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 11.9161(2) Å, α = 72.111(2)$^\circ$</td>
</tr>
<tr>
<td></td>
<td>b = 12.7979(2) Å, β = 81.279(2)$^\circ$</td>
</tr>
<tr>
<td></td>
<td>c = 17.2109(3) Å, γ = 80.243(2)$^\circ$</td>
</tr>
<tr>
<td>Cell volume</td>
<td>2447.75(7) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>6.877 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>1360</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>Yellow, 0.18 × 0.08 × 0.04 mm3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>11130 (θ range 2.91 to 27.48$^\circ$)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker-Nonius 95mm CCD camera on κ-goniostat ϕ & ω scans</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>3.00 to 27.54$^\circ$</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −15 to 15, k −16 to 16, l −22 to 22</td>
</tr>
<tr>
<td>Completeness to $\theta = 27.54^\circ$</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>52848</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>11242 (R$\text{int} = 0.0406$)</td>
</tr>
<tr>
<td>Reflections with $F^2 > 2\sigma$</td>
<td>9950</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.367 and 0.763</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0168, 8.7042</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>11242 / 31 / 588</td>
</tr>
<tr>
<td>Final R indices [$F^2 > 2\sigma$]</td>
<td>RI_1 = 0.0278, wR2 = 0.0609</td>
</tr>
<tr>
<td></td>
<td>RI_1 = 0.0343, wR2 = 0.0637</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.042</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.00056(6)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.002 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.597 and −2.065 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.13: The molecular structure of 3.13 was determined from reflection data files collected by the EPSRC National Crystallography Service. The asymmetric unit was found to contain one unique molecule of 3.13 and a CH$_2$Cl$_2$ molecule of crystallisation. The CH$_2$Cl$_2$ molecule was found to be disordered over two sets of positions, with Cl(3) common to both disorder components [major occupancy 70.907(5)%]. The minor and major disorder components were restrained to have similar anisotropic displacement parameters and geometry.
Table 8.16 Crystal data and structure refinement for 3.14.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C<sub>26</sub>H<sub>28</sub>FeNP</td>
</tr>
<tr>
<td>Formula weight</td>
<td>441.31</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoK<sub>α</sub>, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 8.0463(6) Å, α = 104.4063(10)<sup>°</sup></td>
</tr>
<tr>
<td></td>
<td>b = 8.3660(6) Å, β = 94.8944(9)<sup>°</sup></td>
</tr>
<tr>
<td></td>
<td>c = 9.0178(7) Å, γ = 106.7138(9)<sup>°</sup></td>
</tr>
<tr>
<td>Cell volume</td>
<td>555.00(7) Å<sup>3</sup></td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.763 mm<sup>−1</sup></td>
</tr>
<tr>
<td>F(000)</td>
<td>232</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.53 × 0.32 × 0.20 mm<sup>3</sup></td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>5501 (θ range 2.37 to 30.48<sup>°</sup>)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>0 range for data collection</td>
<td>2.37 to 30.55<sup>°</sup></td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = 11 to 11, k = 11 to 11, l = 12 to 12</td>
</tr>
<tr>
<td>Completeness to 0 = 26.00<sup>°</sup></td>
<td>99.6%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6457</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5764 (R<sub>int</sub> = 0.0111)</td>
</tr>
<tr>
<td>Reflections with F<sup>2</sup> > 2σ</td>
<td>5722</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.688 and 0.862</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0409, 0.0338</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5764 / 3 / 264</td>
</tr>
<tr>
<td>Final R indices [F<sup>2</sup> > 2σ]</td>
<td>R1 = 0.0231, wR2 = 0.0602</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0233, wR2 = 0.0603</td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>1.053</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.560(6)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.482 and −0.244 e Å<sup>−3</sup></td>
</tr>
</tbody>
</table>

3.14: The asymmetric unit contained one unique molecule of 3.14. The molecular structure also showed the phosphine to have crystallised in the non–centrosymmetric space group P1 [major enantiomer 56.0(6)%].
Table 8.17 Crystal data and structure refinement for 3.15.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{26}H_{28}AuClFeNP</td>
</tr>
<tr>
<td>Formula weight</td>
<td>673.73</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.7107 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P ̅1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 10.6779(5) Å, α = 73.8740(7)°</td>
</tr>
<tr>
<td></td>
<td>b = 10.9810(6) Å, β = 86.1150(7)°</td>
</tr>
<tr>
<td></td>
<td>c = 11.6654(6) Å, γ = 65.4743(7)°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1193.67(11) Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>6.939 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>656</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.25 × 0.24 × 0.08 mm^{3}</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>7585 (θ range 2.61 to 30.52°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.82 to 30.55°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −15 to 14, k −15 to 15, l −16 to 16</td>
</tr>
<tr>
<td>Completeness to θ = 28.00°</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>13968</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7118 (R_{int} = 0.0238)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>6637</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.194 and 0.316</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0332, 5.4921</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7118 / 0 / 281</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0341, wR2 = 0.0897</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0372, wR2 = 0.0909</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.102</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.735 and −1.229 e Å^{-3}</td>
</tr>
</tbody>
</table>

