This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/
RADIATION EFFICIENCY OF FINITE PLATES WITH BEAM STIFFENERS

A Rousounelos
Department of Aeronautical and Automotive Engineering,
SJ Walsh
Loughborough University,
VV Krylov
Loughborough, Leicestershire, LE11 3TU, UK

1 INTRODUCTION

Beam-stiffening is a common technique used as an effort to minimise the acoustic radiation of plates, by modifying its structural properties. Although beam-stiffening has been widely used in many applications for sound and vibration control, its effects on sound radiation has not been fully studied theoretically. Therefore, sometimes the use of beam-stiffening might lead to undesired acoustic results.

One of the first and most important publications regarding sound radiation by beam-stiffened plates is that by Maidanik1. By studying the acceleration spectrum, and its relation to the sound power, he showed that the discontinuities of the plate at the beam’s location will, in general, increase the coupling between the structure and the surrounding acoustic medium. Maidanik also derived approximate expressions for the radiation efficiency of the beam-plate system as a function of frequency, by employing a statistical method, which led to the development of a then new technique later called Statistical Energy Analysis.

The interaction of flexural waves, in an infinite panel, with a beam discontinuity was studied by Ungar2. Expressions for the transmission, reflection and near-field effects are presented and are related to trace matching between flexural waves in the plate with flexural and torsional waves in the beam. Lyon3 used these expressions, to investigate the radiation resistance of the infinite beam-plate system, for different configurations of the beam.

Although the study of infinite beam-plate systems, as presented in 2,3, reveals the effects of an attached beam to the vibration and acoustic radiation of a plate, it does not take into account the modal behaviour of the beam. This is considered by Heckl4, where a plate infinite in one dimension and finite in the other dimension, with attached beams across the finite dimension is studied. Expressions for the transmission and reflection coefficients are presented, in order to discuss the wave propagation along the complex system. The near-field effects are not taken into account as they are local and do not propagate away from the discontinuity. However, these effects must be considered for the study of sound radiation of the structure, as the near-filed is able to radiate sound.

A number of publications are concerned with the sound radiation by periodically stiffened infinite plates6,7,8,9. Analytical solutions for the vibration and the radiated sound pressure in the far-field is given for the case where the structure is excited by harmonic pressure6 and by point or line forces7,8,9,10. However, in many practical situations, such as panels in automotive structures, the excitation is much more complicated than simple point or line forces. Hence, a more general approach is required.

More recently, some researchers11,12,13 have focused on the numerical optimisation of the acoustic design of a structure, by taking advantage of the increasing capabilities of microprocessors. The proposed methods use optimisation algorithms, such as genetic algorithms, and numerical methods such as the finite element method and/or the boundary element method, to optimise the position and properties of a beam attached onto a plate. Although, the acoustic optimisation techniques are very powerful for dealing with problems where the parameters (such as, source excitation, geometry...
of the structure, etc.) are specific and they are known a priori, they are unable to shed light on the physical phenomena of sound radiation by beam-stiffened plates and hence to give general guidelines for designing such structures.

In this paper, the vibration field of a finite simply supported plate with attached stiffeners is considered by assuming a propagating wave in the plate, in the direction perpendicular to the beam, and the scattering caused by the beams along with an infinite number of reflections from the boundaries. In the direction of the beam, the vibration field is considered to be one of the mode shapes of the simply supported plate. In this way, the structure is assumed to be excited with an equal amount of energy at all frequencies, hence all cases of specific excitation, such as point, line or sound excitation, can be considered as sub-cases of this general approach. Once the velocity spectrum of the structure is known, its radiation efficiency can be calculated. Figures of the radiation efficiency with respect to frequency for different mode numbers in the direction of the beam are presented.

