High strain rate characteristics of 3-3 metal–ceramic interpenetrating composites

This item was submitted to Loughborough University's Institutional Repository by the/an author.

Citation: CHANG, H. ... et al, 2011. High strain rate characteristics of 3-3 metal–ceramic interpenetrating composites. Materials Science and Engineering A, 528 (6), pp. 2239-2245.

Metadata Record: https://dspace.lboro.ac.uk/2134/7909

Version: Accepted for publication

Publisher: © Elsevier

Please cite the published version.
This item was submitted to Loughborough’s Institutional Repository (https://dspace.lboro.ac.uk/) by the author and is made available under the following Creative Commons Licence conditions.

![Creative Commons Licence](https://creativecommons.org/licenses/by-nc-nd/2.5/)

Attribution-NonCommercial-NoDerivs 2.5

You are free:

- to copy, distribute, display, and perform the work

Under the following conditions:

BY: You must attribute the work in the manner specified by the author or licensor.

Noncommercial: You may not use this work for commercial purposes.

No Derivative Works: You may not alter, transform, or build upon this work.

- For any reuse or distribution, you must make clear to others the license terms of this work.
- Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

[Disclaimer](https://creativecommons.org/licenses/by-nc-nd/2.5/)

For the full text of this licence, please go to:

http://creativecommons.org/licenses/by-nc-nd/2.5/
High Strain Rate Characteristics of 3-3 Metal-Ceramic Interpenetrating Composites

Hong Changa, Jon Binnera and Rebecca Higginsona
Paul Myersb, Peter Webbc and Gus Kingc
aDepartment of Materials, Loughborough University, UK
#Corresponding Author. Email: Hong.chang@nottingham.ac.uk
bDyson Thermal Technologies, Sheffield, UK
cPermali (Gloucester) Ltd, Gloucester, UK

Abstract

3-3 interpenetrating composites (IPCs) are novel materials with potentially superior multifunctional properties compared with traditional metal matrix composites. The aim of the present work was to evaluate the high strain rate performance of the metal-ceramic IPCs produced using a pressureless infiltration technique through dynamic property testing, viz. the split Hopkinson’s pressure bar (SHPB) technique and depth of penetration (DoP) analysis, and subsequent damage assessment. Though the IPCs contained rigid ceramic struts, the samples plasticly deformed with only localised fracture in the ceramic phase following SHPB. Metal was observed to bridge the cracks formed during high strain rate testing, this latter behaviour must have contributed to the structural integrity and performance of the IPCs. Whilst the IPCs were not suitable for resisting high velocity, armour piercing rounds on their own, when bonded to a 3 mm thick, dense Al\textsubscript{2}O\textsubscript{3} front face, they caused significant deflection and the depth of penetration was reduced.

Key words: interpenetrating composites; split Hopkinson’s pressure bar; depth of penetration; damage characterisation.
Introduction

For an armour tile to be effective, it needs both high penetration resistance and the capability of withstanding more than a single impact. Whilst a high compressive strength is a fundamental requirement for a light armour, the lack of ductility in tension is sometimes the cause for the catastrophic failure [1]. Typically, although ceramics are attractive materials for ballistic applications in terms of their abrasion resistance, which can blunt/erode the incoming projectiles and absorb the energy, hence defeating the threat, they have poor multi-hit potential, shattering after as little as one impact and needing to be replaced [2]. Such deficiencies can be at least partially addressed nowadays via the use of a mosaic approach and constraint.

On the other hand, metal matrix composites (MMCs) have been shown to display a number of useful properties for a wide range of different applications, including improved strength, stiffness, hardness, light weight, wear and abrasion resistance, lower thermal expansion coefficients and better resistance to elevated temperatures and creep compared to the matrix metal, whilst retaining adequate electrical and thermal conductivity, ductility, impact and oxidation resistance [3-5]. As a result, they are being increasingly used in applications such as aerospace and defence components [6-9].