3.15: The asymmetric unit contained one unique molecule of the bimetallic complex.
Table 8.18 Crystal data and structure refinement for 3.19.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₈₄H₉₄Cl₁₂Fe₃N₂P₂Ru₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1988.64</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.7107 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P T</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 11.6191(7) Å, α = 101.5303(11)°</td>
</tr>
<tr>
<td></td>
<td>b = 19.8758(12) Å, β = 104.1117(11)°</td>
</tr>
<tr>
<td></td>
<td>c = 20.5317(13) Å, γ = 105.8676(11)°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4238.8(5) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>1.310 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2024</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.25 × 0.21 × 0.07 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>4390 (θ range 2.22 to 22.62°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.11 to 26.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = −14 to 14, k = −24 to 24, l = −25 to 25</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>37260</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>16638 (R_int = 0.0518)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>10858</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.735 and 0.914</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.1100, 0.0000</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>16638 / 206 / 971</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0671, wR2 = 0.1875</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0975, wR2 = 0.2080</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.088</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.000 and −1.648 e Å⁻³</td>
</tr>
</tbody>
</table>

3.19: The asymmetric unit was found to contain a unique molecule of 3.19 and five molecules of CH₂Cl₂ of crystallisation, two of which were badly disordered. Platon was used to model the disordered CH₂Cl₂ molecules as diffuse regions of electron density (Platon “squeeze” procedure). The cyclopentadienyl ring containing C(43) to C(47) was found to be disordered over two sets of positions, [major occupancy 54.29(2)%], for which the geometry and anisotropic displacement parameters of both disorder components were restrained to be similar.
Table 8.19 Crystal data and structure refinement for 3.26.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C\textsubscript{73}H\textsubscript{71}Cl\textsubscript{11}Fe\textsubscript{4}N\textsubscript{2}P\textsubscript{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1846.70</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.6942 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P 1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 12.6556(4) Å (\alpha = 76.6416(3)^\circ)</td>
</tr>
<tr>
<td></td>
<td>b = 17.9459(5) Å (\beta = 79.9146(3)^\circ)</td>
</tr>
<tr>
<td></td>
<td>c = 18.5019(5) Å (\gamma = 71.5298(3)^\circ)</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3854.07(19) Å(^3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient (\mu)</td>
<td>3.008 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>1844</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.10 (\times 0.05 \times 0.02) mm(^3)</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>44738 ((\theta) range 2.31 to 27.64(^\circ))</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer (\omega) rotation with narrow frames</td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>1.47 to 29.72(^\circ)</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h (-18) to (18), k (-25) to (25), l (-26) to (26)</td>
</tr>
<tr>
<td>Completeness to (\theta = 25.00^\circ)</td>
<td>99.5%</td>
</tr>
<tr>
<td>Intensity decay</td>
<td>3%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>44729</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>22963 ((R_{int} = 0.0388))</td>
</tr>
<tr>
<td>Reflections with (F^2 > 2\sigma)</td>
<td>18880</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.753 and 0.942</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0645, 0.0000</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>22963 / 0 / 766</td>
</tr>
<tr>
<td>Final R indices ([F^2 > 2\sigma])</td>
<td>(R_1 = 0.0466), (wR2 = 0.1242)</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>(R_1 = 0.0570), (wR2 = 0.1312)</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.092</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.002 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.005 and (-1.174) e Å(^{-3})</td>
</tr>
</tbody>
</table>

3.26: The molecular structure was determined using synchrotron radiation, with data collected at Daresbury Laboratory Station 9.8, due to the size of the crystals (at least one dimension < 0.05 mm). The asymmetric unit was found to contain one unique molecule of 3.26 and three molecules of CHCl\(_3\) of crystallisation, two of which were badly disordered. Platon was used to model the disordered CH\(_2\)Cl\(_2\) molecules as diffuse regions of electron density (Platon “squeeze” procedure).\(^{229}\)
Table 8.20 Crystal data and structure refinement for 3.28.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{37}H_{59}FeNP_2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>635.64</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoK(\alpha), 0.7107 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P(\bar{1})</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 10.0903(8) Å, (\alpha = 79.4391(13))°</td>
</tr>
<tr>
<td></td>
<td>b = 10.9029(9) Å, (\beta = 89.9822(13))°</td>
</tr>
<tr>
<td></td>
<td>c = 16.7823(14) Å, (\gamma = 75.1802(12))°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1752.5(2) Å(^3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Calculated density</td>
<td>1.205 g/cm(^3)</td>
</tr>
<tr>
<td>Absorption coefficient (\mu)</td>
<td>0.547 mm(^{-1})</td>
</tr>
<tr>
<td>(F(000))</td>
<td>688</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.16 \times 0.16 \times 0.10 mm(^3)</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>5213 ((\theta) range 2.38 to 28.01°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>(\omega) rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>1.97 to 30.57°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = -14 to 14, k = -15 to 15, l = -23 to 23</td>
</tr>
<tr>
<td>Completeness to (\theta = 28.00°)</td>
<td>99.4 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>20803</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>10466 ((R_{\text{int}} = 0.0275))</td>
</tr>
<tr>
<td>Reflections with (F^2 > 2\sigma)</td>
<td>7799</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.918 and 0.947</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0684, 0.1837</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>10466 / 0 / 370</td>
</tr>
<tr>
<td>Final R indices ([F^2 > 2\sigma])</td>
<td>(R_1 = 0.0471, wR2 = 0.1197)</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>(R_1 = 0.0679, wR2 = 0.1313)</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.045</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.180 and (-0.274) e Å(^{-3})</td>
</tr>
</tbody>
</table>