2 WAVE PROPAGATION ALONG THE BEAM-PLATE SYSTEM

Wave propagation has been studied by Ungar\(^2\) for an infinite beam-plate system and by Heckl\(^4\) and Rousoumelos, et al\(^14\), for a structure finite in the dimension along the beam and infinite in the other dimension. A similar procedure to the latter is adopted here for a finite stiffened plate in all dimensions. A flexural wave is assumed to exist in the plate travelling in the positive x-direction. If the plate has no boundaries in the x-dimension then the vibration field of the structure consists of the travelling wave plus the reflected, transmitted and evanescence waves due to the beam discontinuity. In the y-direction, the direction where the beam lies, the displacement is given by the summation of an infinite number of modes. For the present study the boundaries are assumed to be simply supported hence the displacement is given as an infinite series of sinusoidal functions. For a beam lying at x=0, using standard mathematical notation the displacement along the beam-plate system is:

\[
\begin{align*}
 w(x,y) &= \begin{cases}
 \sum_n a_n \sin \left(\frac{n\pi y}{L_y} \right) \left[\exp \left(-i(k_n(x-x_{b1})+\pi/2) \right) + R_n \exp \left(i(k_n(x-x_{b1})-\pi/2) \right) \right] & x < 0 \\
 \sum_n a_n \sin \left(\frac{n\pi y}{L_y} \right) \left[T_n \exp \left(-i(k_n(x-x_{b2})+\pi/2) \right) + T'_n \exp \left(-k'_n(x) \right) \right] & x > 0
 \end{cases}
\end{align*}
\]

with

\[
k_n^2 = k_p^2 - \left(\frac{n\pi}{L_y} \right)^2 \quad \text{and} \quad k'_n^2 = k_p^2 + \left(\frac{n\pi}{L_y} \right)^2
\]

The coefficients \(R_n \) and \(T_n \) are the complex reflection and transmission coefficients respectively and \(R'_n \) and \(T'_n \) are the corresponding near-field coefficients. The subscript \(n \) indicates that the coefficients depend on the mode-number in the y-dimension. The expansion coefficient \(a_n \) depends on the excitation of the plate. The rest of the variables will be explained later in this section.

Forces and moments exerted on the beam by the plate’s vibration have been described by Ungar\(^2\). Equating these forces and moments of the beam with that of the plate for both sides of the structure
(positive and negative x), results in four equations which can be solved simultaneously to give the four unknown coefficients R_n, T_n, R'_n and T'_n. Thus,

\[
R_n = \frac{\exp(-ik_nL_y)(k_n - ik_n') tors \cdot flex + 2Dk_n^2L_y^2 (flex + k_n^2 L_y tors)}{(k_n + ik_n')(2D(k_n + ik_n)L_y^2 + tors)(2Dk_n(k_n - ik_n')k_n^4 + flex)}
\]

\[
T_n = \frac{\exp(-ik_nL_y)2iDk_n(k_n - ik_n')L_y^2 (2Dk_n^2(k_n^2 + k_n'^2)L_y^4 + flex + k_n^2 L_y^2 tors)}{(k_n + ik_n')(2D(k_n + ik_n)L_y^2 + tors)(2Dk_n(k_n - ik_n')k_n^4 + flex)}
\]

\[
R'_n = \frac{2ik_n(D(k_n - ik_n')L_y^2 (flex + k_n' k_n^4 L_y tors) + tors \cdot flex)}{(k_n + ik_n')(2D(k_n + ik_n)L_y^2 + tors)(2Dk_n(k_n - ik_n')k_n^4 + flex)}
\]

\[
T'_n = \frac{2Dk_n(k_n - ik_n')L_y^2 (flex + ik_n' k_n^4 L_y tors)}{(k_n - ik_n')(2D(k_n + ik_n)L_y^2 + tors)(2Dk_n(k_n - ik_n')k_n^4 + flex)}
\]

where

\[
tors = GK L_y^2 \left(\frac{J \omega^2}{GK} + \left(\frac{n \pi}{L_y} \right)^2 \right)
\]

\[
flex = BL_y^4 \left(\frac{m_b \omega^2}{B} - \left(\frac{n \pi}{L_y} \right)^4 \right)
\]

L_x and L_y are the dimensions of the plate and D is its flexural rigidity, B is the flexural rigidity of the beam, m_b is its mass per unit length, GK is the beam torsional rigidity and J is its polar mass moment of inertia. $tors$ and $flex$ are variables containing properties of the torsional and flexural vibrations of the beam respectively.