Amongst the MMCs, 3-3 interpenetrating composites (IPCs) consisting of 3-dimensionally interpenetrating matrices of metallic and ceramic phases are interesting materials with potentially superior properties compared with traditional dispersed phase composites [10]. One of the most widely used methods to fabricate IPCs is the infiltration of molten metals into ceramic foams or powder beds [11]. Whilst infiltration under pressure, such as squeeze casting, offers high efficiency, it has difficulty in fabricating complex shaped components and risks damaging the ceramic preform. Pressureless infiltration approaches avoid these limitations [12]. By careful control of the thermo-atmospheric cycle and the use of precursor coatings, a range of molten aluminium alloys can be successfully infiltrated into a number of ceramic foam compositions, including alumina, mullite and spinel [13-15]. Properties of the IPCs have been studied by the authors, which have shown promising wear resistance, as well as flexural properties and ductility [16, 17]. However, the high strain rate performance of the IPCs is yet to be studied.
The objective of the present work was to manufacture IPCs using the pressureless infiltration technique and then to evaluate their performance using both SHPB and DoP approaches. The effect of the density of the precursor Al₂O₃ foams on the subsequent high strain rate performance of the composites was studied and the resulting damage to the system was thoroughly assessed.

Experimental

Processing
The precursor Al₂O₃ foams were supplied by Dyson Thermal Technologies, Sheffield, UK. Made by gel casting an aqueous suspension of two grades of Al₂O₃ powders with mean particle sizes of 0.5 μm (CT3000, SG, Alcoa Industrial Chemicals Europe, Frankfurt, Germany), and 6 μm (MDS-6, Panadyne™, Pennsylvania, USA) in a ratio of 10 to 1, the foams measured 70 mm in diameter by 10 mm thick and had densities of 15 – 35 % of theoretical and cell sizes in the range of 50 – 200 µm. An Al-8 wt.% Mg alloy, selected on the basis of previous research [15], was used as the infiltrant. Whilst full details of the process route are described elsewhere [15,18], in brief the Al₂O₃ foam samples were placed on top of similarly shaped and sized discs of the alloy, the metal-ceramic couples being contained in alumina boats. These were heated at 20°C min⁻¹ in flowing Ar in a tube furnace; the ceramic foam was infiltrated with the metal in a tube furnace at 915°C in pure N₂. A holding time of 30 – 60 mins was sufficient for complete infiltration. One additional series of samples was made in which individual 10 mm diameter 3 mm thick, slip cast, dense alumina discs were attached to Al-Mg / 15% Al₂O₃ IPCs in situ during the infiltration process by providing excess metal which formed an interfacial layer between the ceramic front face and IPC backing. Microstructural observation revealed that the process worked extremely well with the foam being completely infiltrated and the ceramic facing being bonded onto the IPC with no gaps or residual porosity.

High Strain Rate Evaluation
Initial evaluation of the high strain rate characteristics of the composites was carried out using the split Hopkinson’s pressure bar (SHPB) technique, on samples measuring 9 mm in diameter and 4.5 mm in thickness. The stress-strain curve of the composite was obtained from the analysis of the incident wave, the reflective wave and the transmitted wave [19].
The aim was to achieve three different strain rates for each group of composites by using the three available diameter apertures in the sealing plug, viz. 8, 12 and 20 mm. Due to the different ceramic contents of the composites, the resultant strain rates achieved naturally varied. The Al-Mg / 30% Al₂O₃ IPCs, in particular, showed lower strain rates than the samples with lower ceramic contents. The depth of penetration, DoP, ballistic evaluation of the composites was performed by Permali (Gloucester) Ltd using 7.62 mm, steel tipped, armour piercing (AP) rounds at a velocity of 700 ± 20 ms⁻¹. The composites were glued onto an aluminium backing with a thickness of ~50 mm. The residual energy of the bullet after passing through the target composite was indicated quantitatively by the depth of penetration of the round into the backing, this was ascertained by cutting the backing aluminium in half to reveal the DoP.

Microstructure Characterisation and Damage Assessment

For polarized light microscopy, the IPCs were ground and polished metallographically using diamond paste and then anodized using 5% fluoboric acid at 20V for about 90 seconds. For Scanning Electron Microscopy (SEM) observation (1530VP FEG SEM, LEO Elektronenskopie GmbH, Oberkochen, Germany), the samples were given a final polish using 0.02 μm colloidal silica prior to observation. TEM foils (examined using a 2000FX, Jeol, Tokyo, Japan) were specifically prepared from the metal-ceramic interface using a Dual Beam Focused Ion Beam (FEI - Nanolab 600, FEI Europe, Eindhoven, The Netherlands) from both SHPB and DoP tested composites; the latter samples were produced from near the impact site.