3.28: The asymmetric unit was found to contain one unique molecule of 3.28.
Table 8.21 Crystal data and structure refinement for 3.29.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{33}H_{47}FeNO_6P_2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>671.51</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P 1</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 7.4827(7) Å, α = 106.684(2)°</td>
</tr>
<tr>
<td></td>
<td>b = 12.6557(12) Å, β = 91.252(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 17.9902(17) Å, γ = 96.106(2)°</td>
</tr>
<tr>
<td></td>
<td>Cell volume</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.609 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>712</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.22 × 0.12 × 0.05 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>2166 (θ range 2.33 to 23.26°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td></td>
<td>ω rotation with narrow frames</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.69 to 26.43°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = –9 to 9, k = –15 to 15, l = –22 to 22</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>14755</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6658 (Rint = 0.0462)</td>
</tr>
<tr>
<td>Reflections with F² > 2σ</td>
<td>4697</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.878 and 0.970</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0414, 0.3315</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6658 / 0 / 396</td>
</tr>
<tr>
<td>Final R indices [F² > 2σ]</td>
<td>R1 = 0.0461, wR2 = 0.0939</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0755, wR2 = 0.1063</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.017</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.414 and −0.310 e Å⁻³</td>
</tr>
</tbody>
</table>

3.29: The asymmetric unit was found to contain one unique molecule of 3.29.
Table 8.22 Crystal data and structure refinement for 3.30.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${38}$H${35}$Cl$_5$DFeNP$_2$Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>997.81</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoK$_\alpha$, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, Pnma</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 17.8032(7) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 17.0967(7) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 12.2692(5) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3734.4(3) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>4.604 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>1960</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.21 × 0.17 × 0.11 mm3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>6858 (θ range 2.29 to 28.09°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω range for data collection</td>
<td>2.02 to 30.58°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = -25 to 22, k = -24 to 24, l = -17 to 17</td>
</tr>
<tr>
<td>Completeness to θ = 27.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>33826</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5885 (R$_{int} = 0.0516$)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>4808</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.445 and 0.631</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0320, 0.8163</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5885 / 11 / 238</td>
</tr>
<tr>
<td>Final R indices [F2>2σ]</td>
<td>R1 = 0.0288, wR2 = 0.0617</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0415, wR2 = 0.0669</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.032</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.291 and −0.935 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.30: The molecular structure of 3.30 showed the complex to lie on a crystallographic mirror plane which bisects the FcCH$_2$N moiety and the platinum(II) centre. As a result the asymmetric unit was found to contain half a unique molecule of complex and half a molecule of CDCl$_3$ of crystallisation. The geometry and anisotropic displacement parameters of the CDCl$_3$ molecule were restrained.
Table 8.23 Crystal data and structure refinement for 3.31.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{38}H_{61}Cl_{4}FeNP_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>986.56</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_{1}/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 12.3528(3) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 20.5818(5) Å, β = 99.7668(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 15.8585(4) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3973.47(17) Å^3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>4.260 mm^{-1}</td>
</tr>
<tr>
<td>F(000)</td>
<td>1992</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.44 × 0.28 × 0.21 mm^3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>48474 (θ range 2.18 to 31.79°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.64 to 31.92°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = 17 to 17, k = 29 to 29, l = 22</td>
</tr>
<tr>
<td>Completeness to θ = 27.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>47764</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>12692 (R_{int} = 0.0266)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>11583</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.256 and 0.468</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0296, 3.2887</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>12692 / 0 / 424</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0231, wR2 = 0.0562</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0267, wR2 = 0.0576</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.025</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.004 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.546 and −1.185 e Å^{-3}</td>
</tr>
</tbody>
</table>