In this study, the plate under consideration is finite in all dimensions. This means that the waves described above will be reflected from the boundaries, lying at x_{b1} and x_{b2} in the x-dimension (in the y-dimension the plate has been already considered to be finite). The boundary condition at these locations is assumed to be simply supported. That means that the reflection coefficient from the structure’s edges is -1. By taking an infinite number of reflections from the boundaries and the reflection and transmission of these across the beam the following equation for the displacement in the x-direction is derived:

\[
w(x) = \begin{cases}
 v_{1+} \exp(-ik_n(x - x_{b1}) + \pi/2)) + v_{1-} \exp(i(k_n(x - x_{b1}) - \pi/2)) & -L \leq x < 0 \\
 (v_{1+} R_n' - v_{2+} T_n') \exp(k_n x) & 0 < x \leq L \\
 v_{2+} \exp(-i(k_n(x - x_{b2}) + \pi/2)) + v_{2-} \exp(i(k_n(x - x_{b2}) - \pi/2)) & L < x \leq x_{b2} \\
 (v_{1+} T_n' - v_{2+} R_n') \exp(-k_n' x) & x_{b2} < x \leq x_{b1}
\end{cases}
\]

where

Vol. 30. Pt.2. 2008
\[v_{1+} = \frac{1 + R_n}{(1 + R_n)^2 - T_n^2} \quad v_{2+} = -\frac{T_n}{T_n^2 - (1 + R_n)^2} \]
\[v_{1-} = 1 - v_{1+} \quad v_{2-} = -v_{2+} \]

and \(L \) is the length of each half section of the beam-plate system (\(L = L_x / 2 \)). Eq. (2) can be rewritten in trigonometric form as:
\[
w(x) = \begin{cases}
(1 - 2v_{1+}) \sin(k_n(x - x_{b1})) - i \cos(k_n(x - x_{b1})) \\
+ (v_{1+}R_n - v_{2+}T_n') \exp(k_n'x) \\
2v_{2+} \sin(k_n(x - x_{b2})) + (v_{1+}T_n' - v_{2+}R_n') \exp(-k_n'x)
\end{cases} \quad -L \leq x < 0
\]
\[
w(x) = \begin{cases}
2v_{2+} \sin(k_n(x - x_{b2})) + (v_{1+}T_n' - v_{2+}R_n') \exp(-k_n'x)
\end{cases} \quad 0 < x \leq L
\]

3. SOUND RADIATION

The acoustic power, \(P_n \), radiated by a given mode \(n \) of a baffled planar source can be calculated from the following expression:
\[
P_n = \rho c k \int \int \frac{u_n(k_x, k_y)^2}{\sqrt{k_x^2 - k_x'^2 - k_y^2}} dk_x dk_y
\]
\[(4)\]

where, \(\rho \) is the volume density of the acoustic medium, \(c \) is the speed of sound, \(k \) is the acoustic wavenumber and \(\left| u_n(k_x, k_y) \right|^2 \) is the velocity power spectrum of the plate, given by the double Fourier transform of the spatial velocity distribution of the plate:
\[
u_n(k_x, k_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u_n(x, y) \exp(-ik_x x) \exp(-ik_y y) dx dy
\]

The radiation efficiency can then be calculated by:
\[
\sigma_n = \frac{P_n}{\rho c S \left\langle u_n^2 \right\rangle} = \frac{k \int \int \frac{u_n(k_x, k_y)^2}{\sqrt{k_x^2 - k_x'^2 - k_y^2}} dk_x dk_y}{4\pi^2 \int_{S} \left| u_n(x, y) \right|^2 dS}
\]
\[(5)\]

where \(\left\langle u_n^2 \right\rangle \) is the mean square velocity of the structure. By multiplying Eq. (3) by \(i\omega \) and taking its Fourier transform, using \(\sin \frac{n\pi y}{L_y} \) for the \(y \)-dimension, the velocity spectrum is given by:
4 NUMERICAL RESULTS

Substituting $u_n(k_x, k_y)$ to Eq. (5), and evaluating the two integrals numerically, the radiation efficiency of the structure, for the n^{th} mode in the y-direction, can be calculated. To check the validity of the model described above, the radiation efficiency calculated from Eq. (5) is compared with the radiation efficiency calculated by FEM/BEM numerical methods, using Nastran/Patran and LMS Virtual Lab software. In order to derive the radiation efficiency of the structure from the radiation efficiency of a single mode, the following expression is used15:

$$\sigma = \frac{\sum_n \sigma_n \left\langle \frac{u_n^2}{\sigma_n^2} \right\rangle}{\sum_n \left\langle \frac{u_n^2}{\sigma_n^2} \right\rangle} \tag{7}$$

In the model of the beam-plate system developed above, all modes are excited with the same amount of energy. In order for the comparison with the FEM/BEM methods to be made, the radiation efficiency of a point excited stiffened plate averaged for 10 different point force locations is calculated. The plate that is used is a steel plate with one stiffener in the middle of its length. The comparison is shown in Figure 1.