Results

Ballistic testing

Representative SHPB results are shown in Fig. 1. Although the IPCs contained a continuous Al₂O₃ network throughout their structure, they yielded at 1 – 2% strain then displayed plastic deformation, behaviour more typical of a metallic material, and they remained macroscopically intact without shattering or falling apart. With an increase in strain rate, the yield strength of the IPCs increased, showing strain rate sensitivity of the yield strength. For the Al-Mg / 15% Al₂O₃ IPC, the curves are all of very similar shape and the increase in the strain is purely a result of the higher impact velocity. With an increase in ceramic content in the IPC, the yield strength and the maximum true stress observed increased monotonically, obeying the role of mixture. The Al-Mg / 30% Al₂O₃ IPC had the highest values of ~500 MPa and ~600 MPa for yield strength and true stress, respectively, but the degree of strain...
decreased. The true stress in the sample also showed a fairly rapid decrease with increasing strain following the initial increase on initiation of the test; a similar trend is observed in the Al-Mg / 25% Al₂O₃ IPC (Fig. 1(c)) at the higher strain rate. This suggests that the interpenetrating ceramic structure might have suffered the initiation of microcracking / fracture; a result supported by the fact that the spherical pores in the sintered ceramic structure were deformed by the SHB test (see Fig. 4).

The Al-Mg / 25% Al₂O₃ IPC, Fig. 1(c), displayed transitional behaviour between that of the composites containing 15% and 30% Al₂O₃ foams. At the lower strain rate, the deformation was more plastic deformation dominated as for the 15% Al₂O₃-based IPCs, whilst at the higher strain rate, the ceramic phase dominated the properties as for the 30% Al₂O₃-based IPCs. This transition is probably due to the intermediate ceramic content, 25%, of the composite but could also have been affected by its slightly larger foam cell size, viz. 100 - 200 µm average rather than the 50 - 100 µm average for the other two composites. Investigation of the independent effects of the ceramic foam density and cell size in the IPCs on the strain rate performance will be undertaken in the future.

The depths of penetration of the IPCs after ballistic tests are shown in Table 1; selected images of the samples after testing may be seen in Fig. 2. The results show that, compared to the Al alloy used alone as a backing, the presence of the IPCs reduced the DoP by roughly 33%. Whilst the IPCs on their own were insufficient to stop a high velocity round and the DoP values changed very little with ceramic foam content in the IPC, the results with respect to deflection were considered encouraging, Figs. 2(a,b). Once the round hit the composite, the hard, continuous Al₂O₃ network deflected the round and hence contributed to the resistance to penetration. Spall deformation of the composites produced from the 15% dense foam was observed at the periphery of the impact site, Fig. 2(c), a phenomenon often observed in metallic targets [20]. The IPCs made from 30% dense foam, Fig. 2(d), though generally fractured into more fragments, were more effective in deflecting the round. This correlated well with the SHPB results in Fig. 1(b).

The results, however, were surpassed by the ballistic performance of the Al-Mg / 15% Al₂O₃ IPC produced with a Ø10×3 mm, slip cast, dense Al₂O₃ disc in-situ bonded to the surface by using excess metal during the infiltration stage. It deflected the round by 30° and had a DoP value of just 12.4 mm, Table 1, though the IPC sheared off the aluminium backing, Fig. 3. Clearly, the combination of a hard ceramic facing and a ductile IPCs transition effectively improved the ballistic performance. Further, when there is a ceramic front face, acoustic
impedance mismatches at the resulting interfaces can be a cause of significant problems since the stress waves from the ballistic event are reflected back inside the ceramic as tensile waves, causing its rapid destruction [21]. The ballistic properties of ceramic-faced armours have been widely studied [22-25] and the presence of a functionally gradient layer between the ceramic front face and metal back face can make the acoustic impedance change less abrupt resulting in less damage from reflected tensile forces [21,26]. Based on this previous work, it is considered possible that the attachment of the IPC to the dense Al₂O₃ layer may have had the effect of reducing the acoustic impedance mismatch (AIM) of an otherwise more abrupt transition from Al₂O₃ to Al alloy backing. Quantitative measurement of the AIM for these samples is due to be obtained in the future.