3.31: The asymmetric unit was found to contain one unique molecule of 3.31 and one CH₂Cl₂ of crystallisation.
Table 8.24 Crystal data and structure refinement for 3.32.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C${34.50}$H${48.50}$Cl$_{6.50}$FeNO$_6$P$_2$Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1116.55</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2$_1$/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 20.7242(10) Å $\alpha = 90^\circ$</td>
</tr>
<tr>
<td></td>
<td>b = 15.1367(7) Å $\beta = 109.7375(7)^\circ$</td>
</tr>
<tr>
<td></td>
<td>c = 14.4952(7) Å $\gamma = 90^\circ$</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4279.9(4) Å3</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>4.127 mm$^{-1}$</td>
</tr>
<tr>
<td>F(000)</td>
<td>2220</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.40 × 0.26 × 0.17 mm3</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>9908 (θ range 2.48 to 30.64°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.04 to 31.32°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −30 to 30, k −22 to 21, l −21 to 21</td>
</tr>
<tr>
<td>Completeness to θ = 29.00°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>50484</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>13553 (R$_{int} = 0.0346$)</td>
</tr>
<tr>
<td>Reflections with F2>2σ</td>
<td>10015</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.289 and 0.541</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0480, 0.3116</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>13553 / 0 / 459</td>
</tr>
<tr>
<td>Final R indices [F2>2σ]</td>
<td>R1 = 0.0367, wR2 = 0.0923</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0554, wR2 = 0.0974</td>
</tr>
<tr>
<td>Goodness-of-fit on F2</td>
<td>1.120</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.887 and −1.428 e Å$^{-3}$</td>
</tr>
</tbody>
</table>

3.32: The asymmetric unit was found to contain one unique molecule of 3.32 and one and half molecules of CHCl$_3$ of crystallisation. Platon was used to model the half a molecule of CHCl$_3$ as a diffuse region of electron density (Platon “squeeze” procedure).229
Table 8.25 Crystal data and structure refinement for 3.36.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₄₁H₃₅CrFeNO₄P₂</td>
</tr>
<tr>
<td>Formula weight</td>
<td>775.49</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2₁/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 19.4883(14) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 17.9200(13) Å, β = 102.7413(16)°</td>
</tr>
<tr>
<td></td>
<td>c = 21.0204(16) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>7160.2(9) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.842 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>3200</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.42 x 0.23 x 0.07 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>13143 (θ range 2.27 to 26.70°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.07 to 28.36°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = 26 to 25, k = 0 to 23, l = 0 to 28</td>
</tr>
<tr>
<td>Completeness to θ = 27.00°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>104580</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>17901 (R_int = 0.0553)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>14364</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.719 and 0.943</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0412, 3.0823</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>18003 / 0 / 902</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0404, wR2 = 0.0869</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0594, wR2 = 0.0961</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.014</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.556 and −0.345 e Å⁻³</td>
</tr>
</tbody>
</table>

3.36: The crystal structure of 3.36 was determined using multiple diffraction data files (SHELXL–97 hklf5 format), after the crystal lattice was found to be pseudo-merohedrally twinned [major component 57.33(6)%], twin law; 179.9° rotation about the real axis 1 0 1]. The asymmetric unit was found to contain two unique molecules of 3.36.
Table 8.26 Crystal data and structure refinement for 3.38.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{37.50}H_{48}ClCrFeNO_{10}P_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>878.033</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, Pbcn</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 20.3076(10) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 16.2377(8) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 24.6999(12) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>8144.8(7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.822 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>3656</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 1.13 × 0.21 × 0.21 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>84255 (θ range 2.30 to 28.32°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.65 to 28.32°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = –27 to 27, k = –21 to 21, l = –32 to 31</td>
</tr>
<tr>
<td>Completeness to θ = 28.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>80379</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>10146 ([R_int] = 0.0335)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>8522</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.457 and 0.846</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0595, 2.0664</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>10146 / 416 / 565</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0368, wR2 = 0.1001</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0444, wR2 = 0.1039</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.061</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.654 and –0.530 e Å⁻³</td>
</tr>
</tbody>
</table>

3.38: The asymmetric unit was found to contain one unique molecule of 3.38 and half a molecule of CH₂Cl₂ of crystallisation. Platon was used to model the solvating CH₂Cl₂ as a diffuse region of electron density (Platon “squeeze” procedure). The cyclopentadienyl rings of the ferrocenyl group were found to be two–fold disordered over two sets of positions, with C(4) being common between both disorder components [occupancy refined to 60.4(6)% for the major component]. The geometry and anisotropic displacement parameters of the major and minor disorder components were restrained to be similar.
Table 8.27 Crystal data and structure refinement for 3.40.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{16}H_{21}FeNO_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>315.19</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 17.6334(14) Å, 90°</td>
</tr>
<tr>
<td></td>
<td>b = 9.3924(7) Å, 96.7281(12)°</td>
</tr>
<tr>
<td></td>
<td>c = 9.3443(7) Å, 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1536.9(2) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.982 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>664</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.36 × 0.14 × 0.08 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>3987 (θ range 2.33 to 26.13°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>2.33 to 30.55°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −25 to 25, k −13 to 13, l −13 to 13</td>
</tr>
<tr>
<td>Completeness to θ = 29.00°</td>
<td>99.9%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>17353</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4662 (R_{int} = 0.0359)</td>
</tr>
<tr>
<td>Reflections with F² > 2σ</td>
<td>3414</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.719 and 0.926</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0405, 0.1568</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4662 / 0 / 187</td>
</tr>
<tr>
<td>Final R indices [F² > 2σ]</td>
<td>R1 = 0.0342, wR2 = 0.0777</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0556, wR2 = 0.0860</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.025</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.000 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.399 and −0.404 e Å⁻³</td>
</tr>
</tbody>
</table>