![Figure 1. Comparison of radiation efficiency calculated using FEM/BEM and Eq. (5) & (6) for a steel plate with $L_x \times L_y$, 455mm x 375mm, 5mm thick with a steel beam stiffener 15mm high and 5mm wide.](image-url)
A first observation that was made by investigating the model described above is regarding the shift in the resonant frequencies of the structure caused by the beam. As it is expected, when the beam location is across the middle of the plate, the beam does not influence the even modes, as there is no displacement at the location of the beam for these modes. For the odd modes, the beam behaves like an added stiffness, hence it shifts the resonant frequency upwards, when the resonance of the structure is lower than the resonance of the beam (f_{beam}). When the resonance of the beam is lower than that of the structure, the beam behaves like an added mass, hence it shifts the resonant frequency down. Figure 2 shows the mean squared velocity of a plate, with and without a stiffener, for $n = 1$, where the effect of the beam at resonant frequencies can be seen. The shift of the resonant frequencies, especially for frequencies above the resonance of the beam, is rather small. The same results are verified by FEM calculations. Moreover, using FEM, this phenomenon has been observed for plates with more than one stiffener.

![Figure 2. Mean squared velocity of a plate with the same properties as that in Figure 1 with and without the stiffener.](image)

This shift in the resonant frequencies has an effect on the radiation efficiency, since it is known that, the lower the resonant frequency of a given mode shape the lower is its radiation efficiency\(^{16}\). Hence, modes that are shifted higher in frequency will have a higher radiation efficiency, and modes that are shifted lower in frequency will have a lower radiation efficiency. The difference in the radiation efficiency between an unstiffened plate and a plate with one stiffener for modes $n = 1$ and $n = 2$ is illustrated in Figure 3 and Figure 4. As it is the case with the shift of the resonant frequencies, the change in the radiation efficiency caused by the beam is small. It can be also seen that for the case of one stiffener, the critical frequency remains the same (the critical frequency of the flexural waves of the plate, which cause sound radiation).
Figure 3. Radiation efficiency of a plate with the same properties as that in Figure 1 with and without the stiffener for $n = 1$

Figure 4. Radiation efficiency of a plate with the same properties as that in Figure 1 with and without the stiffener for $n = 2$

5 CONCLUSIONS

A model for the vibration field of a finite plate with one stiffener has been developed. The vibration field in the x-dimension consists of a propagating wave along with an infinite number of reflections from the boundaries as well as reflected and transmitted waves at the beam discontinuity. In the y-dimension, the direction where the beam lies, the vibration field consists of a single mode. Expressions for the reflection, transmission and near-field coefficients for the n^{th} mode of the beam are also presented. The model can be also extended for the case of more than one stiffener.

Vol. 30. Pt.2. 2008
From the numerical evaluation of the above model, the first observation was that the resonance frequency of the plate are shifted depending upon whether they are above or below the resonance frequency of the beam. When the resonance frequency of the plate is below the resonance frequency of the beam, the stiffener behaves as an added stiffness hence it shifts the resonant frequency higher. The opposite effect is observed when the resonance of the plate is higher than that of the beam. Then the beam behaves as an added mass hence it shifts the resonant frequency lower. The shift of resonant frequencies has an effect upon the radiation efficiency as modes with lower resonance frequency have lower radiation efficiency and modes with higher resonance frequency have higher radiation efficiency. Similar results regarding the shift of the resonant frequencies have been observed for the case of more than one stiffener using FEM calculations.

6 ACKNOWLEDGMENT

The financial support from Jaguar and Land Rover Research for this project is gratefully acknowledged.

7 REFERENCES