Microstructure characterization

Optical images and SEM micrographs of Al-Mg / 15% Al₂O₃ IPCs tested under various strain rates in the SHPB test are shown in Fig. 4. The surfaces observed are parallel to the compression direction, hence the deformation of the original spherical cells into ellipses may be clearly observed. The samples plastically deformed with only localised fracture in the ceramic phase. The cracks appear parallel to the compression direction as a result of tensile stresses. No macroscopic metal-ceramic interfacial debonding was observed, rather the cracks stop at the metal-ceramic interface with the latter remaining intact. Similar toughening effect from the metal phase was observed in the IPCs tested using 3-point bending method [17]; Electron backscatter diffraction (EBSD) analysis revealed that as with Fig.4, the alloy had a large grain size with single grains generally inhabiting multiple cells, which can introduce plastic deformation occurring within a group of neighbouring cells hence absorbing more energy than that could have been achieved if each cell had contained an independent metal grain. In Figs. 4(e) & (f), at the highest strain rate of 2300 s⁻¹, the compression of the Al alloy is evident; the foam struts fractured locally and penetrated into the softer Al, preventing the fragmentation of the whole sample.

Fig. 5 shows the SEM micrographs of the Al-Mg / 25% Al₂O₃ IPCs at higher magnifications. Thin secondary cracks between the two main cracks are observed in Fig. 5(a). The Al₂O₃ grains fractured mainly intergranularly, whilst transgranular fracture of the Al₂O₃ may occur in bigger grains, Fig. 5(b).
Micrographs of the IPCs after DoP testing are shown in Fig. 6; the arrows indicate the general direction of the stress wave. In Fig. 6(a), an IPC made from 15% dense Al₂O₃ reveals that the original spherical cells were deformed to ellipsoids near the point of impact in a similar manner to the SHPB test. The degree of deformation decreased along the impact wave transmission direction towards the edges of the sample, Fig. 6(b). In contrast, the composites produced from 30% dense Al₂O₃ showed barely any deformation of the spherical cells, Fig. 6(c); the crack originates from the point of impact. The metal may be observed to bridge the crack in the image, Figs. 6(c) & (d), which must have contributed to the structural integrity and performance of the IPCs. For the IPC made from 15% dense foam and protected by a 3 mm thick dense Al₂O₃ front layer, the composite beneath the front face was protected from major radial cracks, Fig. 6(e), whilst the deformation of the original spherical cells into ellipsoids did occur as with Fig. 6(a) indicating energy absorption by the IPCs. Despite the IPCs containing a continuous, brittle Al₂O₃ network, the samples exhibited significant plastic deformation with only minor cracks in the foam struts after testing and the alloy-ceramic interfaces remained intact with no interfacial debonding being observed.

Typical TEM micrographs at the metal-ceramic interface of the SHPB and DoP samples are shown in Fig. 7. From Fig. 7(a), tremendous numbers of dislocations were formed in the metal alloy with both SHPB and DoP testing, as expected. In the Al₂O₃ struts as is shown in Fig. 7(b), a large number of dislocations were formed in the metallic phase along the Al₂O₃ grain boundaries (detailed TEM microstructure of the IPCs can be found in [18]) whilst few dislocations were formed in the Al₂O₃ grain in DoP tested samples, Fig. 7(c), and no dislocations were observed in the Al₂O₃ struts in SHPB-tested samples, Fig. 7(d). This difference in the presence of dislocations in the Al₂O₃ struts is probably due to the lower degree of plastic deformation originating during the SHPB test, however, it should also be noted that due to batch to batch variations, the ceramic foams used for the two tests had different grain sizes (that in the SHPB samples was finer, Fig. 7(d)); this may also have contributed to the difference in dislocation density after the tests.

Conclusions
Al-Mg / Al₂O₃ interpenetrating composites have been produced by the pressureless infiltration of Al₂O₃ foams with densities in the range of 15 – 35% of theoretical and average cell diameters of the order of 50 – 200 μm. The ballistic properties of the IPCs have been
assessed using both SHPB and DoP techniques and the resulting damage in the samples evaluated by a range of microscopy techniques. The results have shown that, on their own, the IPCs are not suitable for resisting high velocity, armour piercing rounds, however, when bonded to a 3 mm thick, dense Al₂O₃ front face, they caused significant deflection and the depth of penetration was reduced, promising for a graded armour.