3.40: The asymmetric unit was found to contain one unique molecule of 3.40.
Table 8.28 Crystal data and structure refinement for 3.42.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{35}H_{31}FeNP_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>583.40</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>Synchrotron, 0.6943 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, Pca2₁</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 17.022(6) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 13.583(5) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 12.377(4) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>2861.7(17) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.664 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1216</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>yellow, 0.20 × 0.05 × 0.04 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>3455 (θ range 2.34 to 25.44°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.46 to 27.65°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −22 to 16, k −18 to 18, l −16 to 16</td>
</tr>
<tr>
<td>Completeness to θ = 27.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Intensity decay</td>
<td>5.3%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>18835</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>6973 (R_{int} = 0.0710)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>4899</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.879 and 0.974</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0757, 0.0000</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>6973 / 1 / 353</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0570, wR2 = 0.1299</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0926, wR2 = 0.1458</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.005</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.03(2)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.0117(14)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.000 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.001 and −0.581 e Å⁻³</td>
</tr>
</tbody>
</table>

3.42: The molecular structure was determined using synchrotron radiation, with data collected at Daresbury Laboratory Station 9.8, due to the size of the crystals (at least one dimension < 0.05 mm) and their poorly diffracting nature. The asymmetric unit was found to contain one unique molecule of 3.42.
Table 8.29 Crystal data and structure refinement for 3.43.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{35}H_{31}Cl_{2}FeNP_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>849.39</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 8.7986(6) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 20.4581(15) Å, β = 92.4870(11)°</td>
</tr>
<tr>
<td></td>
<td>c = 17.6152(13) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3167.8(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>5.165 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1664</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>orange, 0.46 × 0.32 × 0.05 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>9995 (θ range 2.30 to 31.85°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.53 to 29.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h –12 to 11, k 0 to 27, l 0 to 24</td>
</tr>
<tr>
<td>Completeness to θ = 29.00°</td>
<td>99.8 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>21635</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>17856 (R_int = 0.0518)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.200 and 0.782</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0474, 10.6713</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>17856 / 0 / 380</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0417, wR2 = 0.1025</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0528, wR2 = 0.1093</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.058</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.003 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.643 and –1.496 e Å⁻³</td>
</tr>
</tbody>
</table>

3.43: The molecular structure of 3.43 was determined using multiple diffraction data files (SHELXL–97 hklf5 format) collected by the EPSRC National Crystallography Service, after the crystal lattice was found to be merohedrally twinned [major component 86.05(3)%, twin law; 180° about the reciprocal axis 1 0.001 –0.83]. The asymmetric unit was found to contain one unique molecule of 3.43.
Table 8.30 Crystal data and structure refinement for 4.2a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C<sub>23</sub>H<sub>20</sub>NO<sub>2</sub>P</td>
</tr>
<tr>
<td>Formula weight</td>
<td>373.37</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.6710 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P<sub>2</sub><sub>1</sub>/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 17.555(4) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 8.207(2) Å, β = 97.774(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 13.106(3) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1870.9(8) Å<sup>3</sup></td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.165 mm<sup>-1</sup></td>
</tr>
<tr>
<td>F(000)</td>
<td>784</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.16 × 0.06 × 0.03 mm<sup>3</sup></td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>1140 (θ range 2.91 to 21.29°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>2.21 to 24.99°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = 22 to 22, k = 10 to 10, l = 15 to 16</td>
</tr>
<tr>
<td>Completeness to θ = 24.99°</td>
<td>97.1 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>10293</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3813 (R<sub>int</sub> = 0.0827)</td>
</tr>
<tr>
<td>Reflections with F<sup>2</sup> > 2σ</td>
<td>2175</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.9741 and 0.9951</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F<sup>2</sup></td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0692, 0.0000</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3813 / 0 / 249</td>
</tr>
<tr>
<td>Final R indices [F<sup>2</sup> > 2σ]</td>
<td>R1 = 0.0541, wR2 = 0.1195</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1140, wR2 = 0.1477</td>
</tr>
<tr>
<td>Goodness-of-fit on F<sup>2</sup></td>
<td>0.987</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>0.033(3)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.262 and −0.320 e Å<sup>−3</sup></td>
</tr>
</tbody>
</table>

4.2a: The asymmetric unit was found to contain one unique molecule of 4.2a. All hydrogen atoms except H(1) were modelled using a riding model.
Table 8.31 Crystal data and structure refinement for 4.3.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{43}H_{37}Cl_{8}NP_{2}Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1108.37</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>Synchrotron, 0.6939 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_{1}/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a = 9.222(3) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 13.443(5) Å</td>
<td>β = 90.889(9)°</td>
</tr>
<tr>
<td>c = 35.150(13) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4357(3) Å</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.817 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>2184</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.13 × 0.06 × 0.03 mm(^{3})</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>1362 (θ range 2.68 to 24.08°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>0 range for data collection</td>
<td>1.58 to 27.72°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h = -12 to 12, k 0 to 17, l 0 to 46</td>
</tr>
<tr>
<td>Completeness to θ = 23.00°</td>
<td>95.7%</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>29989</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>12033 (R_{int} = 0.0856)</td>
</tr>
<tr>
<td>Reflections with F^2 > 2σ</td>
<td>9318</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.637 and 0.894</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0000, 222.9707</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>12033 / 107 / 497</td>
</tr>
<tr>
<td>Final R indices [F^2 > 2σ]</td>
<td>R1 = 0.1080, wR2 = 0.2376</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1382, wR2 = 0.2527</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.153</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>3.325 and −5.361 e Å(^{-3})</td>
</tr>
</tbody>
</table>