Though the IPCs contained rigid ceramic struts, the samples plastically deformed with only localised fracture in the ceramic phase. The cracks were parallel to the compression direction, which indicates that they were formed as a result of tensile stresses. No macroscopic metal-ceramic interfacial debonding was observed, rather the cracks stopped at the metal-ceramic interface with the latter remaining intact. When made from 15% dense Al₂O₃ foams, the original spherical cells were deformed to ellipsoids near the point of impact, the degree of deformation decreasing along the impact wave transmission direction towards the edges of the sample. In contrast, the IPCs produced from 30% dense Al₂O₃ foams showed barely any deformation of the spherical cells. Metal was observed to bridge the cracks formed during high strain rate testing, this latter behaviour must have contributed to the structural integrity and performance of the IPCs.

Acknowledgements
The authors gratefully acknowledge funding from the EPSRC in the UK; Dyson Thermal Technologies, Sheffield, UK, for supplying the alumina foams and Permali (Gloucester) Limited, Gloucester, UK for the ballistic testing and valuable advice.

References
Fig. 1 True stress-strain curves of (a) Al-Mg / 15% Al₂O₃, 50 – 100 µm average cell diameter; (b) Al-Mg / 30% Al₂O₃, 50 – 100 µm average cell diameter; (c) Al-Mg / 25% Al₂O₃, 100 – 200 µm average cell diameter.
Fig. 2 Samples after ballistic testing, (a) Al backing after ballistic test with no IPC present; (b) Al backing after ballistic test with an Al-Mg / 25% Al₂O₃ IPC; (c) Al-Mg / 15% Al₂O₃ IPC; (d) Al-Mg / 30% Al₂O₃ IPC. All samples had an average cell diameter of 50-100 µm.
Fig. 3 Al-Mg / 15% Al₂O₃ IPC produced with a 3 mm dense Al₂O₃ disc bonded to the surface, (a) the sample after ballistic testing; (b) the Al backing after testing. Note in (b) that the sample has detached from the backing.
Fig. 4 Optical and SEM micrographs of the Al-Mg / 15%Al$_2$O$_3$ IPC after SHPB testing at (a & b) 600 s$^{-1}$; (c & d) 1000 s$^{-1}$ and (e & f) 2300 s$^{-1}$.
Fig. 5 SEM micrographs of an Al-8Mg / 25% Al₂O₃ IPC after SHPB testing at 1420 s⁻¹.
Fig. 6 SEM micrographs of the IPCs after DoP testing: (a & b) Al-Mg / 15% Al₂O₃; (c & d) Al-Mg / 30% Al₂O₃; (e) Al-Mg / 15% Al₂O₃ with 3 mm dense Al₂O₃ front layer. The arrows indicate the general direction of the stress wave.
Fig. 7 TEM micrographs of the IPCs after high strain rate testing: (a) the Al-Mg alloy, (b) the metal-ceramic interface and (c) the ceramic struts, all after DoP testing; (d) the ceramic struts after SHPB testing.
Table 1 Results of DoP ballistic tests.

<table>
<thead>
<tr>
<th>IPC composition</th>
<th>Avg cell size / μm</th>
<th>Avg DoP* / mm</th>
<th>Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al alloy backing</td>
<td>-</td>
<td>36.6 ± 0.2</td>
<td>0°</td>
</tr>
<tr>
<td>Al-Mg / 15% Al₂O₃</td>
<td>50 – 100</td>
<td>24.7 ± 0.2</td>
<td>0-7°</td>
</tr>
<tr>
<td>Al-Mg / 30% Al₂O₃</td>
<td>50 – 100</td>
<td>23.5 ± 0.2</td>
<td>5-17°</td>
</tr>
<tr>
<td>Al-Mg / 15% Al₂O₃ with 3 mm dense Al₂O₃ face</td>
<td>50 – 100</td>
<td>12.4 ± 0.2</td>
<td>30°</td>
</tr>
</tbody>
</table>

*Depth into aluminium backing alloy