4.3: The molecular structure of 4.3 was determined using multiple diffraction data files (SHELXL – 97 .hk1f5 format), after the crystal lattice was found to be non-merohedrally twinned [major component 76.19(18)%]. The atom C(1) was initially found to be non-positive-definite and was restrained to be more isotropic, in addition to being restrained to have a similar anisotropic displacement parameters to neighbouring atoms within the phenyl ring C(1) – C(6). The atoms within the solvating chloroform molecules and the atoms N(1), C(13), C(14) and C(29) were also restrained to have similar anisotropic displacement parameters.
Table 8.32 Crystal data and structure refinement for **4.14a**.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{17}H_{22}N_{4}O_{5}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>362.39</td>
</tr>
<tr>
<td>Temperature</td>
<td>120(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>triclinic, P ̅</td>
</tr>
</tbody>
</table>
| Unit cell parameters | a = 4.8441(6) Å \(\alpha = 84.727(7)^\circ \)
| | b = 10.4738(10) Å \(\beta = 87.267(5)^\circ \)
| | c = 17.6121(18) Å \(\gamma = 83.198(7)^\circ \) |
| Cell volume | 882.91(16) Å³ |
| Z | 2 |
| Absorption coefficient \(\mu \) | 0.102 mm⁻¹ |
| \(F(000) \) | 384 |
| Crystal colour and size | colourless, 0.26 \times 0.06 \times 0.03 mm³ |
| Reflections for cell refinement | 3073 (θ range 2.91 to 27.48°) |
| Data collection method | Bruker-Nonius 95mm CCD camera on κ-goniostat, φ & ω scans |
| θ range for data collection | 2.91 to 25.00° |
| Index ranges | h = −5 to 5, k = −12 to 12, l = −20 to 20 |
| Completeness to θ = 25.00° | 97.1 % |
| Reflections collected | 12773 |
| Independent reflections | 3026 (R\text{int} = 0.0693) |
| Reflections with F^2>2σ | 2339 |
| Absorption correction | semi-empirical from equivalents |
| Min. and max. transmission | 0.974 and 0.997 |
| Structure solution | direct methods |
| Refinement method | Full-matrix least-squares on F² |
| Weighting parameters a, b | 0.0561, 2.6375 |
| Data / restraints / parameters | 3026 / 152 / 296 |
| Final R indices [F^2>2σ] | R1 = 0.0862, wR2 = 0.1924 |
| R indices (all data) | R1 = 0.1127, wR2 = 0.2089 |
| Goodness-of-fit on F² | 1.067 |
| Largest and mean shift/su | 0.000 and 0.000 |
| Largest diff. peak and hole | 0.428 and −0.345 e Å⁻³ |

4.14a: The asymmetric unit contained an ammonium cation of **4.14**, a carbamic derivative of **4.14** and a solvating water molecule. The phenyl ring C(12) – C(17) was two–fold disordered over two sets of equivalent positions, with C(12) and C(15) common between the two disorder components (occupancy refined to 51.0(6)% for the major component). The anisotropic displacement parameters and geometry of the phenyl ring C(12) – C(17) and its disorder component were restrained to be similar.
Table 8.33 Crystal data and structure refinement for 4.15a.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{14}H_{19}N_{2}O_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>247.31</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.8457 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 19.233(4) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 6.4959(13) Å, β = 92.110(3)°</td>
</tr>
<tr>
<td></td>
<td>c = 9.5553(18) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>1193.0(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.093 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>532</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.16 × 0.12 × 0.01 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>1556 (θ range 3.94 to 30.66°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>3.94 to 27.49°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −20 to 20, k −7 to 7, l −10 to 10</td>
</tr>
<tr>
<td>Completeness to θ = 27.49°</td>
<td>99.6 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>6010</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1617 (R_{int} = 0.0527)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>1309</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.985 and 0.999</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.1306, 1.3449</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1617 / 356 / 264</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R1 = 0.0681, wR2 = 0.1903</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0805, wR2 = 0.2023</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.051</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.000 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.725 and −0.281 e Å(^{-3})</td>
</tr>
</tbody>
</table>

4.15a: The asymmetric unit contains one unique molecule of an ammonium cation of 4.15 and an [EtO\(^-\)] counterion. The ethanoate anion and the naphthyl group, including nitrogen atom N(2), were both found to be two–fold disordered over two sets of equivalent positions (occupancies refined to 55.7(12)% and 93.2(3)% respectively for the major components). The anisotropic displacement parameters and geometry of the major and minor disorder components were restrained to be similar. The naphylene moiety’s disorder components were also restrained to be more planar.
Table 8.34 Crystal data and structure refinement for 4.30.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{36.33}H_{38.33}Cl_{3}N_{2}O_{2}P_{2}PtS</td>
</tr>
<tr>
<td>Formula weight</td>
<td>930.46</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2_1/n</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 10.3997(5) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 46.949(2) Å, β = 93.394(2)°</td>
</tr>
<tr>
<td></td>
<td>c = 22.9518(11) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>11186.7(9) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>12</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>4.155 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>5536</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.16 × 0.12 × 0.01 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>81371 (θ range 1.73 to 25.00°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker SMART 1000 CCD diffractometer</td>
</tr>
<tr>
<td></td>
<td>ω rotation with narrow frames</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.73 to 25.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −12 to 12, k −55 to 55, l −27 to 27</td>
</tr>
<tr>
<td>Completeness to θ = 25.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>81371</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>19718 (R_int = 0.1078)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>12922</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.556 and 0.960</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0000, 305.3245</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>19718 / 383 / 1288</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0765, wR2 = 0.1446</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1274, wR2 = 0.1657</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.113</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.702 and 0.004</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.265 and −2.376 e Å⁻³</td>
</tr>
</tbody>
</table>

4.30: The asymmetric unit was found to contain three unique molecules of 4.30 and four solvent molecules [one CHCl₃ and three (CH₃)₂SO]. The solvating (CH₃)₂SO molecule containing O(5) was found to be disordered over two equivalent sets of positions (occupancies refined to 81.1(1)% for the major component), the anisotropic displacement parameters and geometry of the major and minor disorder components of the solvate were restrained to be similar. The anisotropic displacement parameters of the atoms within phenyl rings C(35) – C(40), C(41) – C(46), C(69) – C(74) and C(75) – C(80) were restrained to be similar. The sulfur atom, S(1), was originally found to be non-positive-definite and was restrained to be more isotropic. The anisotropic displacement parameters of all four solvent molecules were restrained.
Table 8.35 Crystal data and structure refinement for 4.31.

<table>
<thead>
<tr>
<th>Chemical formula</th>
<th>C₄₀H₃₆Cl₈N₂OP₂Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula weight</td>
<td>1101.34</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>synchrotron, 0.6719 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, P2₁2₁2₁</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>10.0491(6) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>15.0403(9) Å</td>
</tr>
<tr>
<td>β</td>
<td>90°</td>
</tr>
<tr>
<td>c</td>
<td>27.6518(16) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4179.3(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.981 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2168</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.14 × 0.08 × 0.06 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>35755 (θ range 2.45 to 31.17°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>2.69 to 31.17°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −15 to 14, k −22 to 23, l −23 to 40</td>
</tr>
<tr>
<td>Completeness to θ = 24.00°</td>
<td>92.8 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>35754</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>14124 (R_{int} = 0.0434)</td>
</tr>
<tr>
<td>Reflections with F^2>2σ</td>
<td>13927</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.606 and 0.796</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0311, 4.3240</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>14124 / 0 / 488</td>
</tr>
<tr>
<td>Final R indices [F^2>2σ]</td>
<td>R₁ = 0.0290, wR₂ = 0.0788</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R₁ = 0.0293, wR₂ = 0.0791</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.027</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.433(4)</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.004 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.633 and −1.095 e Å⁻³</td>
</tr>
</tbody>
</table>

4.31: The asymmetric unit was found to contain one unique molecule of **4.31** and two solvating chloroform molecules.
Table 8.36 Crystal data and structure refinement for 4.32.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₄₁H₃₆Cl₂N₂OP₂Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>900.65</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>Synchrotron, 0.8462 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>monoclinic, P2₁/c</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>16.690(4) Å</td>
</tr>
<tr>
<td>α</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>14.837(3) Å</td>
</tr>
<tr>
<td>β</td>
<td>117.831(3)°</td>
</tr>
<tr>
<td>c</td>
<td>16.087(3) Å</td>
</tr>
<tr>
<td>γ</td>
<td>90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3522.9(13) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>4.263 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1784</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.15 × 0.05 × 0.02 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>24946 (θ range 3.66 to 26.85°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker APEX 2 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>3.66 to 33.00°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −21 to 21, k −19 to 19, l −20 to 20</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>24946</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>7435 (R_int = 0.0765)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>5972</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.567 and 0.920</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0327, 222.3130</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>7435 / 399 / 442</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0800, wR2 = 0.2133</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0950, wR2 = 0.2199</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.117</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>5.222 and −4.702 e Å⁻³</td>
</tr>
</tbody>
</table>

4.32: The asymmetric unit was found to contain one unique molecule of 4.32. There was evidence of twinning (F²_obs > F²_calc), but this could not be resolved. The anisotropic displacement parameters for all carbon, nitrogen, phosphorus and oxygen atoms were restrained.
Table 8.37 Crystal data and structure refinement for 4.34.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C₄₆H₄₉Cl₂N₃O₂P₂Pt</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1003.81</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.7107 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, Pnma</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td></td>
</tr>
<tr>
<td>a = 28.768(2) Å</td>
<td>α = 90°</td>
</tr>
<tr>
<td>b = 17.1489(15) Å</td>
<td>β = 90°</td>
</tr>
<tr>
<td>c = 8.0686(7) Å</td>
<td>γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>3980.6(6) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>3.784 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>2016</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.27 × 0.20 × 0.04 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>22753 (θ range 1.85 to 29.24°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker SMART 1000 CCD diffractometer</td>
</tr>
<tr>
<td>0 range for data collection</td>
<td>1.85 to 29.24°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h −38 to 37, k −22 to 22, l −9 to 11</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>99.3 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>22753</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>5058 (R_int = 0.0356)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>4091</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.428 and 0.863</td>
</tr>
<tr>
<td>Structure solution</td>
<td>direct methods</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0797, 6.4112</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>5058 / 185 / 269</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0426, wR2 = 0.1180</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0536, wR2 = 0.1251</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.056</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>2.699 and −1.042 e Å⁻³</td>
</tr>
</tbody>
</table>

4.34: The asymmetric unit was found to contain half a molecule of 4.34. The complex was positioned on a crystallographic mirror plane which bisected the platinum centre, peptide group and carbazole moiety [symmetry operations for equivalent atoms ' = x, −y+1/2, z]. The anisotropic displacement parameters of the carbazole moiety were restrained to be similar. The distance between N(3) – C(24) and N(3) – C(24) were restrained to be similar. Platon was used to model molecules of highly disordered solvate as a diffuse regions of electron density (Platon “squeeze” procedure). ²²⁹
Table 8.38 Crystal data and structure refinement for 4.37.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical formula</td>
<td>C_{40}H_{36}Cl_{3}N_{2}O_{3}P_{2}Pd</td>
</tr>
<tr>
<td>Formula weight</td>
<td>867.40</td>
</tr>
<tr>
<td>Temperature</td>
<td>150(2) K</td>
</tr>
<tr>
<td>Radiation, wavelength</td>
<td>MoKα, 0.71073 Å</td>
</tr>
<tr>
<td>Crystal system, space group</td>
<td>orthorhombic, Pnma</td>
</tr>
<tr>
<td>Unit cell parameters</td>
<td>a = 28.571(3) Å, α = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 17.5634(18) Å, β = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 8.2536(8) Å, γ = 90°</td>
</tr>
<tr>
<td>Cell volume</td>
<td>4141.6(7) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Absorption coefficient μ</td>
<td>0.757 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>1764</td>
</tr>
<tr>
<td>Crystal colour and size</td>
<td>colourless, 0.27 × 0.21 × 0.07 mm³</td>
</tr>
<tr>
<td>Reflections for cell refinement</td>
<td>32496 (θ range 1.16 to 13.98°)</td>
</tr>
<tr>
<td>Data collection method</td>
<td>Bruker SMART 1000 CCD diffractometer</td>
</tr>
<tr>
<td>ω rotation with narrow frames</td>
<td></td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.84 to 27.50°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>h –35 to 36, k –22 to 22, l–10 to 10</td>
</tr>
<tr>
<td>Completeness to θ = 26.00°</td>
<td>100.0 %</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>32496</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4871 (R_{int} = 0.0611)</td>
</tr>
<tr>
<td>Reflections with F²>2σ</td>
<td>3720</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>semi-empirical from equivalents</td>
</tr>
<tr>
<td>Min. and max. transmission</td>
<td>0.822 and 0.949</td>
</tr>
<tr>
<td>Structure solution</td>
<td>Patterson synthesis</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Weighting parameters a, b</td>
<td>0.0587, 20.4425</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4871 / 143 / 245</td>
</tr>
<tr>
<td>Final R indices [F²>2σ]</td>
<td>R1 = 0.0628, wR2 = 0.1534</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0838, wR2 = 0.1612</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.045</td>
</tr>
<tr>
<td>Largest and mean shift/su</td>
<td>0.001 and 0.000</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>1.298 and −1.149 e Å⁻³</td>
</tr>
</tbody>
</table>

4.37: The asymmetric unit was found to contain half of a molecule of 4.37, with the complex lying across crystallographic mirror plane which bisects the palladium(II) centre and the (C_{10}H_{12}O_{2})NHCOCH_{2}N moiety. The auxiliary ligand site was therefore found to be two fold disordered [C(26) and Cl(1) occupancy symmetry imposed to 50:50]. The anisotropic displacement parameters for Cl(1) and C(26) were constrained to be identical. The anisotropic displacement parameters for the phenyl rings, C(1) – C(6), C(7) – C(12) and the atoms N(1), C(14) and C(15) were restrained to be similar. The geometry of the phenyl rings C(1) – C(6), C(7) – C(12) was also restrained to be similar. Platon was used to model molecules of highly disordered CH_{2}Cl_{2} solvate as diffuse regions of electron density (“squeeze” procedure).²²⁹